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Preface

In astronomy, a compact star (sometimes called a compact object) is a star that is
a white dwarf, a neutron star or a black hole. Our Galaxy is populated by billions of
white dwarfs, a few hundred million neutron stars and probably by a few hundred
thousand black holes. Of all these objects, only a very tiny fraction has been detected
so far by astronomical instruments, just a few thousand white dwarfs, about 2000
neutron stars, and only a few dozen black holes. Of all these objects, only black holes
can appreciably grow in mass. Its is one of the great successes of the last 15 years that
it could be shown that practically every center of galaxies harbors a supermassive
black hole with a mass in the range of one million to a few billion solar masses. The
visible Universe therefore contains at least 100 billion supermassive black holes.
Only about 100,000 of these objects have now been detected as quasars and only
about 50 as mass centers of nearby galaxies. Black holes of varying mass are also
thought to be the driver behind gamma bursters.

Compact stars form the endpoint of stellar evolution. A star shines and thus loses
its nuclear energy reservoir in a finite time. When a star has exhausted all its energy
(which is called a stellar death), the gas pressure of the hot interior can no longer
support the weight of the star and the star collapses to a denser state – a compact
star. One could see the compact stars, such as the white dwarf and the neutron star,
as a solid state as opposed to the gaseous interior of all other stars. In contrast to
this, the interior of a black hole is very enigmatic. Its surface is formed by a kind of
semipermeable membrane forbidding any classical emission from its surface. The
very source of the gravitational field of black holes is a kind of curvature singularity,
which is hidden behind this membrane. It is expected that quantum effects will
smooth these singular mass currents in the center of a rotating Black hole.

A normal star is a fully Newtonian object, in the sense that its gravitational
field is a mere solution of the Poisson equation. Gravity of compact objects, on the
other hand, must rely on the concepts of space and time. The classical textbook
by Shapiro and Teukolsky [15] on the theory of white dwarfs, neutron stars and
black holes handles many aspects on these objects. In the last 20 years, however,
a great deal of observational data and theoretical insights into the physics of compact
objects force us to a more complicated approach for modelling. Just to mention one
example: though the Tolman–Oppenheimer–Volkoff equation is still the basis for
the calculation of the interior structure of neutron stars, the inclusion of rotation for
these objects leads to a nontrivial set of partial differential equations for handling
the gravitational field of rapidly rotating neutron stars. For this reason, the author of
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this book has decided to base the description of gravity on the general framework
which is nowadays used in numerical computations when Einstein’s equations are
involved.

The concept of this book therefore relies heavily on the concepts of modern grav-
ity. For this reason, Chap. 2 gives an overview of the modern description of gravity.
This does not, however, preclude any study of classical textbooks on Einstein’s
theory of gravity.

Compact objects such as white dwarfs and neutron stars have extremely high
densities that cannot be created in terrestrial laboratories and involve phases of
matter that are not yet well understood. In these lectures we will work out the associ-
ated highly relativistic phenomena theoretically and observationally. One theoretical
focus is understanding the interplay between magnetic and thermal processes for
strongly magnetic neutron stars. In addition, just like their stellar precursors, many
compact objects occur in binary systems. We will study the origin and evolution of
compact X-ray binaries using data from RXTE as well as ASCA and ROSAT and
other X-ray data. With the successful launch of Chandra and XMM–Newton, X-ray
astronomy is in a key position to conduct new high-resolution imaging and spectral
studies of compact objects in both binaries and AGN.

High-energy gamma-ray bursts are being detected with regularity now, but their
nature remains a mystery. Researchers are actively involved in modelling these bursts
and identifying tests and consequences of suggested mechanisms for a wide array
of data sets. Cosmic gamma-ray bursts are important for their own intrinsic physics
as well as for providing a probe of cosmology. We still do not know the nature of
the tremendous explosions that in about one minute release a few percent of a solar
mass of rest energy in the form of gamma-rays. However, several clues point to an
association with the explosions of massive stars, and current models assume that
a gamma-ray burst is triggered by the formation of a black hole.

The study of compact objects probes physics at extreme conditions of density,
temperature, and magnetic fields. The mass–radius relation for neutron stars, for
example, probes the equation of state at supranuclear densities and may reveal in
the future the existence of quark matter in one of the color-superconducting phases.
Accurate neutron star masses can be measured for some binaries, especially those
including radio pulsars; measuring radii is more difficult, but may be possible through
studies of gravitational redshifts, neutron star cooling or the dynamics of gas near
the innermost stable circular orbit predicted by general relativity.

Different models for the composition and equation of state of neutron-star matter
produce neutron-star models with different properties which might then be detected
in observations. Particularly important in this context is the possibility of constraining
the form of particle interactions in high-density matter or of finding evidence for
the occurrence of phase transitions in the stellar interior or of exotic states of matter
(strange stars being an extreme example).

Important stellar evolution questions are being addressed concerning the evolu-
tionary pathways to each of the endpoints for compact objects. Binary star systems
can undergo complex mass transfer evolutionary phases. In particular, considerable
insight has been gained into how close binary systems containing compact ob-
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jects are formed from primordial binaries in the Galaxy and via dynamical capture
processes in globular star clusters. Once an accreting compact binary forms, many
questions remain about the accretion process itself. For example, largely through ob-
servational work conducted with the Rossi X-ray Timing Explorer Satellite (RXTE),
astronomers have found that accreting neutron stars often flicker quasiperiodically
at frequencies ranging from a few hertz to more than one kilohertz. The cause of this
flickering is poorly understood, but may involve effects of strong field gravity in the
accretion disk or oscillations of the neutron star.

One exciting fact is that compact objects offer the ultimate strong-field tests
of general relativity through the gravitational radiation emitted when black holes
form. The recent detection of a double pulsar system opens up a new window on
testing relativistic gravity by using compact objects. Together with black holes, these
neutron stars will provide the deepest insight into the structure of relativistic gravity.
These systems are sources of gravitational waves. The existence and ubiquity of
gravitational waves is an unambiguous prediction of Einstein’s theory of general
relativity. Although gravitational radiation has not yet been unambiguously and
directly detected, there is already significant indirect evidence for its existence.
Most notably, observations of binary pulsars, which are thought to consist of two
neutron stars orbiting rather tightly and rapidly around each other, have revealed
a gradual in-spiral at exactly the rate which would be predicted by general relativity.

Heidelberg, December 2006 Max Camenzind
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1 Compact Objects in Astrophysics

As a class of astronomical objects, compact objects include white dwarfs, neutron
stars and black holes. As the endpoint states of stellar evolution, they form today
fundamental constituents of galaxies. In the form of supermassive black holes, these
objects also live in practically every center of a galaxy. Our Galaxy harbors a black
hole of 3.8 million solar masses, but the center of M87 in the Virgo cluster encloses
a black hole of three billion solar masses. These supermassive black holes are the
most extreme objects found in the Universe.

While neutron stars and stellar mass black holes mainly entered astrophysical
research by means of their radio and X-ray emission, white dwarfs had already been
detected 100 years ago by their optical emission.

1.1 Why is Newtonian Gravity Obsolete?

The gravitational collapse of normal matter produces some of the most exotic objects
in the Universe – neutron stars and black holes. Proving that these objects exist in
Nature occupied theoretical and observational astrophysicists for much of the 20th
century. Most of the detailed debate centered around understanding the possible
final states of massive stars. On his now famous sea voyage from India to England in
1930, Subrahmanyan Chandrasekhar considered the structure of white dwarf stars –
compact stellar remnants in which gravitational forces are balanced by electron
degeneracy pressure. He realized that, if the white dwarf was sufficiently massive,
the degenerate electrons will become relativistic thereby rendering the star suscep-
tible to further gravitational collapse. Although hotly debated by Arthur Eddington,
Chandrasekhar correctly deduced that a white dwarf would undergo gravitational
collapse if its mass exceeded MCh � 1.4 M� (where M� is the mass of the Sun),
a limit now known as the Chandrasekhar limit.

Once gravity overwhelms electron degeneracy pressure, neutron degeneracy
pressure is the last, best hope for averting total gravitational collapse. Objects in
which gravitational forces are balanced by neutron degeneracy pressure are called
neutron stars. Although there was initial hope that nuclear forces would always be
sufficient to resist gravity, the upper limit to the mass of a neutron star is now be-
lieved to be in the range (1.5–2.2)M�. Uncertainties arising from the equation of
state at supranuclear densities continue to plague our determination of this critical
mass, but an absolute upper limit of 3 M� arises from very general considerations,
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i.e. the validity of general relativity and the principle of causality. Above this mass,
it is thought that complete gravitational collapse cannot be avoided. In particular,
Hawking’s singularity theorems show that the formation of a spacetime singular-
ity is unavoidable (irrespective of the mass/energy distribution) once the object is
contained within the light-trapping surface. The result is a black hole, i.e. a region
of spacetime bounded by an event horizon and, at its heart, possessing a spacetime
singularity.

While the above considerations now have a firm theoretical base, observational
astrophysics was, and continues to be, critically important in guiding our under-
standing of such extreme objects. In the case of both neutron stars and black holes,
the very existence of these objects was only widely accepted when compelling ob-
servational evidence was forthcoming. For neutron stars, the pivotal observation
was the discovery of radio pulsars by Jocelyn Bell and Anthony Hewish via radio
observations taken from Cambridge. Black holes gained wide acceptance after it
was demonstrated that the X-ray emitting compact object in the binary star system
Cygnus X-1 did, in fact, possess a mass in excess of the maximum possible neutron
star mass. This made it the first of the so-called Galactic Black Hole Candidates
(GBHCs), a class that has now grown to include some two dozen objects.

We now know of another class of black holes – the supermassive black holes,
with masses in the range of (106–1010)M�, that reside at the dynamical centers of
most, if not all, galaxies. Today, by far the strongest case for a supermassive black
hole can be made for our own Galaxy. Modern high-resolution, infrared imaging
reveals that the stars in the central-most regions of our Galaxy are orbiting an unseen
mass of three million solar masses. Furthermore, studies of the orbital dynamics
(which now include measured accelerations as well as velocities) constrain the
central mass to be extremely compact. According to conventional physics, the only
long-lived object with these properties is a supermassive black hole. Alternatives,
such as a compact cluster of neutron stars, would suffer a dynamical collapse on
much shorter time-scales.

Having established beyond reasonable doubt that black holes exist, it is obviously
interesting to perform detailed observational studies of them. The regions in the
immediate vicinity of a black hole bear witness to complex interactions between
matter moving at relativistic velocities, electromagnetic fields, and the black hole
spacetime itself. Given that the apparent angular scales of even the biggest black
hole event horizons are � 10−6 arcsec, direct imaging studies of these regions will
not be possible for many years. In the meantime, we must study these regions using
more indirect methods, chief among which are spectroscopic methods.

As we will detail in this book, Nature has provided us with a well-understood and
extremely useful spectral diagnostic of matter in the near vicinity of astrophysical
black holes. In essence, relatively cold matter in the near vicinity of an astrophysical
black hole will inevitably find itself irradiated by a spectrum of hard X-rays. The
result can be a spectrum of fluorescent emission lines, the most prominent being
the Kα line of iron at an energy of 6.4 keV (depending upon the ionization state of
the iron). Ever since the launch of the Advanced Satellite for Cosmology and As-
trophysics (ASCA) in February 1993, X-ray astrophysicists have had the capability
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Fig. 1.1. Fe K Line of the Seyfert galaxy MCG–6–30–15 as observed with XMM–Newton.
The line is intrinsically narrow with a rest-frame energy of 6.4 keV. The line originates from
material that is just a few gravitational radii from the black hole, its profile is shaped by
Doppler shifts and gravitational redshift effects. Figure adapted from [150]

to identify this emission line and measure its spectral profile. Figure 1.1 shows the
iron line in the X-ray emissions originating near the supermassive black hole in the
galaxy MCG–6–30–15. Bearing in mind that the line is intrinsically narrow with
a rest-frame energy of 6.4 keV, it can be seen that the line has been dramatically
broadened and skewed to low energies. It is now widely accepted that the line orig-
inates from material that is just a few gravitational radii from the black hole, and
possesses a profile that is shaped by (relativistic) Doppler shifts and gravitational
redshift effects. Investigating these spectral features in X-ray luminous black hole
systems has given us the clearest window to date on the physics that occurs in the
immediate vicinity of astrophysical black holes.

1.2 Einstein was Skeptical about the Existence of Black Holes

A black hole is a region of space whose attractive gravitational force is so intense
that no matter, light, or communication of any kind can escape. A black hole would
thus appear black from the outside. However, gas around a black hole can be very
bright. It is believed that black holes form from the collapse of stars. As long as they
are emitting heat and light into space, stars are able to support themselves against
their own inward gravity with the outward pressure generated by heat from nuclear
reactions in their deep interiors. Every star, however, must eventually exhaust its
nuclear fuel. When it does so, its unbalanced self gravitational attraction causes it
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to collapse. According to theory, if a burned-out star has a mass larger than about
twice the mass of our Sun (as a protoneutron star), no amount of additional pressure
can stave off total gravitational collapse. The star collapses to form a black hole. For
a nonrotating collapsed star, the size of the resulting black hole is proportional to the
mass of the parent star; a black hole with a mass three times that of our Sun would
have a diameter of about 20 km. The possibility that stars could collapse to form
black holes was first theoretically discovered in l939 by J. Robert Oppenheimer
and H. Snyder [318], who were manipulating the equations of Einstein’s general
relativity. The first black hole believed to be discovered in the physical world, as
opposed to the mathematical world of pencil and paper, was Cygnus X-1, about
7000 lightyears from Earth. Cygnus X-1 was found in 1970. Since then, a few
dozens excellent black hole candidates have been identified. Many astronomers and
astrophysicists believe that massive black holes, with sizes up to 10 billion times that
of our Sun, inhabit the centers of energetic galaxies and quasars and are responsible
for their enormous energy release. Ironically, Einstein himself did not believe in the
existence of black holes, even though they were predicted by his theory.

1.3 Subrahmanyan Chandrasekhar and Compact Objects

Subrahmanyan Chandrasekhar was born in Lahore (then in British India) and studied
physics at the Presidency College, Madras. In 1930, he became a research student of
R.H. Fowler at Cambridge University and earned his PhD in 1933. He developed the
theory of white dwarf stars, showing that quantum mechanical degeneracy pressure
cannot stabilize a massive star. He showed that a star of a mass greater than 1.4 times
that of the Sun (now known as the Chandrasekhar limit) had to end his life by
collapsing into an object of enormous density such as a black hole. In 1937, he
joined the University of Chicago and the Yerkes Observatory. He investigated and
wrote important books on stellar structure and evolution, dynamical properties of star
clusters and galaxies, radiative transfer of energy, hydrodynamic and hydromagnetic
stability, the stability of ellipsoidal figures of equilibrium, and the mathematical
theory of black holes. He also worked in relativistic astrophysics, and his last book
was Newton’s Principia for the Common Reader. In 1952, he received the Catherine
Wolfe Bruce gold medal, for lifetime contributions to astronomy. He was awarded
the Royal Medal of the Royal Society in 1962, and he edited the Astrophysical
Journal for nearly 20 years. Chandrasekhar shared the 1983 Nobel Prize in physics
with W.A. Fowler for his studies of the physical processes of importance to the
structure and evolution of stars.

Chandrasekhar left Bombay on a boat on 31st July 1930. On the voyage, after
overcoming his seasickness, he remembered Fowler’s paper and decided to combine
it with his knowledge of special relativity theory. To his great surprise, he found
that this combination predicted that white dwarfs could only exist up to a certain
limiting mass which depended chiefly on fundamental constants such as h, G and
the mass of the hydrogen atom; the mass was about 1.45 times the mass of the Sun.
England’s two leading astrophysicists, Eddington and Milne, could not believe this
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result, and neither of them would recommend Chandra’s paper for publication by the
Royal Society. So Chandra sent it to the Astrophysical Journal in America, which
published it in March 1931.

Of course, Eddington was wrong. But his resistance to Chandra’s mass limit was
understandable: his life’s work had been to show that every star, whatever its mass,
had a stable configuration. It was generally (and correctly) believed that white dwarfs
were the end stage of stellar evolution, after their energy source was exhausted. Why
should there be a limit to the mass of a star in its old age? Chandra appealed to
physicists he knew – Rosenfeld, Bohr, Pauli. Unanimously, they decided that there
was no flaw in his argument. But it took decades before the Chandrasekhar limit was
accepted by the astrophysics community.

The paradox that normal stars can exist with any mass whereas white dwarfs
can only exist up to 1.45 solar masses is now understood. Stars, in their evolution,
go through a giant stage in which their radius may be hundreds of times larger than
originally. In this stage, the atoms at the surface are not strongly held by gravity, while
there is strong radiation pressure from the inside. Some atoms, especially hydrogen,
are blown off and the star gradually loses mass. Theory shows that stars up to eight
solar masses lose mass in this manner, ending up below the Chandrasekhar limit.
None of this was known in 1935.

The limit also affects stars heavier than eight solar masses. Matter in the central
core of stars evolves to iron by successive nuclear reactions. At this point, no further
nuclear energy can be obtained, just as in white dwarfs. When the iron core grows
to the Chandrasekhar mass, it collapses by gravitation into a neutron star, and the
rest of the star is expelled, giving a type II supernova. Some white dwarfs accrete
matter from the outside, and when their mass has grown to the Chandrasekhar limit,
they also become supernovae, in this case type Ia. Chandra’s theory is basic to much
modern astrophysics.

1.4 Classes of Compact Objects

The study of compact stars begins with the discovery of white dwarfs and the
successful description of their properties by the Fermi–Dirac statistics, assuming
that they are held up against gravitational collapse by the degeneracy pressure of
the electrons, an idea first proposed by Fowler in 1926 [160]. A maximum mass for
white dwarfs was found to exist in 1930 by the seminal work of Chandrasekhar due
to relativistic effects [113]. In 1932 Chadwick discovered the neutron. Immediately,
the ideas formulated by Fowler for the electrons were generalized to neutrons. The
existence of a new class of compact stars, with a large core of degenerate neutrons,
was predicted – the neutron stars (NS). The first NS model calculations were achieved
by Oppenheimer and Volkoff [317] and Tolman [394] in 1939, describing the matter
in such a star as an ideal degenerate neutron gas. Their calculations also showed
the existence of a maximum mass, like in the case of white dwarfs, above which
the star is not stable and collapses into a black hole. They found a maximum stable
mass of 0.75 M� [317]. Only nearly 30 years later, in 1967, was the first neutron
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star observed – in fact, a strange object pulsating in the radio range (radio pulsar),
which was however quickly identified as a fast rotating neutron star. Already in
1964, black holes have been proposed as the ultimate energy source for quasars.
In the meantime, the existence of black holes has been established in a huge mass
range, from about three solar masses to 10 billion solar masses in the centers of huge
elliptical galaxies.

In 1974, the pulsar PSR 1913+16 was observed for the first time in a binary
system by Hulse and Taylor. This allowed a precise measurement of its mass which
was found to be 1.44 M�. Hence, this mass measurement ruled out the simple picture
of an ideal gas of neutrons for the interior of this star. It shows that the interactions
between the nucleons must be taken into account.

Shortly after the introduction of the quark model for nucleons, theoreticians
speculated about the possible existence of quark matter inside neutron stars. Gerlach
demonstrated in his PhD thesis with Wheeler in 1968 [170] that a third family of
compact stars could exist in Nature, besides white dwarfs and neutron stars. He
derived general conditions on the equation of state for such a new form of stars
to exist, in particular that a strong softening in the equation of state, like in phase
transitions, has to occur in neutron stars. Some astrophysicists even argue that the
very ground state of matter is in fact strange quark matter (composed of u, d and s
quarks). Such objects have now been studied since the mid-1980s and are referred
to as strange stars [27, 186].

Fig. 1.2. Compact objects in binary systems. Compact stars are formed in stellar evolution
and often live as companion in a binary system, surrounded by gas rings formed by mass
overflow from its companion star
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A study of compact objects – white dwarfs, neutron stars, and black holes –
begins when normal stellar evolution ends. All these objects differ from normal stars
in at least two aspects:

– They are not burning nuclear fuel, and they cannot support themselves against
gravitational collapse by means of thermal pressure. Instead white dwarfs are sup-
ported by the pressure of the degenerate electrons, and neutron stars are largely
supported by the pressure of the degenerate neutrons and quarks. Only black
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Fig. 1.3. Compact stars are the result of the endpoint in stellar evolution shown as a function
of the initial mass
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holes represent completely collapsed stars, assembled by mere self-gravitating
forces. These objects can be considered as a kind of soliton solution of Einstein’s
equations.

– The second characteristic property of compact stars is their compact size. They
are much smaller than normal stars and therefore have much stronger surface
gravitational fields.

– Often compact objects carry strong magnetic fields, much stronger than found
in normal stars.

1.4.1 White Dwarfs and Neutron Stars

White dwarfs are stars of about one solar mass with a characteristic radius of
5000 km, corresponding to a mean density of 106 g cm−3. They are no longer burning
nuclear fuel, but are steadily cooling away their internal heat. In 1926, only three
white dwarfs were firmly detected. In that year, Dirac formulated the Fermi–Dirac
statistics, which was used by Fowler [160] in the same year, in a pioneering paper on
compact stars – to explain the puzzling nature of white dwarf stars. He identified the

Fig. 1.4. Stars evolve towards different end states: white dwarfs, neutron stars and black holes.
Figure adapted from [260]
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pressure holding up the stars from gravitational collapse with the electron degeneracy
pressure.

Actual models of white dwarf stars, taking into account the special relativistic
effects in the degenerate electron equation of state were then constructed in 1930
by Chandrasekhar [113]. He made the fundamental discovery of a maximum mass
of 1.4 M� for white dwarfs – the exact value somewhat depends on the chemical
composition.

The prediction of the existence of neutron stars as a possible endpoint of stellar
evolution was independent of observations. Following the discovery of the neutron
by Chadwick, it was realized by many people that at very high densities electrons
would react with protons to form neutrons via inverse beta decay. Neutron stars had
been found at the end of the 1960s as radio pulsars and in the beginning of the 1970s
as X-ray stars. A firm upper limit for the mass of neutron stars was then seen as
evidence for the existence of even more exotic objects – black holes. At the time
of the discovery of Cyg X-1 by Uhuru (1970) the value of this upper limit was,
however, the subject of great debate.

1.4.2 Compact X-Ray Sources

A new era in astronomy was opened up in the 1960s by means of the launch of
various rockets (Giacconi 1962). They discovered Sco X-1 in the energy band of
1–10 keV. At the end of one decade, about 20 X-ray sources had been identified. One
of the strongest sources, Cyg X-1, was also found to vary in time. Already at that
time, gas accretion in a close binary system was seen to be the source of this X-ray
emission. But, for example, Prendergast and Burbidge [332] argued that gas flowing
onto a compact star in a binary system would have too much angular momentum
to flow radially inwards. They suggested that the gas would form a disk around the
compact star, with approximately Keplerian angular momentum. There should exist
a small inward drift velocity. The notion of an accretion disk was born (Fig. 1.5).
A comprehensive and up-to-date survey on compact stellar X-ray sources written by
leading experts in the field can be found in the book [6]. This book covers the details
of recent developments in X-ray astronomy and multiwavelength observations, as
well as some theoretical issues for these objects.

Modes of Accretion

Over the years, Cyg X-1 has been found to show two pronounced X-ray states
(Fig. 1.6):

– a soft or high state: Here a pronounced black-body (BB) spectrum is visible with
a temperature of about 1 keV, and the luminosity is high;

– a hard or low state: the BB disappears and the X-rays are emitted in the hard
X-ray region up to 150 keV.

The existence of these two states is generally interpreted as evidence for two different
modes of accretion. The high energies of the photons is seen as evidence for the
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Fig. 1.5. Formation of an accretion disk in a binary system resulting in X-ray emission (wavy
lines) and the launch of jets perpendicular to the disk. The companion star of Cygnus X-1 is
a blue supergiant

Fig. 1.6. Spectral states
for Cyg X-1. The energy
distribution νLν is shown
as a function of the
X-ray energy in keV for
two different epochs,
corresponding to a soft
state and a hard state. At
6.4 keV an iron line is
visible
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existence of a hot plasma with electron temperatures of 109 K in the neighborhood
of the accretion disk. Soft photons from the optically thick disk would then be
up-scattered by Compton processes. Repeated Compton scattering can explain the
power-law form of the observed spectra in the hard state. The very location of the
hot plasma is still under debate. But already in 1977 Liang and Price introduced the
concept of a hot dissipative corona above the accretion disk following the example
of the solar corona (Liang and Price [254]). The energy could be dissipated by MHD
waves, or jets. In recent years, this transition between high state and low state is seen
as a transition from an optically thick disk flow to an optically thin disk flow. This
latter mode of accretion always exists within the marginal stable orbit, since matter
has to flow with the speed of light through the horizon and has to be supersonic
when entering the horizon (for causality reasons). In this way, the inner accretion
onto a black hole has to be hot (i.e. high sound speed near the speed of light). When
the accretion rate is high, then the soft flux is dominant and cooling of the corona
is efficient. On the other hand, when the accretion rate is very low, the inner disk
is probably in a very hot state cooling by Comptonization of soft photons from the
outer disk; this would correspond to the low state (hard) spectrum.

The existence of these luminosity states is not only generic for black hole systems.
Also neutron stars in low-mass X-ray binary systems (LMBXBs) are found to dispose
such luminosity states. The difference is the missing hard tail in the soft state in the
case of neutron stars, while the soft spectrum of Cyg X-1 has a pronounced hard
excess extending to at least a few hundred keV and probably into the MeV region.

1.4.3 Radio Pulsars

Pulsars are the lighthouses of the Galaxy – rapidly spinning neutron stars whose
strong magnetic fields produce conical beams of electromagnetic radiation that sweep
past the Earth with each rotation of the star, producing the eponymous pulses that are
observed primarily at radio wavelengths (Fig. 1.7). Pulsars were discovered, albeit
accidentally, by Jocelyn Bell at Cambridge in 1967. The apparently sporadic bursts
of radio emission appeared during the course of a survey to investigate the effects of
interplanetary scintillation of radio sources. Working as a graduate student in a team
lead by Anthony Hewish, Bell soon realized that the emission always occurred at the
same position in the celestial sphere indicating that the source was not of terrestrial
origin. Subsequent observations with greater time resolution showed the emission
to be a train of pulses with a precise repetition period of 1337 ms. The Cambridge
team published their discovery the following and, soon afterwards, announced the
discovery of three more pulsars found from subsequent inspection of the remaining
survey data.

Hewish was awarded the 1974 Nobel Prize in physics for his “decisive role in the
discovery of pulsars” and his pioneering work in radio astronomy. Bell’s key role in
the discovery has been widely recognized: among other awards, she has received the
Michelson Medal of the Franklin Institute in Philadelphia (jointly with Hewish), the
Tinsley Prize of the American Astronomical Society, and the Herschel Medal from
the Royal Astronomical Society.
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Fig. 1.7. A radio pulsar is a rotating magnetized neutron star with a magnetic dipole moment
inclined with respect to the rotational axis. The magnetosphere is closed within the light
cylinder RL = c/ω, where ω = 2π/P is the angular velocity of the neutron star and c the
speed of light. Plasma flows away along the open magnetic field lines and emits thereby radio
waves. The surface field strengths are between 104 and 109 tesla (108 and 1013 gauss)

Observational progress proceeded quickly, with many astronomers throughout
the world using the largest radio telescopes to search for more pulsars so that, by
the end of 1968, about 20 pulsars were known. By this time, the most plausible
explanation for the phenomenon put forward was that pulsars are rapidly rotating,
highly magnetized neutron stars radiating energy out of their magnetic poles. In this
“lighthouse” model, the observed pulses are produced as the magnetic axis crosses
our line-of-sight once per rotation.

Prior to the discovery, neutron stars were a purely theoretical concept – first
proposed by Walter Baade and Fritz Zwicky to be the collapsed remains of a massive
star after it has exploded as a supernova. The Baade–Zwicky prediction that neutron
stars would be associated with supernova remnants was dramatically confirmed
with the discovery of a short period (33 ms) pulsar in the Crab Nebula in 1968
(Fig. 1.8). The nebula is the remains of a nearby supernova explosion witnessed by

�
Fig. 1.8. Top: The Crab Nebula, filled with gaseous filaments, is the result of a star that
was seen to explode in 1054 AD. Red indicates the electrons are recombining with protons
to form neutral hydrogen, while blue indicates synchrotron emission from the inner nebula.
The lower image shows synchrotron emission of plasma accelerated by tremendous electric
voltages created by the central pulsar (red: radio emission, green: visible emission, blue:
X-ray emission). The inner ring, with prominent knots, of this X-ray nebula is about one
lightyear in diameter. The Crab pulsar is the hot spot in the center of the torus-like structure.
Image Credit: NASA and The Hubble Heritage Team (STScI/AURA)
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Chinese astronomers in 1054 AD. Using the rotating neutron star model, Thomas
Gold of Cornell University, USA, was able to show that the Crab pulsar is the
dominant energy supply to its surrounding nebula. The connection between pulsars
and rotating neutron stars is now universally accepted.

Like other neutron stars, radio pulsars are born in the supernova explosions that
accompany the collapse of massive stars. The nascent pulsars are born rotating at
up to about one hundred times per second. It is this stored rotational kinetic energy
that powers the pulsar, so like a spinning top the pulsar gradually slows down,
reaching spin periods of about a second within a few million years. Eventually,
within about 100 million years, the pulsar is spinning too slowly to maintain its radio
emission, and it fades from view. Some old pulsars that have binary companions can
be “recycled,” or spun back up to fast rotation periods by mass transfer from their
companions. Because the resulting millisecond pulsars have relatively low magnetic
field strengths and hence low energy-loss rates, they can continue to spin rapidly for
times that are long compared to the age of the galaxy.

In over 35 years since the discovery, pulsars have proved to be exciting ob-
jects to study and, presently, over 1500 are known. Most of these are normal in
the sense that their pulse periods are of order one second and, with few excep-
tions, are observed to increase secularly at the rate of about one complete period
in 1,000,000,000,000,000! This is naturally explained as the gradual spin-down of
the neutron star as it radiates energy at the expense of its rotational kinetic energy.
A small fraction of the observed sample are the so-called millisecond pulsars which
have much shorter periods (< 20 ms) and rates of slowdown of typically only one
period in 10,000,000,000,000,000,000, proving to be extremely accurate clocks.
In addition, some pulsars are known to be members of binary systems in which
the companion is another neutron star, a white dwarf, or even a main sequence
star.

Just over 1500 radio pulsars are now known, all in our own Galaxy except
for a few pulsars detected in the Magellanic Clouds. They are studied because
neutron stars are intrinsically interesting astronomical objects, but also because
the study of pulsars is deeply intertwined with many different branches of both
astronomy and physics. Pulsars are, for example, very useful astrophysical probes.
For example, a sharp radio pulse emitted by a pulsar is delayed and broadened during
its propagation through the dispersive, turbulent interstellar medium, in a way that
depends on the frequency and polarization of the signal as well as the properties
of the medium. Multifrequency studies of pulsar signals have been used to map the
distribution and turbulence structure of ionized material in the Galaxy, as well as the
average Galactic magnetic field.

Pulsars are also, by virtue of their very regular, clock-like pulses, useful probes
of the gravitational environments in which they are found. The Doppler shifts of
the signals from pulsars in binaries can be used to study the binary properties, just
as spectral lines are used with normal stars. Some very close pulsar binaries have
orbits that are substantially deformed from Keplerian ellipses by general relativistic
effects; in these systems, very precise tests of “post-Keplerian” gravity theory have
been possible.
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The first binary pulsar was discovered by Russell Hulse and Joseph Taylor in
1974, during a survey for new pulsars done at the Arecibo Observatory as part
of Hulse’s PhD thesis work. Follow-up observations showed that the pulsar is in
a high eccentricity (e = 0.6), short period (7.8 hours) orbit with another star,
which is almost certainly a second neutron star. It was immediately realized that
the high velocities and strong gravitational fields in this binary make this object
an extraordinary laboratory for studying fundamental physics. In 1993, Hulse and
Taylor were awarded the Nobel Prize in physics for the discovery of a new type of
pulsar, a discovery that has opened up new possibilities for the study of gravita-
tion.

The most famous application of pulsar timing techniques has been to tests of
experimental gravitation. In most cases, binary orbits are well approximated as
Keplerian ellipses. The high velocities (� 0.001 c) and strong gravitational fields in
some binary pulsar systems cause relativistic deviations from Keplerian motion to be
significant. Five relativistic corrections have been measured: the advance of the angle
of periastron of the elliptical orbit (as is seen in the orbit of Mercury); the combined
effect of the transverse Doppler shift and the changing gravitational redshift as
the eccentric orbit carries the pulsars closer and further from its companion; two
parameters describing the Shapiro time delay of the pulsar signal as it propagates
through the gravitational potential well of the companion; and the decay of the binary
orbit due to gravitational radiation back reaction. The measurement of any two of
these effects allows the amplitude of the other three to be predicted, making possible
very precise tests of general relativity and alternative gravity theories. This was the
subject of the 1993 Nobel Prize in physics, discussed above.

Observed pulsar radio luminosities, together with the small source size, imply
extraordinarily high brightness temperatures – as high as 1031 K. To avoid implau-
sibly high particle energies, coherent radiation processes are invoked. A maser-like
mechanism, involving particles bunched in momentum space, is attractive, if only
because maser action has been observed elsewhere in astrophysics, but models with
coherent emission from bunches of particles have also been widely discussed, with
a bunch of N particles localized in physical space radiating power proportional to
N2. Coherence by bunching is seen in terrestrial lightning flashes. In detail, severe
problems remain in understanding pulsar emission by either the maser or bunching
models, and no consensus has emerged.

The emission mechanism itself also remains uncertain. Charged particles gyrat-
ing around magnetic field lines produce synchrotron radiation. In the strong magnetic
fields of the pulsar magnetosphere, a particle will quickly radiate away its compo-
nents of momentum that are perpendicular to the field lines, so will be confined to
the lowest Landau level. Roughly, the charged particle can be pictured as a bead
on a wire, along which the bead is free to move. As a particle moves out along
a curved field line, it will produce synchrotron-like radiation that is convention-
ally called “curvature radiation.” Coherent curvature radiation is currently the most
widely accepted model for pulsar radio emission, but many other possible models
have been discussed, including models based on relativistic plasma instabilities that
are variants of the mechanisms proposed for type III solar radio bursts.
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The coherent radio emission from pulsars is a nearly insignificant fraction of
the total luminosity inferred from their spin-down rates. A handful of radio pulsars,
primarily the youngest, also have pulsed emission at optical, X-ray, and gamma-ray
energies. The Crab pulsar, for example, has a spectrum that has been measured
all the way from 10 MHz radio waves to at least 5 TeV gamma-rays; the emitted
power peaks in the hard X-ray band. The pulsar in the Vela supernova remnant has
a spectrum that peaks in the gamma-rays, where it is the brightest object in the sky.
(These rotation powered high-energy pulsars should not be confused with X-ray
binary stars that are accreting material from a companion.) One pulsar is known,
Geminga, that appears quite ordinary except that it is seen only at high energies and
not in the radio. It is believed that Geminga is a very nearby radio pulsar whose
radio beam does not intersect the Earth. As noted above, some models place the
generation of the high-energy emission from pulsars in an outer gap, rather than the
polar cap region where the radio emission probably originates.

Neutron stars and pulsars also play a crucial role in understanding subnuclear
physics. The average density of a neutron star is comparable to the density in heavy
atomic nuclei, and the density reaches several times this value at the core. Neutron
stars are thus useful laboratories for studying nuclear materials at densities beyond
what can be reached in the laboratory. One topic of considerable interest is the
maximum neutron star mass, above which the star becomes unstable to collapse to
a black hole. Pulsar timing measurements allow, in some cases, very accurate stellar
mass estimates. The most massive known neutron star in a radio pulsar binary is
1.44 solar masses, considerably below the 2.2 solar mass limit of a typical nuclear
equation of state.

A more direct probe of neutron star interiors comes from study of timing
“glitches,” that are observed in some young pulsars. During a glitch event, the pulsar
period decreases in a step function, with amplitude from a few parts in 109 to a part
in 106. At the same time, the spin-down rate increases, and the pulsar recovers over
a time period of weeks to months to a period close to the pre-glitch value. Smaller
glitches may be caused by a sudden cracking of the crust of the neutron star and its
relaxation to a more spherical shape; larger glitches are probably due to variations in
the coupling between the superfluid interior of the star and its independently rotating
crust.

1.5 Supermassive Black Holes in Galactic Centers

Black holes are objects so dense that not even light can escape their gravity, and
since nothing can travel faster than light, nothing can escape from inside a black
hole. On the other hand, a black hole exerts the same force on something far away
from it as any other object of the same mass would do. For example, if our Sun were
magically crushed until it were about 6 km in size, it would become a black hole,
but the Earth would remain in its same orbit.

Where Newton had used the motion of the Moon around the Earth as a guiding
example in his work, Einstein used this deviation of Mercury. The central ideas of
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general relativity were already in place; at issue was the exact form of the curvature
term in the Einstein equation. A precise relativistic model of the Sun’s gravitational
field was not needed – Einstein used a simple polynomial approximation. Late in
the year 1915, he succeeded, and the 43 second lag was explained.

A few weeks later, Einstein, working in Berlin, received a paper from Karl
Schwarzschild, an astronomer who, though no longer young, was serving in the
German army in Russia. Hospitalized by an illness that soon proved fatal, Schwarz-
schild had time to discover the desired precise relativistic model, and Schwarzschild
spacetime replaced the Newtonian model as the best description of the gravitational
field of an isolated spherically symmetrical star. But only a few theorists were familiar
with relativity, and significant experimental tests were not possible in Earth-borne
laboratories at that time.

In 1963, the British-educated New Zealand physicist Roy Kerr, working at the
University of Texas, adopted a shrewd strategy: Bearing in mind that Schwarzschild
spacetime has Petrov type D, he did not aim directly at the elusive rotating model, but
instead examined an algebraically simple class of type D metric tensors. The long-
sought metric appeared. Kerr’s minimal one-and-a-half page announcement of his
discovery [220] was followed two years later by elaborate detailed calculations [221].

Fig. 1.9. The masses of neutron stars and astrophysical black holes. A black hole has only two
hairs, the mass and the angular momentum represented by the dimensionless spin parameter a.
Neutron stars are clustered around 1.4 solar masses. Stellar black holes are expected to be
formed with masses in the range of a few to 100 solar masses. Supermassive black holes in
centers of galaxies grow by accretion from black holes formed at high redshifts
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Black holes with masses of a million to a few billion times the mass of the Sun
are now believed to be the engines that power nuclear activity in galaxies (Fig. 1.10).
Active nuclei range from faint, compact radio sources like that in M31 to quasars like
3C 273 that are brighter than the whole galaxy in which they live. Some nuclei fire
jets of energetic particles millions of lightyears into space. Almost all astronomers
believe that this enormous outpouring of energy comes from the death throes of
stars and gas that are falling into the central black hole. This is a very successful
explanation of the observations, but until recently, it was seriously incomplete: we
had no direct evidence that supermassive black holes exist.

The Hubble Space Telescope provides the best evidence to date of supermassive
black holes that lurk in the center of some galaxies. The Space Telescope Imaging
Spectrograph (STIS) revealed large orbiting velocities around the nucleus of these
galaxies, suggesting a huge mass inside a very small region.

Since the mass of black holes can only grow with time, at least some fraction
of nearby galaxies should host such supermassive black holes – like dead quasars
with insufficient fuel to trigger the activity in real quasars. For the past 20 years,
astronomers have looked for supermassive black holes by measuring rotation and
random velocities of stars and gas near galactic centers. If the velocities are large
enough, as in the Sombrero Galaxy, then they imply more mass than we see in stars.
The most probable explanation is a black hole. About 50 have been found as of the
year 2005 (Fig. 1.9). Their masses are in the range expected for nuclear engines,

Fig. 1.10. An artist’s conception of a supermassive black hole sitting in the center of a galaxy.
Credits: Andreas Müller (ZAH, LSW Heidelberg)
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and their numbers are consistent with predictions based on the energy output of
quasars.

1.6 Gamma-Ray Bursters

After nearly 30 years of intense debate and scientific inquiry, scientists finally know
the answer to the question “Where are the gamma-ray bursts?” and can now move
on to answer the question “What causes them?” Recent discoveries in this field by
a collection of international astronomers have demonstrated that these bursts are
from the most remote parts of the Universe, releasing perhaps as much energy in 10
seconds as the Sun emits in its entire 10-billion-year lifetime.

Gamma-ray bursts (GRBs for short) are brief flashes of high-energy radiation
that appear on average about once a day at an unpredictable time from unpredictable
directions in the sky (Fig. 1.11). Since their discovery (by accident) in the late 1960s,
several thousand bursts have been detected, most of them with BATSE, the Burst
and Transient Source Experiment, on board the Compton Gamma Ray Observatory
CGRO. Their distribution on the sky is completely uniform (Fig. 1.15). In particular,
they do not appear to come from the Milky Way. So where do they come from? This
is the question that had kept astronomers busy for several decades, with no apparent
resolution in sight.

Gamma-ray bursts (GRBs) were discovered in 1967 by satellites designed to
monitor compliance with the atmospheric nuclear test ban treaty. These short-lived
outbursts of the most energetic electromagnetic radiation remained one of the biggest
mysteries in astrophysics for nearly three decades thereafter. For most of that period,
the bursts’ positions in the sky were known only with limited precision, making
study of them by ground-based optical and radio telescopes impossible.

With the limited information available, scientists could not determine with con-
fidence even such basic information as the distances from Earth of GRBs. Without
such fundamental details, scientists were not able to learn the nature or cause of the
bursts. Because of the distance uncertainty, for example, astronomers did not know
if GRBs were in our own Solar System, our Galaxy, or in the distant Universe. In
this vacuum of knowledge, speculation led to numerous, widely divergent theories
that attempted to explain the bursts.

In 1997, the Italian–Dutch satellite BeppoSAX provided ground-based observers
with rapid news and more precise positional information about GRBs. On May 8,
1997, BeppoSAX detected a gamma-ray burst, and VLA observers Dale Frail of
NRAO and Shri Kulkarni of Caltech discovered radio emission coming from this
object on May 13. The mere discovery of radio emission from this gamma-ray burst
immediately ruled out some theoretical models at the time. The plot in Fig. 1.12
shows the rapid decay of the X-ray flux coming from this gamma-ray burst event
which occurred on May 8, 1997. The X-ray intensity from this source decreased
almost one million times in less than one week.

Subsequently, the VLA has detected the radio afterglow of several other gamma-
ray bursts. While spectroscopy done at optical observatories has shown that GRBs
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Fig. 1.11. Time profiles for gamma-ray bursts (count rates as a function of time in seconds).
Credits: CGRO home page

are at great distances, beyond our own Milky Way Galaxy, VLA observations have
revealed the size of the fireball and the speed of its expansion. The May 8, 1997,
GRB, for example, was only a tenth of a lightyear across when first detected and
expanded at very nearly the speed of light.

The VLA’s ability to locate GRBs in the sky with pinpoint precision has helped
astronomers at other observatories to locate GRB afterglows that they otherwise
might have missed. With the image shown for the GRB of March 29, 1998, the
position determined by the VLA was provided to optical and infrared observers,
who had failed to find the object, but then, armed with the precise information on its
location, found it on images they had already made.

After three decades of mystery, astronomers now know that GRBs, the most
violent events in the current Universe, occur in galaxies far from Earth. In addition,
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Fig. 1.12. Decay of the GRB970508 flux in X-rays detected by BeppoSAX

the VLA has provided strong evidence that these tremendous explosions occur in
dusty areas of those galaxies, where it is likely that young stars are located within the
clouds of dust and gas from which they formed. This evidence supports the theory
that GRBs result from a hypernova, the explosive death of a very massive star that
collapses and forms a black hole.

Radio telescopes are the only instruments presently capable of measuring the
size of a GRB fireball. In addition, while GRB afterglows fade quickly at other
wavelengths, the VLA has been able to follow an afterglow for more than a year,
tracking changes in its intensity and other characteristics. These observations indicate
the extraordinary importance of radio astronomy for providing information that can
be gained in no other way about one of the frontier areas of astrophysics.

Gamma-ray bursts (GRBs) are brief gamma-ray flashes detected with space-
based detectors in the range 0.1–100 MeV, with typical photon fluxes of 0.01–
100 photons cm−2 s−1 and durations of 0.1–1000 seconds (Fig. 1.13). Their origin
is clearly outside the Solar System, and more than a thousand events have been
recorded so far. Before there was any firm evidence on the isotropy of classical
gamma-ray bursts, the most plausible interpretations involved magnetospheric events
on neutron stars (NS) within our Galaxy. However, the remarkable isotropy of these
events discovered by the BATSE experiment on the NASA Compton Gamma Ray
Observatory (together with the flatter than Newtonian counts) clearly shifts the odds
substantially in favor of a cosmological interpretation.

If gamma-ray bursts came from objects in our Galaxy, one would expect to
see more of them from the Galactic equator, where most other Galactic objects are
found. However, BATSE found that equal numbers of gamma-ray bursts come from
all directions (Fig. 1.15).
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Fig. 1.13. BAT (Swift) and KONUS-Wind light-curves of the short burst GRB060313. The
BAT 15–350 keV light-curve (upper panel) has at least 20 statistically significant peaks with
FWHMs in the 5–15 ms range. The KONUS-Wind 21–1360 keV light-curve (lower panel)
also exhibits several multipeaked pulses with a total duration of approximately 0.8 s. Figure
adapted from Roming et al. [347]

In principle, the isotropy could be interpreted in terms of either (i) a cosmological
distribution similar to that of the distant galaxies and clusters, i.e. hundreds and
thousands of Mpcs, (ii) a distribution in an “extended halo” of our galaxy, which
is so large that the small dipole moment associated with our off-center location is
not noticeable (i.e. greater than � 200 kpc), or (iii) a “galactic disk” distribution,
where objects are sufficiently faint that they are detectable only out to distances
smaller than the width of the disk (few kpc). The “galactic disk” model has difficulty
in explaining the large number of events (a few per day) occurring within a few
kpc, and the dipole and quadrupole moment of the spatial distribution appear to
rule out such an origin. The “extended halo” option may satisfy (just) the dipole
and quadrupole observational restrictions, but the physical origin of the bursts and
the number of sources at such large distances is not straightforward to explain.
On the other hand, the “cosmological” interpretation does have at least two rather
plausible energy sources: either NS-NS (or NS-black-hole) binary mergers (e.g.
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Fig. 1.14. The Swift satellite in observing a gamma-ray burst emitted from the jets launched
by a hypernova. Credit: Spectrum-Astro

binary pulsars merging under the effect of gravitational wave energy losses), or else
“failed supernova” events (where a star undergoes core collapse to a NS but with
much reduced optical display). Either of these should occur with a frequency of
10−5 per galaxy per year, and produces 1050–1051 ergs, detectable out to redshifts
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Fig. 1.15. Distribution of GRBs on the sky as observed by BATSE on CGRO. Source: CGRO
home page

of order unity, so that the typical frequency and fluence is easily explained. More
importantly, the discovery in February 1997 of GRB afterglows and counterparts
gives strong support to the cosmological origin.

Fig. 1.16. Schematics of GRB models. The collapse towards a black hole produces large
amounts of electron–positron pairs which escape as relativistic jets in polar directions. Initially,
the plasma is optically thick, and only at distances of the order of astronomical units, can
gamma-rays escape. These jets drive a shock-front which is visible in the afterglows
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One model for GRBs is a binary pair of neutron stars, with their orbital separation
ground down by billions of years of gravitational radiation, finally merging to form
a black hole. In the process of merging the neutron stars tear each other apart,
forming an accretion disk and jets (Fig. 1.16). A straightforward prediction of
cosmological models is that, if GRB are standard candles, one would expect the
weaker fluence bursts (which presumably are farther) to have longer durations due
to cosmological time dilation. Such an effect has been recently reported. However,
the duration of the burst can depend on intrinsic properties of the source, so that this
cosmological signature may be smeared out by details of the source physics. For
cosmological GRBs, a very interesting prediction is that they should be accompanied
by gravitational wave bursts of energy comparable to a solar rest mass. These would
be detectable at the rate of several per year with coincidence measurements from two
advanced versions of the proposed LIGO or VIRGO detectors. Such measurements
might also distinguish between failed supernova events or compact binary mergers,
through their wave profile. One may also obtain valuable information concerning
early star formation, through limits on the typical redshift derived from the counts
of events as a function of the fluence, and it may be possible to derive limits on the
GRB luminosity distribution.

Problems

1.1. Derive an estimate for the number of white dwarf stars in a globular cluster,
based on the initial mass function (IMF).

1.2. Derive an estimate for the number of neutron stars in our Galaxy, based on the
observed supernova rate.

1.3. Radio astronomers determine the period P and its derivative Ṗ by means of
pulsar timing. Determine the energy-loss rate for a rotating neutron star with period P
in seconds and Ṗ in units of 10−15 s s−1.

1.4. What is the fluence for gamma-ray bursts? Find a fluence histogram for GRBs
on the Web.

1.5. Discuss the methods to derive the masses of black holes in galactic centers.

1.6. Explore the meaning of the “Magorrian relation” between the black hole mass
and the stellar velocity dispersion for galaxies. Find out correlations between the
black hole mass and the stellar mass of the bulge in galaxies.



2 Gravity of Compact Objects

The gravity of compact objects requires a description of gravitational fields much
beyond the Newtonian picture. In this chapter, we give a short overview for the
most important concepts and methods of general relativity. This does not replace
a thorough study of Einstein’s theory. This marvellous theory is explained in many
classical textbooks; see for example the books by Misner, Thorne and Wheeler [10],
Schutz [14], Carroll [2], or Straumann [18]. Since recent research on compact objects
goes much beyond a simple stationary description of gravitational fields, we also give
a short introduction to the concepts of the 3+1 split of Einstein’s equations, which is
now the basis of numerical treatments of Einstein’s field equations. Simulations for
the merging of two black holes or two neutron stars are based on these techniques.
The 3+1 technique is now a very powerful method, which can also be implemented
in deriving, e.g. the field equations for rapidly rotating compact objects, such as
neutron stars and black holes.

2.1 Geometric Concepts and General Relativity

In 1915 Albert Einstein published a geometrical theory of gravitation [141]: the
general theory of relativity. He presented a fundamentally new description of gravity
in the sense that the relative acceleration of particles is not viewed as a consequence
of gravitational forces, but results from the curvature of the spacetime in which the
particles are moving. As long as no nongravitational forces act on a particle, it is
always moving on a “straight line.” If we consider curved manifolds, there is still
a concept of straight lines which are called geodesics, but these will not necessarily
have the properties we intuitively associate with straight lines from our experience
in flat Euclidean geometry. It is, for example, a well known fact that two distinct
straight lines in two-dimensional flat geometry will intersect each other exactly once,
unless they are parallel, in which case they do not intersect each other at all. These
ideas result from the fifth Euclidean postulate of geometry, which plays a special
role in the formulation of geometry.

It is a well known fact that one needs to impose it separately from the first
four Euclidean postulates in order to obtain flat Euclidean geometry. It was not
realized until the work of Gauss, Lobachevsky, Bolyai and Riemann in the 19th
century that the omission of the fifth postulate leads to an entirely new class of non-
Euclidean geometries in curved manifolds. A fundamental feature of non-Euclidean



28 2 Gravity of Compact Objects

geometry is that straight lines in curved manifolds can intersect each other more
than once and correspondingly diverge from and converge towards each other sev-
eral times.

In order to illustrate how these properties give rise to effects we commonly
associate with forces such as gravitation, we consider two observers on the Earth’s
surface, say one in Heidelberg, Germany, and one in Vienna, Austria. We assume
that these two observers start moving due south in “straight lines” as for example
guided by an idealized compass exactly pointing towards the south pole. If we follow
their separate paths we will discover exactly the ideas outlined above. As long as
both observers are in the northern hemisphere the proper distance between them
will increase and reach a maximum when they reach the equator. From then on
they will gradually approach each other and their paths will inevitably cross at the
south pole.

In the framework of Newtonian physics, the observers will attribute the rela-
tive acceleration of their positions to the action of a force. It is clear, however,
that no force is acting in the east–west direction on either observer at any stage
of their journey. In a geometric description, the relative movement of the ob-
servers finds a qualitatively new interpretation in terms of the curvature of the
manifold they are moving in, the curvature of the Earth’s surface. With the devel-
opment of general relativity, Einstein provided the exact mathematical foundation
for applying these ideas to the forces of gravitation in four-dimensional space-
time.

One may ask why such a geometrical interpretation has only been developed
for gravitation. Or in other words: which feature distinguishes gravitation from the
other three fundamental interactions? The answer lies in the gravitational charge, the
mass. It is a common observation that the gravitational mass mG which determines
the coupling of a particle to the gravitational field is virtually identical to the inertial
mass mI which describes the particle’s kinematic reaction to an external force. High
precision experiments have been undertaken to measure the difference between
these two types of masses. All these results are compatible with the assumption that
the masses are indeed equal. The mass will therefore drop out of the Newtonian
equations governing the dynamics of a particle subject exclusively to gravitational
forces m a = GmM/r2, where a is the acceleration of the particle, G the gravitational
constant, M the mass of an external source and r the distance from this source.
The particle mass m can be factored out so that the movement of the particle is
described in purely kinematic terms. The redundancy of the concept of a gravitational
force is naturally incorporated into a geometric theory of gravity such as general
relativity.

It is important to note that this behavior distinguishes gravity from the other
fundamental interactions which are associated with different types of charges, such
as electric charge in the case of electromagnetic interaction. It is not obvious how
and whether it is possible to obtain similar geometric formulations for the electro-
magnetic, weak and strong interaction. The unification of these three fundamental
forces with gravity in the framework of quantum theory is one of the important areas
of ongoing research.
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2.2 The Basic Principles of General Relativity

2.2.1 Einstein’s Equivalence Principle and Metricity

The principle of equivalence has historically played an important role in the devel-
opment of gravitation theory. Newton regarded this principle as such a cornerstone
of mechanics that he devoted the opening paragraph of the Principia to it. In 1907,
Einstein used the principle as a basic element of general relativity. We now regard
the principle of equivalence as the foundation, not of Newtonian gravity or of GR,
but of the broader idea that spacetime is curved. One elementary equivalence prin-
ciple is the kind Newton had in mind when he stated that the property of a body
called “mass” is proportional to the “weight,” and is known as the weak equivalence
principle (WEP). An alternative statement of WEP is that the trajectory of a freely
falling body (one not acted upon by such forces as electromagnetism and too small
to be affected by tidal gravitational forces) is independent of its internal structure and
composition. In the simplest case of dropping two different bodies in a gravitational
field, WEP states that the bodies fall with the same acceleration (this is often termed
the Universality of Free Fall).

A more powerful and far-reaching equivalence principle is known as the Einstein
equivalence principle (EEP). It states that [419]:

1. WEP is valid.
2. The outcome of any local nongravitational experiment is independent of

the velocity of the freely falling reference frame in which it is performed.
3. The outcome of any local nongravitational experiment is independent of

where and when in the Universe it is performed.

The second piece of EEP is called local Lorentz invariance (LLI), and the third piece
is called local position invariance (LPI).

For example, a measurement of the electric force between two charged bodies
is a local nongravitational experiment; a measurement of the gravitational force
between two bodies (Cavendish experiment) is not.

The Einstein equivalence principle is the heart and soul of gravitational theory,
for it is possible to argue convincingly that if EEP is valid, then gravitation must
be a curved spacetime phenomenon, in other words, the effects of gravity must be
equivalent to the effects of living in a curved spacetime. As a consequence of this
argument, the only theories of gravity that can embody EEP are those that satisfy
the postulates of metric theories of gravity, which are:

1. Spacetime is endowed with a symmetric metric.
2. The trajectories of freely falling bodies are geodesics of that metric.
3. In local freely falling reference frames, the nongravitational laws of physics

are those written in the language of special relativity.

The argument that leads to this conclusion simply notes that, if EEP is valid, then
in local freely falling frames, the laws governing experiments must be independent
of the velocity of the frame (local Lorentz invariance), with constant values for the



30 2 Gravity of Compact Objects

various atomic constants (in order to be independent of location). The only laws we
know of that fulfill this are those that are compatible with special relativity, such
as Maxwell’s equations of electromagnetism. Furthermore, in local freely falling
frames, test bodies appear to be unaccelerated, in other words they move on straight
lines; but such “locally straight” lines simply correspond to “geodesics” in a curved
spacetime.

General relativity is a metric theory of gravity, but then so are many others,
including the Brans–Dicke theory. Neither, in this narrow sense, is superstring theory,
which, while based fundamentally on a spacetime metric, introduces additional fields
(dilatons, moduli) that can couple to material stress–energy in a way that can lead to
violations, say, of WEP. Therefore, the notion of curved spacetime is a very general
and fundamental one, and therefore it is important to test the various aspects of the
Einstein Equivalence Principle thoroughly.

A direct test of WEP is the comparison of the acceleration of two laboratory-
sized bodies of different composition in an external gravitational field. If the principle
were violated, then the accelerations of different bodies would differ. The simplest
way to quantify such possible violations of WEP in a form suitable for comparison
with experiment is to suppose that for a body with inertial mass mI , the passive
gravitational mass m P is no longer equal to mI , so that in a gravitational field g, the
acceleration is given by

mI a = m P g . (2.1)

Now the inertial mass of a typical laboratory body is made up of several types of
mass–energy: rest energy, electromagnetic energy, weak-interaction energy, and so
on. If one of these forms of energy contributes to m P differently than it does to mI ,
a violation of WEP would result. One could then write

m P = mI +
∑

A

ηA E A/c2 , (2.2)

where E A is the internal energy of the body generated by interaction A, and ηA

is a dimensionless parameter that measures the strength of the violation of WEP
induced by that interaction, and c is the speed of light. A measurement or limit on
the fractional difference in acceleration a1 and a2 measured between two bodies then
yields a quantity called the Eötvös ratio defined as

η = 2|a1 − a2|
|a1 + a2| =

∑
A

ηA

(
E A

1

mI,1c2
− E A

2

mI,2c2

)
. (2.3)

Many high-precision Eötvös-type experiments have been performed, from the
pendulum experiments of Newton, Bessel and Potter, to the classic torsion-balance
measurements of Eötvös, Dicke, Braginsky and their collaborators. In the modern
torsion-balance experiments, two objects of different composition are connected by
a rod or placed on a tray and suspended in a horizontal orientation by a fine wire.
If the gravitational acceleration of the bodies differs, there will be a torque induced
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on the suspension wire, related to the angle between the wire and the direction
of the gravitational acceleration g. If the entire apparatus is rotated about some
direction with angular velocity ω, the torque will be modulated with period 2π/ω.
In the experiments of Eötvös and his collaborators, the wire and g were not quite
parallel because of the centripetal acceleration on the apparatus due to the Earth’s
rotation; the apparatus was rotated about the direction of the wire. In the Dicke and
Braginsky experiments, g was that of the Sun, and the rotation of the Earth provided
the modulation of the torque at a period of 24 hr. Beginning in the late 1980s,
numerous experiments were carried out primarily to search for a “fifth force,” but
their null results also constituted tests of WEP. In the “free-fall Galileo experiment”
performed at the University of Colorado, the relative free-fall acceleration of two
bodies made of uranium and copper was measured using a laser interferometric
technique. The “Eöt-Wash” experiments carried out at the University of Washington
used a sophisticated torsion balance tray to compare the accelerations of various
materials toward local topography on Earth, movable laboratory masses, the Sun
and the galaxy, and have recently reached levels of 4 × 10−13. The resulting upper
limits on η are summarized in Fig. 2.1.

Gravitational Redshift

The gravitational redshift is one of the most prominent consequences of EEP. Con-
sider two labs, a distance h apart moving with constant acceleration a. At time t0,
the first experiment emits a photon of wavelength λ0. The two experiments remain
a constant distance apart, so that the photon reaches the leading apparatus after a time
∆t = h/c in the reference frame of the experiments. In this time, the apparatus have
picked up an additional velocity∆v = a∆t = ah/c. Therefore, the photon reaching
the leading apparatus will be redshifted by the conventional Doppler effect

∆λ

λ
= ∆v

c
= ah

c2
. (2.4)

According to the EEP, the same situation should happen in a uniform gravitational
field. So we can imagine a tower of height z on the Earth surface with ag the strength
of the gravitational field. This situation is supposed to be indistinguishable from the
previous one in a lab on top of the tower, where the photon from the ground will be
detected. Therefore, a photon emitted from the ground with wavelength λ0 should
be redshifted by the amount

∆λ

λ
= agh

c2
. (2.5)

This is the famous gravitational redshift. This effect is a direct consequence of the
EEP, not of the details of general relativity! It has been verified for the first time by
Pound and Rebka in 1960. They used the Mössbauer effect to measure the change in
frequency of gamma-rays as they travelled from the ground to the top of Jefferson
labs in Harvard.
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Fig. 2.1. Selected tests of the weak equivalence principle, showing bounds on η, which
measures fractional difference in acceleration of different materials or bodies. The free-fall
and Eöt-Wash experiments were originally performed to search for a fifth force. The shaded
band shows current bounds on η for gravitating bodies from lunar laser ranging (LURE).
Credits: C. Will [419]

This formula for the redshift can be stated in terms of the gravitational potential
U , where ag = ∇U1. From this we obtain the redshift

∆λ

λ
= 1

c2

∫
∂zU dz = ∆U

c2
. (2.6)

The principle of local position invariance, the third part of EEP, can be tested
by the gravitational redshift experiment, the first experimental test of gravitation

1 The sign is changed with respect to the usual convention, since we are thinking of ag as
the acceleration of the reference frame, and not of a particle with respect to this reference
frame.
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proposed by Einstein. Despite the fact that Einstein regarded this as a crucial test of
GR, we now realize that it does not distinguish between GR and any other metric
theory of gravity, but is only a test of EEP. A typical gravitational redshift experiment
measures the frequency or wavelength shift z = ∆ν/ν = −∆λ/λ between two
identical frequency standards (clocks) placed at rest at different heights in a static
gravitational field. If the frequency of a given type of atomic clock is the same
when measured in a local, momentarily comoving freely falling frame (Lorentz
frame), independent of the location or velocity of that frame, then the comparison of
frequencies of two clocks at rest at different locations boils down to a comparison
of the velocities of two local Lorentz frames, one at rest with respect to one clock at
the moment of emission of its signal, the other at rest with respect to the other clock
at the moment of reception of the signal. The frequency shift is then a consequence
of the first-order Doppler shift between the frames. The structure of the clock plays
no role whatsoever. The result is a shift

z = ∆U/c2 , (2.7)

where ∆U is the difference in the Newtonian gravitational potential between the
receiver and the emitter. If LPI is not valid, then it turns out that the shift can be
written

z = (1+ α)∆U/c2 , (2.8)

where the parameter αmay depend upon the nature of the clock whose shift is being
measured.

2.2.2 Metric Theories of Gravity

In order to formalize the ideas mentioned in the previous section, general relativity
views spacetime as a four-dimensional manifold equipped with a metric gαβ of
Lorentzian signature where the Greek indices range from 0 to 3. At any given point
in the manifold the signature enables one to distinguish between time-like, space-
like and null directions. The metric further induces a whole range of higher level
geometric concepts on the manifold. It defines a scalar product between vectors
which leads to the measurement of length and the idea of orthogonality. From
the metric and its derivatives one can derive a connection on the manifold which
facilitates the definition of a covariant derivative. The notion of a derivative is more
complicated in a curved manifold than in the common case of flat geometry and
Cartesian coordinates because the basis vectors will in general vary from point to
point in the manifold. It is therefore no longer possible to identify the derivative
of a tensor with the derivative of its components. Instead one obtains extra terms
involving the derivatives of the basis vectors. In terms of a covariant derivative, these
terms are represented by the connection. In general relativity one uses a metric-
compatible connection defined by

Γ
µ
αβ =

1

2
gµ�(∂αgβ� + ∂βgα� − ∂�gαβ) , (2.9)
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where the Einstein summation convention, according to which one sums over re-
peated upper and lower indices, has been used. These connection coefficients are
also known as the Christoffel symbols and define a covariant derivative of tensors
of arbitrary rank by

∇�Tαβ = ∂�Tαβ + Γ α�µTµβ − TαµΓ
µ
�β . (2.10)

So for each upper index one adds a term containing the connection coefficients
and for each lower index a corresponding term is subtracted. With the definition of
a covariant derivative we can finally write down the exact definition of a “straight
line” in a curved manifold. A geodesic is defined as the integral curve of a vector
field U which is parallel transported along itself

(Uα∇α)U = 0 . (2.11)

Based on the covariant derivative we can also give a precise definition of curva-
ture. If we use a coordinate basis, this definition can be shown to imply that for any
vector field U

∇�∇σUα −∇σ∇�Uα = Rαβ�σUβ , (2.12)

which is commonly interpreted by saying that a vector U is changed by being parallel
transported around a closed loop unless the curvature vanishes.

In order to describe the effect of the matter distribution on the geometry of
spacetime, one defines the Ricci tensor as the contraction of the Riemann tensor
Rβδ = Rαβαδ, where again the Einstein summation convention for repeated indices
has been used. Geometry and matter are then related by

Gαβ = Rαβ − 1

2
Rgαβ = κTαβ , (2.13)

where R is the Ricci scalar, R = Rαα, and Tαβ the energy momentum tensor. The
interaction between the matter distribution and the geometry of spacetime can be
summed up in the words of Misner, Thorne and Wheeler: Space acts on matter,
telling it how to move. In turn, matter reacts back on space, telling it how to curve.

The Strong Equivalence Principle (SEP)

In any metric theory of gravity, matter and nongravitational fields respond only to
the spacetime metric g. In principle, however, there could exist other gravitational
fields besides the metric, such as scalar fields, vector fields, and so on. If, by our
strict definition of metric theory, matter does not couple to these fields, what can
their role in gravitation theory be? Their role must be that of mediating the manner
in which matter and nongravitational fields generate gravitational fields and produce
the metric; once determined, however, the metric alone acts back on the matter in
the manner prescribed by EEP.
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What distinguishes one metric theory from another, therefore, is the number and
kind of gravitational fields it contains in addition to the metric, and the equations
that determine the structure and evolution of these fields. From this viewpoint,
one can divide all metric theories of gravity into two fundamental classes: “purely
dynamical” and “prior-geometric” [419].

By “purely dynamical metric theory” we mean any metric theory whose grav-
itational fields have their structure and evolution determined by coupled partial
differential field equations. In other words, the behavior of each field is influ-
enced to some extent by a coupling to at least one of the other fields in the
theory. By “prior geometric” theory, we mean any metric theory that contains
“absolute elements,” fields or equations whose structure and evolution are given
a priori, and are independent of the structure and evolution of the other fields of
the theory. These “absolute elements” typically include flat background metrics η,
cosmic time coordinates t, and algebraic relationships among otherwise dynami-
cal fields.

General relativity is a purely dynamical theory, since it contains only one gravi-
tational field, the metric itself, and its structure and evolution are governed by partial
differential equations (Einstein’s equations). Brans–Dicke theory and its generaliza-
tions are purely dynamical theories, too; the field equation for the metric involves
the scalar field (as well as the matter as source), and that for the scalar field involves
the metric.

By discussing metric theories of gravity from this broad point of view, it is possi-
ble to draw some general conclusions about the nature of gravity in different metric
theories, conclusions that are reminiscent of the Einstein equivalence principle, but
that are subsumed under the name “strong equivalence principle.”

Consider a local, freely falling frame in any metric theory of gravity. Let this
frame be small enough that inhomogeneities in the external gravitational fields can
be neglected throughout its volume. On the other hand, let the frame be large enough
to encompass a system of gravitating matter and its associated gravitational fields.
The system could be a star, a black hole, the Solar System or a Cavendish exper-
iment. Call this frame a “quasilocal Lorentz frame.” To determine the behavior of
the system, we must calculate the metric. The computation proceeds in two stages.
First we determine the external behavior of the metric and gravitational fields,
thereby establishing boundary values for the fields generated by the local system,
at a boundary of the quasilocal frame “far” from the local system. Second, we
solve for the fields generated by the local system. But because the metric is coupled
directly or indirectly to the other fields of the theory, its structure and evolution
will be influenced by those fields, and in particular by the boundary values taken
on by those fields far from the local system. This will be true, even if we work
in a coordinate system in which the asymptotic form of g in the boundary region
between the local system and the external world is that of the Minkowski metric.
Thus the gravitational environment, in which the local gravitating system resides,
can influence the metric generated by the local system via the boundary values of
the auxiliary fields. Consequently, the results of local gravitational experiments may
depend on the location and velocity of the frame relative to the external environment.
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Of course, local nongravitational experiments are unaffected, since the gravitational
fields they generate are assumed to be negligible, and since those experiments cou-
ple only to the metric, whose form can always be made locally Minkowskian at
a given spacetime event. Local gravitational experiments might include Cavendish
experiments, measurement of the acceleration of massive self-gravitating bodies,
studies of the structure of stars and planets, or analyses of the periods of “gravita-
tional clocks.” We can now make several statements about different kinds of metric
theories.

– A theory which contains only the metric g yields local gravitational physics which
is independent of the location and velocity of the local system. This follows from
the fact that the only field coupling the local system to the environment is g, and
it is always possible to find a coordinate system in which g takes the Minkowski
form at the boundary between the local system and the external environment.
Thus the asymptotic values of g are constants independent of location, and are
asymptotically Lorentz invariant, thus independent of velocity. General relativity
is an example of such a theory.

– A theory, which contains the metric g and dynamical scalar fields, yields local
gravitational physics, which may depend on the location of the frame but which
is independent of the velocity of the frame. This follows from the asymptotic
Lorentz invariance of the Minkowski metric and of the scalar fields, but now the
asymptotic values of the scalar fields may depend on the location of the frame.
An example is Brans–Dicke theory, where the asymptotic scalar field determines
the effective value of the gravitational constant, which can thus vary as the scalar
field varies. On the other hand, a form of velocity dependence in local physics
can enter indirectly if the asymptotic values of the scalar field vary with time
cosmologically. Then the rate of variation of the gravitational constant could
depend on the velocity of the frame.

– A theory which contains the metric g and additional dynamical vector or tensor
fields or prior-geometric fields yields local gravitational physics which may have
both location and velocity-dependent effects.

These ideas can be summarized in the strong equivalence principle (SEP),
which states that

1. WEP is valid for self-gravitating bodies as well as for test bodies.
2. The outcome of any local test experiment is independent of the velocity of the

(freely falling) apparatus.
3. The outcome of any local test experiment is independent of where and when in

the Universe it is performed.

The distinction between SEP and EEP is the inclusion of bodies with self-
gravitational interactions (planets, stars) and of experiments involving gravita-
tional forces (Cavendish experiments, gravimeter measurements). Note that SEP
contains EEP as the special case in which local gravitational forces are ig-
nored.
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2.3 Basic Calculus on Manifolds

The above discussion suggests to replace the flat Minkowskian spacetime by means
of a curved manifold. In this section, I give a short outline about structures of
manifolds. A manifold is one of the most fundamental concepts in mathematical
physics. The notion of a manifold captures the idea of a curved space, which is
however locally just flat. In fact, the entire manifold is glued together by local
patches.

A manifold is a topological space which is locally Euclidean (i.e. around every
point, there is a neighborhood which is topologically the same as the open unit
ball in Rn). To illustrate this idea, consider the ancient belief that the Earth was
flat as contrasted with the modern evidence that it is round. This discrepancy arises
essentially from the fact that on the small scales that we see, the Earth does indeed
look flat (although the Greeks did notice that the last part of a ship to disappear
over the horizon was the mast). In general, any object which is nearly “flat” on small
scales is a manifold, and so manifolds constitute a generalization of objects we could
live on in which we would encounter the round/flat Earth problem, as first codified
by Poincaré. More formally, any object that can be charted is a manifold. For the
mathematical details, see any textbook on manifolds.

2.3.1 Tensors and Forms on Manifolds

Tangent Vectors

With the definition of a function f(x1(t), . . . , xn(t)) on a curve γ , parametrized by
t, in a manifold M we now consider its derivative(

∂ f

∂t

)
γ(t)|t=t0

= lim
ε→0

1

ε

[
f(γ(t0 + ε))− f(γ(t0))

]

=
n∑

j=1

dx j(t)

dt
|t0

(
∂ f

∂x j

)
γ(t0)

=
(

dx j

dt

∂ f

∂x j

)
t0

. (2.14)

In the last step we use the summation convention. Since the function f was arbitrary,
we have

∂

∂t
= dx j

dt

∂

∂x j
. (2.15)

Thus the partials do in fact form a good basis for the vector space of directional
derivatives, which we identify with the tangent space.

By considering various curves γ passing through a given point p we can de-
fine a linear vector space at p consisting of linear combinations of the coordinate
derivatives ∂/∂x j in the form

X = X j ∂

∂x j
, (2.16)
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where the X j’s are any set of n numbers. These tangent vectors arise by considering
the curves γ defined by

x j(t) = x j(p)+ X jt (2.17)

for t in some interval −ε < t < ε.
Finally, the definition of X by

X. f = X j ∂ f

∂x j
≡ X j f, j (2.18)

clearly satisfies the Leibniz rule when operating on products of functions

X.( f ◦ g)|γ(t) = ( fX.g+ gX. f)|γ(t) . (2.19)

Tangent vectors may indeed be considered as directional derivatives, ◦ is the com-
position operator.

The tangent vectors at p form a linear vector space of the reals spanned by
the coordinate derivatives, since

(αX + βY). f = α(X. f)+ β(Y. f) (2.20)

is satisfied for all vectors X and Y , numbers α and β and functions f . In addition,
the vectors (∂/∂x j)p are linearly independent.

The space of all tangent vectors (as also called contravariant vectors) to an n-
dimensional manifold M at p is denoted by Tp M, or simply Tp. This space, which
may be visualized as the set of all directions at p, is called the tangent space at p.

Vielbeine or Tetrads

Instead of a basis determined by local coordinates, ∂/∂x j , we may choose any other
n linearly independent vectors ea (a = 1, . . . , n). There must then exist linear
relations of the form

ea = Φk
a
∂

∂xk
, (2.21)

where the determinant of the matrix formed by Φk
a must be nonzero. The inverse

relation is then given by

∂

∂xk
= Φb

k eb , (2.22)

where Φb
k is the inverse of the matrix Φk

a, i.e. it satisfies

Φk
a Φ

a
j = δk

j , Φk
a Φ

b
k = δb

a . (2.23)

Such a basis is called a vielbein, in analogy to the four-dimensional vierbeins. Given
a vielbein basis, we can express any tangent vector at p in the form

X = Xaea . (2.24)

The Xa’s are now the components of the vector X relative to the vielbein basis.
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One-Forms

A one-form ω at p is a linear mapping of the tangent space Tp M onto the reals,
ω : Tp M → R. This means, given any tangent vector X at p, the one-form ω

associates uniquely with it a number ω(X) which is also written as

ω(X) = 〈ω, X〉 . (2.25)

The required linearity of the map is expressed by the relation

〈ω, αX + βY〉 = α〈ω, X〉 + β〈ω,Y〉 (2.26)

for any two tangent vectors X and Y and any reals α and β. We also define multipli-
cations of forms and sums of forms by means of

(αω)(X) = α〈ω, X〉, (ω+ π)(X) = 〈ω, X〉 + 〈π, X〉 . (2.27)

By these rules, one-forms also span a vector space which we denote by T ∗p M. It is
called the cotangent space at p and the dual of the tangent space. For this reason,
one-forms are also called cotangent vectors (or, covariant vectors).

A basis for T ∗p M, associated with the vielbein basis ea for Tp M, is provided by
the one-form basis ea (a = 1, . . . , n) which map any tangent vector X = Xaea to
its components

ea(X) = 〈ea, Xbeb〉 = Xa . (2.28)

From this we have the duality

ea(eb) = 〈ea, eb〉 = δa
b . (2.29)

Similar to tangent vectors, we may also express each one-form ω in terms of
a dual vielbein basis

ω = ωa ea . (2.30)

The bases ea and ea are said to provide dual bases for the tangent and the cotangent
spaces at p.

Tensors of any Rank

Just as a dual vector is a linear map from vectors to the reals, a general tensor can
be defined the same way. Let

Πr
s ≡ T ∗p M × · · · × T ∗p M × Tp M × · · · × Tp M (2.31)

represent the Cartesian product of r cotangent spaces and s tangent spaces at some
point p on the manifold M, i.e. the space of ordered sets of r one-forms and s tangent
vectors: (ω1, . . . , ωr, X1, . . . , Xs). We now consider a multilinear mapping T ofΠr

s
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to the reals. This mapping provides an association of any ordered set of r one-forms
and s tangent vectors to the real number, T(ω1, . . . , ωr, X1, . . . , Xs). The condition
that the map is multilinear requires that

T(ω1, . . . , ωr, αX + βY, X2, . . . , Xs) = (2.32)

α T(ω1, . . . , ωr, X, X2, . . . , Xs) + β T(ω1, . . . , ωr,Y, X2, . . . , Xs)

for all α, β ∈ R and X,Y ∈ Tp M, and for similar replacements of all other forms
and vectors. A multilinear mapping so defined is said to be a tensor of type (r, s).
Linear combinations of tensors of type (r, s) are defined by the rule

(αT + βS)(ω1, . . . , ωr, X1, . . . , Xs) = (2.33)

αT(ω1, . . . , ωr, X1, . . . , Xs) + βS(ω1, . . . , ωr, X1, . . . , Xs)

for all real numbers α and β and X j ∈ Tp M and ωi ∈ T ∗p M. By these rules, tensors
of a given type (r, s) span a linear vector-space of dimension nr+s.

We now define a new product known as the tensor product denoted by ⊗. If T
is a (k, l) tensor and S a (m, n) tensor, we define a (k + m, l + n) tensor by T ⊗ S

T ⊗ S ( ω1, . . . , ωk, . . . , ωk+m, X1, . . . , Xl, . . . , Xl+n) = (2.34)

T(ω1, . . . , ωk, X1, . . . , Xl)× S(ωk+1, . . . , ωk+m, Xl+1, . . . , Xl+n) .

The space of all tensors of type (r, s) is called the space of tensor products, denoted
by (r tangent spaces and s cotangent spaces)

Πr
s (p) = Tp ⊗ · · · ⊗ Tp ⊗ T ∗p ⊗ · · · ⊗ T ∗p . (2.35)

A basis of the tensor product space is then provided by the nr+s special mappings

e j1··· js
i1···ir = ω1

i1
· · ·ωr

ir X j1
1 · · · X js

s . (2.36)

One generally writes this as a tensor product of basis elements

e j1··· js
i1···ir = ei1 ⊗ · · · ⊗ eir ⊗ e j1 ⊗ · · · ⊗ e js . (2.37)

In this notation, the tensor product

Y1 ⊗ · · · ⊗ Yr ⊗Ω1 ⊗ · · · ⊗Ωs (2.38)

of r tangent vectors and s one-forms is that element ofΠr
s which maps (ω1, . . . , ωr ,

X1, . . . , Xs) to the number

〈ω1,Y1〉 · · · 〈ωr,Yr〉〈Ω1, X1〉 · · · 〈Ωs, Xs〉 . (2.39)

If instead of the dual basis ei and e j , we choose a different dual basis ei ′ and e j′ ,
then it follows that the components of T , relative to the new basis
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ei ′1 ⊗ · · · ⊗ e j′r ⊗ e j′1 ⊗ · · · ⊗ e j′s (2.40)

are given by

T
i ′1···i ′r

j′1··· j′s
= Φi ′1

i1
· · ·Φi ′r

ir
Φ

j1
j′1
· · ·Φ js

j′s T i1···ir
j1··· js . (2.41)

A tensor T of type (0,2) is said to be symmetric or antisymmetric if

T(X,Y) = T(Y, X) or T(X,Y) = −T(Y, X) (2.42)

for all X,Y ∈ Tp M. This property can be extended to higher rank tensors.
The components of a tensor in a coordinate basis can be obtained by acting the

tensor on the natural one-forms and vectors, here given in a 4D spacetime,

Tµ1···µk
ν1···νl = T(dxµ1, . . . , dxµk , ∂ν1, . . . , ∂νl ) . (2.43)

This is equivalent to the expansion

T = Tµ1···µk
ν1···νl ∂µ1 ⊗ · · · ⊗ ∂µk ⊗ dxν1 ⊗ · · · ⊗ dxνl . (2.44)

The transformation law for general tensors follows then the same pattern of replacing
the Lorentz transformation matrix used in flat space with a matrix representing more
general coordinate transformations

T
µ′1···µ′k

ν′1···ν′l
= ∂xµ

′
1

∂xµ1
· · · ∂x

µ′k

∂xµk

∂xν1

∂xν
′
1
· · · ∂x

νl

∂xν
′
l

Tµ1···µk
ν1···νl . (2.45)

Vector Fields and Tensor Fields

If we assign to every point p of a differentiable manifold M a tangent vector
X p ∈ Tp M, then we call the assignment X : p → X p a vector field on M. If
(x1, . . . , xn) are local coordinates in an open set U ⊂ M, then for every point
p ∈ U , X p has a unique representation of the form

X p = ξ i(p)

(
∂

∂xi

)
p

. (2.46)

The n functions ξ i(p) defined on U are the components of X with respect to the
local coordinate basis.

We denote the set of all C∞ vector fields on M as X(M). The four-velocity U
on a spacetime is a simple example of a vector field, locally expressed as follows

U = uµ(s) ∂µ , uµ = dxµ

ds
. (2.47)

Similarly to vector fields, we also can define tensor fields by assigning to every
point p of a differentiable manifold a tensor T . The energy–momentum tensor for
pressureless particles with density � is an example

T = �U ⊗U = � uµ uν ∂µ ⊗ ∂ν . (2.48)
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Vector Bundles

The tangent space TM is a special example of a vector bundle [11]. A vector
bundle is a geometrical construct, where to every point of a topological space (here
a manifold) we attach a vector space in a compatible way, so that all these vector
spaces, glued together, form another topological space. A real vector bundle is
defined as follows:

– there are two topological spaces M (base space) and E (called total space);
– there exists a continuous map π : E → M (called projection);
– for every p ∈ M, the fiber π−1(p) has the structure of a real vector space; more

exactly: for every point in M there is an open neighborhood U and a homeomor-
phism φ : U × Rn → π−1(U) such that for every point p ∈ U:

– π ◦ φ(p, v) = p for all vectors v ∈ Rn;
– the map v→ φ(p, v) yields an isomorphism between the vector spaces Rn and
π−1(p).

The open neighborhood U together with the homeomorphism φ is called a local
trivialization of the bundle. A vector bundle is called trivial, if there is a global
trivialization. TM for M4 as Minkowski space is a trivial bundle, TM = M4 × M4.

Given a vector bundle π : E → M and an open subset U of M, we can consider
sections of π on U , i.e. continuous functions ψ : U → E with π ◦ Ψ = idU .
Essentially, a section assigns to every point in U a vector from the attached
vector space. Sections of the tangent bundle are nothing but vector fields on the
manifold. Let Ψ A (A = 1, 2, 3) be a triplet of Dirac spinors on Minkowski space,
then this defines a section into a 3D complex vector space (e.g. the color space of
strong interaction).

2.3.2 The Metric Field and Pseudo-Riemannian Manifolds

A pseudo-Riemannian metric on a differentiable manifold M is defined as a sym-
metric (0, 2) tensor field g which has the properties

– g(X,Y) = g(Y, X) for all X,Y ∈ X(M);
– for every p ∈ M, gp is nondegenerate bilinear form on Tp M. This means that

gp(X,Y) = 0 for all X ∈ Tp M if and only if Y = 0.

g is called a proper Riemann metric if gp is positive definite at every point p.
Spacetime is a four-dimensional manifold M with its tangent space Tp M

equivalent to Minkowski spacetime, Tp M = M4. A spacetime requires then the
existence of a global symmetric (0, 2)-tensor field g which is nondegenerate, i.e.
the determinant g = |gµν| does not vanish, when g is expressed with respect to the
coordinate basis. This allows us to define the inverse metric elements gµν via2

2 In 4D spacetimes tensor components given with respect to the coordinate basis are labelled
by Greek letters, α, β, γ = 0, 1, 2, 3, their spatial components by i, k = 1, 2, 3 and their
frame components by a, b, c = 0, 1, 2, 3.
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gµν gνα = δµα . (2.49)

As in special relativity, this metric tensor field allows us to raise and lower tensor
indices.

Similar to Minkowski space, the metric g enables the nonzero vectors at a point
p to be divided into three classes: a nonzero vector X in Tp M is said to be time-
like, space-like or null according to whether g(X, X) is positive, negative or zero
respectively. The metric therefore determines the causal stucture of the spacetime.

A metric tensor (or pseudometric in spacetime) allows us to define orthonormal
frames ea as special basis elements of the tangent space. With respect to such a
vierbein basis (also called a tetrad or general observer) ea (a = 0, . . . , 3) the metric
assumes its Minkowski expression, i.e.

g(ea, eb) = ηab . (2.50)

In this sense, the metric has the same signature as the Minkowski metric η.
In the discussion of path lengths in special relativity we introduced the line

element as ds2 = ηµν dxµ dxν. We generalize this notion to curved spaces to write
down a line element in terms of the components of the metric tensor field g given
with its components gµν

ds2 = gµν dxµ dxν . (2.51)

In a way the terms metric and line element are used in the literature interchangeably.
This is perfect if you think in terms of the line element on the unit sphere S2

ds2 = dθ2 + sin2 θ dφ2 . (2.52)

This is completely consistent with the interpretation of ds as an infinitesimal length.
What does the line element (2.51) mean exactly? In the theory of parametric surfaces
and in a Riemannian manifold, the metric tensor allows us in fact to measure
arclengths for curves x j(λ)

ds =
√

gik
dxi

dλ

dxk

dλ
dλ , (2.53)

where gik are the components of the metric tensor g with respect to the natural
basis and dx j/dλ gives the tangent vector to the curve x j(λ) (see (2.14)). The total
arclength s of a curve between two points is then given by the integral

s =
∫ 2

1

√
gik

dxi

dλ

dxk

dλ
dλ . (2.54)

This arclength is of course a scalar, since it should not depend on the chosen
coordinate system.

In a pseudo-Riemannian manifold with a metric tensor g of signature (−+++),
this interpretation is only meaningful for time-like curves, where the tangent vector
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U satisfies g(U,U) < 0. As in Minkowski space, the arclength is now the proper
time, dτ = ds/c, measured by a clock moving along the worldline xµ(λ) (e.g.
a clock in a satellite orbiting the Earth)

τab =
∫ b

a
dτ =

∫ b

a

dτ

dλ
dλ = 1

c

∫ b

a

√
−gµν

dxµ

dλ

dxν

dλ
dλ . (2.55)

2.3.3 The Calculus of Forms on Lorentzian Manifolds

A particularly important class of tensors of type (0, s) is the class of totally antisym-
metric tensors, i.e. covariant tensors which are antisymmetric in every pair of their
arguments. Tensors of this type can be constructed out of a general tensor of type
(0, s) by applying to it the alternating operator A defined as

AT(X1, . . . , Xs) ≡ 1

s!
∑

j1,..., js

sgn( j1, . . . , js) T(X j1 , . . . , X js ) , (2.56)

where the summation is extended over all s! permutations of the s integers (1, . . . , s)
and sgn( j1, . . . , js) = ±1 according to as ( j1, . . . , js) is an even or odd permutation
of (1, . . . , s). If s > dim(M), then the result is zero, i.e. there can be no totally
antisymmetric tensor of type (0, s) for s > dim(M).

Totally antisymmetric tensors of type (0, p) are called p-forms. These differ-
ential forms are extremely helpful concepts in direct calculation. A zero-form is
a scalar function. The one-forms Θa defined above are the basis elements of the
cotangent space, its components are the components of covariant vectors. A general
one-form A can always be written as A = Aµ dxµ = AaΘ

a. The vector potential
of classical electrodynamics is the standard example. A new operation introduced
when one works with forms is called the wedge product. Given any p-formΩ and
a q-formΠ, we form the wedge product by the rule

Ω ∧Π = A(Ω ⊗Π) . (2.57)

This defines now a (p+ q)-form if p+ q ≤ dim(M). An example of a p-form is

A = 1

p! Aµν...� dxµ ∧ dxν ∧ . . . ∧ dx� , (2.58)

where Aµν...� is a completely antisymmetric tensor with p indices. In fact, the set of
p-forms in a n-dimensional manifold is a vector spaceΛp of dimension n!/p!(n− p)!

Table 2.1. Number of linearly independent p-forms for D = 3 and D = 4

Forms 0 1 2 3 4

dim = 3 1 3 3 1 –
dim = 4 1 4 6 4 1
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(see Table 2.1). In four dimensions we have one zero-form, four one-forms (basis
in the cotangent space), six two-forms (e.g. the Faraday tensor), four three-forms
(currents) and only one four-form (volume-form).

Exterior Derivative

The exterior derivative d maps a p-form into a (p+ 1)-form, e.g. a one-form

dΘ = d(Θµ dxµ) = Θµ,ν dxν ∧ dxµ = 1

2
(Θµ,ν −Θν,µ) dxν ∧ dxµ . (2.59)

In general, for a p-form A given by

A = Aµν...� dxµ ∧ dxν ∧ . . . ∧ dx� (2.60)

the exterior derivative is given by its local expression

dA = dAµν...� ∧ dxµ ∧ dxν ∧ . . . ∧ dx�

= ∂Aµν...�
∂xλ

dxλ ∧ dxµ ∧ dxν ∧ . . . ∧ dx� . (2.61)

With this explicit definition, one can show

d(A ∧ B) = dA ∧ B + (−1)p A ∧ dB (2.62)

d(dA) = 0 (2.63)

for p-form A and a q-form B.

Inner Product

One can also define an antiderivation i which makes a (p− 1)-form out of a p-form
defined as

(iVω)(V1, . . . , Vp−1) = ω(V, V1, . . . , Vp−1) , (2.64)

i.e. just by contraction with the first index. With the Faraday tensor F we can, for
example, build the one-form E = iV F, in components Eν = VµFµν. This operation
is called the inner product of V with ω.

Lie Derivative

Applying both operations, the inner product and the exterior derivative, leaves the
degree of a p-form invariant

L X = d ◦ iX + iX ◦ d (2.65)
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is equivalent to the Lie derivative on p-forms. The Lie derivative L is given by its
action on functions

L X f = X. f = d f(X) , (2.66)

its action on vector fields

L XY = [X,Y ] (2.67)

and the Leibniz rule for the compatibility with higher rank tensors

L X(S⊗ T) = L X S⊗ T + S⊗ L X T . (2.68)

From the last property, we can derive for a one-form ω and a vector field Y

L X(ω⊗ Y) = L X(ω(Y)) = (L Xω)⊗ Y + ω⊗ (L XY) . (2.69)

Writing out in components, we have

Xµ(ωαXα),µ = (L Xω)µYµ + ωµ(L XY)µ , (2.70)

or making use of the Lie bracket

(L Xω)µYµ = Xα(ωµ,αYµ + ωµYµ,α)− ωµ(XαYµ,α − YαXµ,α)

= (Xαωµ,α + ωαXα,µ)Yµ . (2.71)

Since this last equation is valid for any vector field Y , we conclude

(L Xω)µ = Xαωµ,α + ωαXα,µ . (2.72)

Volume Element on a Manifold

Each manifold of dimension n carries one n-form dx1 ∧ · · · ∧ dxn . With this n-form
we can define a volume form

η ≡ √|g| dx1 ∧ dx2 ∧ · · · ∧ dxn . (2.73)

Due to the transformation of the determinant of the metric, this form is independent
of the chosen coordinate system and corresponds to the classical volume element. We
can evaluate this form on the vector field ∂/∂x1, . . . , ∂/∂xn which yields the volume
of the parallelepiped spanned by the basis vectors ∂/∂x j . η is a totally antisymmetric
tensor

η = 1

n! ηi1···in dxi1 ∧ · · · ∧ dxin (2.74)

with local components

ηi1···in =
√|g| εi1···in . (2.75)
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2.4 Affine Connection and Covariant Derivative

A general Lorentzian manifold (M, g) disposes of structures which are not available
in Minkowski space. Differentiable manifolds in general can be given an affine
connection or, in more geometrical terms, it can be defined what means the parallel
transport of a tangent vector from one point to another. With help of this affine
connection, one can define a covariant derivative, where one has to subtract tensor
fields at different spacetime points, which does not even make sense in a manifold
without any affine connection, because the tangent vectors live in different tangent
spaces. Rather, one has to “parallel transport” the tensor quantities from one point
of the manifold to another.

2.4.1 Affine Connection

An affine connection is given by a bilinear mapping∇ : X(M)×X(M)→ X(M),
which maps an arbitrary vector field Y into a vector field ∇XY and satisfies

– ∇XY is linear in the argument X, i.e.

∇ fX+gY Z = f∇X Z + g∇Y Z (2.76)

where f and g are arbitrary functions on M;
– ∇XY is linear in the argument Y , i.e.

∇X(Y + Z) = ∇XY +∇X Z (2.77)

– for any function f we have

∇X f = X. f , (2.78)

as well as

∇X( fY) = (∇X f)Y + f∇XY . (2.79)

2.4.2 Covariant Derivative of Vector Fields

With the action of ∇X on vector fields Y we now define the covariant derivative
∇Y of Y as a tensor field of type (1,1) which maps the contravariant vector field X
to ∇XY

∇Y(X) = 〈∇Y, X〉 = ∇XY . (2.80)

To clarify what the assignment of a connection precisely means, it will be useful to
rewrite ∇XY relative to some dual bases

∇XY = ∇X(Y
je j) = (X.Y j)e j + Y j∇Xe j . (2.81)
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Since ∇Xe j is a tensor field of type (1,1), we must have a representation in the given
basis

∇Xe j = ωk
j(X) ek , (2.82)

where ωk
j are one-forms. Accordingly, we may write

∇XY = (X.Y j)e j + Y jωk
j(X)ek . (2.83)

Let

ωk
j(em) ≡ ωk

m j (2.84)

be the coefficients of the expansion of ωk
j .

From here we conclude that a connection ∇ is specified by the n2 one-
forms ωk

j (called connection one-forms), i.e. by n3 scalar fields ωk
m j , where

n = Dim(M). In a 4D spacetime, a connection is given by 64 coefficients.
We now return to formula (2.83) and write it in the form

∇XY =
[

X.Y j + ω j
k(X)Y

k
]

e j . (2.85)

From this we infer that

(∇XY) j = X.Y j + ω j
k(X)Y

k . (2.86)

In a local basis this gives

(∇∂m Y) j = ∂mY j + Y kΓ
j
mk , (2.87)

where we have introduced the local connection coefficients

Γ
j
mk ≡ ω j

k(∂m) . (2.88)

This is then often written in the standard formula

Y j
;m = Y j

,m + Γ j
mk Y k (2.89)

and called the covariant derivative of the vector field Y given in a coordinate basis.

2.4.3 Covariant Derivative for Tensor Fields

The definition of the covariant derivative of vector fields can be extended to tensor
fields, by requiring that the operation of ∇ satisfies the Leibniz rule when acting on
tensor products

∇(S⊗ T) = ∇S⊗ T + S⊗∇T . (2.90)
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Covariant Derivative of One-Forms:
We apply this rule to the special tensor product between a one-form α and a vector
field Y

∇X(α⊗ Y) = (∇Xα)⊗ Y + α⊗ (∇XY) . (2.91)

With contraction we can write this as

∇X(α(Y)) = (∇Xα)(Y)+ α(∇XY) , (2.92)

or as, since α(Y) = α jY j is a scalar,

(∇Xα)(Y) = X.α(Y)− α(∇XY) . (2.93)

We can write this in components

(∇Xα) jY
j = Xk(α jY

j),k − αk(∇XY)k

= Xkα j,kY j + Xkα jY
j
,k − αk X jY k

, j − αkω
k

jY
j

= Xkα j,kY j − αkω
k

jY
j . (2.94)

This leads us to the classical expression

(∇Xα) j = Xkα j;k = Xkα j,k − αkω
k

j(X) . (2.95)

In a local coordinate basis, we use

∇X(∂i) = Xk ∇∂k (∂i) = Xk Γ l
ki ∂l . (2.96)

In addition we have according to (2.93)

(∇X dx j)(∂i) = X.〈dx j , ∂i〉 − 〈dx j,∇X∂i〉 = −Xk Γ
j
ki , (2.97)

or

∇Xdx j = −Xk Γ
j
ki dxi . (2.98)

The above formula can be generalized to any tensor product of one-forms ωi and
vector fields Yi and a tensor S ∈ Π p

q

∇X(ω
1 ⊗ · · · ⊗ ωp ⊗ Y1 ⊗ · · · ⊗ Yq ⊗ S) =

∇Xω
1 ⊗ · · · ⊗ ωp ⊗ Y1 ⊗ · · · ⊗ Yq ⊗ S + · · · +

ω1 ⊗ · · · ⊗ ωp ⊗∇XY1 ⊗ Y2 ⊗ · · · ⊗ Yq ⊗ S + · · · +
ω1 ⊗ · · · ⊗ ωp ⊗ Y1 ⊗ · · · ⊗ Yq ⊗∇X S . (2.99)

After a complete contraction with the corresponding components in S we get
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∇X[S(ω1, . . . , ωp,Y1, . . . ,Yq)] =
S(∇Xω

1, . . . , ωp,Y1, . . . ) + · · · + S(ω1, . . . , ωp,Y1, . . . ,∇XYq)

+ (∇X S)(ω1, . . . ,Yq) . (2.100)

From this we find the following expression for ∇X S

(∇X S)(ω1, . . . , ωp,Y1, . . . ,Yq) =
X.S(ω1, . . . , ωp,Y1, . . . ,Yq) − S(∇Xω

1, ω2, . . . ,Yq)− · · ·
− S(ω1, . . . , ωp,Y1, . . . ,∇XYq) . (2.101)

Finally, we give the local expression for this covariant derivative of a tensor field
S ∈ Π p

q (M)

S = S
i1···i p

j1··· jq ∂i1 ⊗ · · · ⊗ ∂i p ⊗ dx j1 ⊗ · · · ⊗ dx jq . (2.102)

With the above expressions for ∇X(∂i) and ∇Xdx j we obtain an expression for the
components of ∇S denoted by S

i1···i p
j1··· jq ;k ≡ ∇k S

i1···i p
j1··· jq

S
i1···i p

j1··· jq;k = S
i1···i p

j1··· jq ,k + Γ
i1
kl S

li2···i p
j1··· jq + · · · − Γ l

k j1
S

i1···i p
l j2··· jq − · · · . (2.103)

The covariant derivatives of vector fields X = ξ i(x)∂i and one-forms α = αi(x)dxi

are then special cases

ξ i
;k = ξ i

,k + Γ i
km ξ

m (2.104)

αi;k = αi,k − αm Γ
m
ki . (2.105)

2.4.4 Parallel Transport and Metric Connection

Having set up the machinery of connections, the first thing we will do is discuss
parallel transport. Recall that in flat space it was unnecessary to be very careful about
the fact that vectors were elements of tangent spaces defined at individual points; it
is actually very natural to compare vectors at different points (where by “compare”
we mean add, subtract, take the dot product, etc.). The reason why it is natural is
because it makes sense, in flat space, to “move a vector from one point to another
while keeping it constant.” Then, once we get the vector from one point to another,
we can do the usual operations allowed in a vector space.

The concept of moving a vector along a path, keeping it constant all the while, is
known as parallel transport. As we shall see, parallel transport is defined whenever
we have a connection; the intuitive manipulation of vectors in flat space makes
implicit use of the Christoffel connection on this space. The crucial difference
between flat and curved spaces is that, in a curved space, the result of parallel
transporting a vector from one point to another will depend on the path taken between
the points. Without yet assembling the complete mechanism of parallel transport,



2.4 Affine Connection and Covariant Derivative 51

we can use our intuition about the two-sphere to see that this is the case. Start with
a vector on the equator, pointing along a line of constant longitude. Parallel transport
it up to the north pole along a line of longitude in the obvious way. Then take the
original vector, parallel transport it along the equator by an angle θ, and then move
it up to the north pole as before. It is clear that the vector, parallel transported along
two paths, arrived at the same destination with two different values (rotated by θ).

We simply must learn to live with the fact that two vectors can only be compared
in a natural way if they are elements of the same tangent space. For example, two
particles passing by each other have a well-defined relative velocity (which cannot
be greater than the speed of light). But two particles at different points on a curved
manifold do not have any well-defined notion of relative velocity – the concept
simply makes no sense. Of course, in certain special situations it is still useful to talk
as if it did make sense, but it is necessary to understand that occasional usefulness
is not a substitute for rigorous definition. In cosmology, for example, the light from
distant galaxies is redshifted with respect to the frequencies we would observe from
a nearby stationary source. Since this phenomenon bears such a close resemblance
to the conventional Doppler effect due to relative motion, it is very tempting to say
that the galaxies are “receding away from us” at a speed defined by their redshift.
At a rigorous level this is nonsense – the galaxies are not receding, since the notion
of their velocity with respect to us is not well-defined. What is actually happening is
that the metric of spacetime between us and the galaxies has changed (the Universe
has expanded) along the path of the photon from here to there, leading to an increase
in the wavelength of the light. As an example of how you can go wrong, naive
application of the Doppler formula to the redshift of galaxies implies that some of
them are receding faster than light, in apparent contradiction with relativity. The
resolution of this apparent paradox is simply that the very notion of their recession
should not be taken literally.

Parallel transport is supposed to be the curved-space generalization of the concept
of “keeping the vector constant” as we move it along a path; similarly for a tensor
of arbitrary rank. Given a curve xµ(λ), the requirement of constancy of a tensor T
along this curve in flat space is simply

dT

dλ
≡ uµ

∂T

∂xµ
= 0 , (2.106)

where uµ = dxµ/dλ is the four-velocity. We therefore define the covariant derivative
along the path to be given by an operator

D

dλ
≡ uµ ∇µ . (2.107)

This is a well-defined tensor equation, since both the tangent vector dxµ/dλ and
the covariant derivative ∇T are tensors. This is known as the equation of parallel
transport. For a vector it takes the form

d

dλ
Vµ + uα Γ µαβV β = 0 . (2.108)
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We can look at the parallel transport equation as a first-order differential equation
defining an initial-value problem: given a tensor at some point along the path,
there will be a unique continuation of the tensor to other points along the path
such that the continuation solves (2.108). We say that such a tensor is parallel
transported.

As an aside, an especially interesting example of the parallel propagator occurs
when the path is a loop, starting and ending at the same point. Then if the connection
is metric-compatible, the resulting matrix will just be a Lorentz transformation on
the tangent space at the point. This transformation is known as the holonomy of the
loop. If you know the holonomy of every possible loop, that turns out to be equivalent
to knowing the metric. This fact has led Ashtekar and his collaborators to examine
general relativity in the loop representation, where the fundamental variables are
holonomies rather than the explicit metric. They have made some progress towards
quantizing the theory in this approach, although the jury is still out about how much
further progress can be made [12].

2.4.5 Metric Connection

The notion of parallel transport is obviously dependent on the connection, and
different connections lead to different answers. We say:

An affine connection is a metric connection if parallel transport along any
smooth curve γ in M preserves the inner product in the sense that for autopar-
allel fields X(λ) and Y(λ) given along γ , g(X(λ),Y(λ)) is independent of λ.

If the connection is metric-compatible, the metric is always parallel transported
with respect to it

D

dλ
g = 0 , ∇g = 0 . (2.109)

It follows that the inner product of two parallel-transported vectors is preserved.
That is, if X and Y are parallel-transported along a curve xµ(λ), we have

D

dλ
g(X,Y) =

(
D

dλ
gµν

)
XµY ν

+gµν Xµ
D

dλ
Y ν + gµν Xµ

D

dλ
Y ν = 0 . (2.110)

This means that parallel transport with respect to a metric-compatible connection
preserves the norm of vectors, the sense of orthogonality.

As a result, ∇g = 0 is equivalent to the Ricci identity

X.g(Y, Z) = g(∇XY, Z)+ g(Y,∇X Z) . (2.111)

From this we can conclude
For every pseudo-Riemannian manifold (M, g), there exists a unique affine
connection ∇ such that
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– ∇ is symmetric (i.e. torsion vanishes);
– ∇ is metric.

∇ is called symmetric if the torsion tensor T vanishes which is defined as (see
next section)

T(X,Y) ≡ ∇XY −∇Y X − [X,Y ] = 0 (2.112)

for all vector fields X and Y . In local coordinates this just means Γ i
km = Γ i

mk. Since
torsion vanishes, the Ricci identity implies

X.g(Y, Z) = g(∇Y X, Z)+ g([X,Y ], Z)+ g(Y,∇X Z) . (2.113)

From cyclic permutations we also obtain

Y.g(Z, X) = g(∇ZY, X)+ g([Y, Z], X)+ g(Z,∇Y X) (2.114)

and

Z.g(X,Y) = g(∇X Z,Y)+ g([Z, X],Y)+ g(X,∇ZY) . (2.115)

Taking the linear combination of the second plus the third minus the first relation
results in

2g(∇ZY, X) = −X.g(Y, Z)+ Y.g(Z, X)+ Z.g(X,Y)

−g([Z, X],Y)− g([Y, Z], X)+ g([X,Y ], Z) . (2.116)

The right-hand side is independent of ∇. Since g is nondegenerate, the uniqueness
follows from this relation.
This unique connection on (M, g) is called the Riemann connection (or Levi-
Civita connection).
If we write the above relation in local coordinates, we obtain

2g(∇∂i∂ j, ∂k) = 2Γ m
ij gmk = −∂kg(∂ j, ∂i)+ ∂ j g(∂i, ∂k)+ ∂i g(∂k, ∂ j)

= −∂kg ji + ∂ j gik + ∂i gk j , (2.117)

or

gmkΓ
m
ij =

1

2
(g jk,i + gik, j − gij,k) . (2.118)

This expression is equivalent to the Christoffel symbols

Γ m
ij =

1

2
gmk(gki, j + gk j,i − gij,k) . (2.119)
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Particle Motion in Lorentzian Manifolds

It is known that on two-dimensional surfaces one can define geodesics as the shortest
curves between two points, i.e. ∫ 2

1
ds = extremum . (2.120)

In a pseudo-Riemannian space where ds2 can also be zero or even negative, this
formulation is no longer valid. Instead of this we can start from the variational
principle along a curve xα(λ) parametrized by the parameter λ

E(ẋ, ẋ) =
∫ b

a
L dλ =

∫ b

a

(
ds

dλ

)2

dλ =
∫ b

a
gαβ

dxα

dλ

dxβ

dλ
dλ = extremum .

(2.121)

This is known in differential geometry as the energy integral. The function defined
as

Ω(xa, xb) = 1

2
(sb − sa)

∫ b

a
gαβ

dxα

dλ

dxβ

dλ
dλ (2.122)

is also called the world function. The Euler–Lagrange equation for the extremal
problem associated with the integral is

d

dλ

∂L

∂ ẋα
− ∂L

∂xα
= 0 . (2.123)

With
∂L

∂ ẋα
= 2gβα ẋβ (2.124)

∂L

∂xα
= gµν,α ẋµ ẋν (2.125)

the Euler–Lagrange equation reduces to the condition

gβα ẍβ + (gµν,α − 1

2
gµν,α) ẋµ ẋν = 0 . (2.126)

The second term can be symmetrized so that

gβα ẍβ + 1

2
(gµν,α + gαµ,ν − gµν,α) ẋµ ẋν = 0 . (2.127)

Now we contract with the inverse metric to obtain the equation

ẍα + Γ αµν ẋµ ẋν = 0 . (2.128)

The symbols Γ αµν = Γ ανµ are called Christoffel symbols of the metric g defined by
(2.119). The above equation determines the geodetic motion of particles in the metric
field g. For time-like curves we can make the statement that force-free particles move
on a geodesic, parametrized in terms of the arclength s

d2xα

ds2
+ Γ αµν

dxµ

ds

dxν

ds
= 0 . (2.129)
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Newtonian Limit

A slowly moving particle has dx0/ds � 1 and we may neglect dxi/ds (i = 1, 2, 3)
in comparison to dx0/ds. In leading order, the geodesic equations for the pseudo-
Newtonian metric are given by

d2xi

dt2
� d2xi

dτ2
= −Γ i

µν

dxµ

dτ

dxν

dτ
� −c2Γ i

00 . (2.130)

Thus, only the components Γ i
00 appear in the equations of motion with

Γ i
00 = −

1

2
gikg00,k = 1

2
g00,i = ∇iΦ

c2
, (2.131)

where we have used the pseudo-Newtonian metric and the fact that the gravitational
field is static. This equivalence between the local gravitational force Γ i

00 and the
Newtonian force dictates the Newtonian limit in the metric expansion.

2.4.6 Divergence of Vector Fields

The divergence of a vector field V is given by

V j
; j = V j

, j + Γ j
jkV k . (2.132)

In this case, the Christoffel symbols can be simplified

Γ
j
jk =

1

2
g jm(gm j,k + gmk, j − g jk,m) = 1

2
g jm gm j,k . (2.133)

This expression can be simplified if we recall that for any matrix M

Tr(M−1(x) ∂l M(x)) = ∂l ln det(M) . (2.134)

To prove this, we consider the variation in ln det(M) owing to variations δx in x

δ ln det(M) = ln det(M + δM)− ln det(M)

= ln
det(M + δM)

det(M)

= ln det[M−1(M + δM)]
� ln[1+ Tr(M−1δM)]
� Tr[M−1δM] . (2.135)

Replacing the matrix M by the metric gik we find

Γ
j
jk =

1

2
∂k ln g = 1√

g
∂k
√

g , (2.136)
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where g = det(gik). Therefore, the covariant divergence of vector fields can always
be evaluated without referring to Christoffel symbols

V j
; j =

1√
g
∂ j(
√

gV j) . (2.137)

This property can also be used to simplify the divergence of a (2,0)-tensor

T jk
;k = ∂kT jk + Γ j

jm T mk + Γ k
jm T jm . (2.138)

If T is antisymmetric, the last term drops out

A jk
;k =

1√
g
∂k(
√

gA jk) . (2.139)

If T is symmetric (e.g. the energy–momentum tensor), then

T jk
;k =

1√
g
∂k(
√

gT jk)+ Γ j
km T km . (2.140)

2.5 Curvature of Pseudo-Riemannian Manifolds

The curvature of a manifold is quantified by the Riemann tensor, which is derived
from the connection. The idea behind this measure of curvature is that we know
what we mean by “flatness” of a connection – the conventional (and usually im-
plicit) Christoffel connection associated with a Euclidean or Minkowskian metric
has a number of properties which can be thought of as different manifestations of
flatness. These include the fact that parallel transport around a closed loop leaves
a vector unchanged, that covariant derivatives of tensors commute, and that initially
parallel geodesics remain parallel. As we shall see, the Riemann tensor arises when
we study how any of these properties are altered in more general contexts.

A Heuristic Definition

We have already argued, using the two-sphere as an example, that parallel transport
of a vector around a closed loop in a curved space will lead to a transformation of
the vector. The resulting transformation depends on the total curvature enclosed by
the loop; it would be more useful to have a local description of the curvature at each
point, which is what the Riemann tensor is supposed to provide. One conventional
way to introduce the Riemann tensor, therefore, is to consider parallel transport
around an infinitesimal loop. Imagine that we parallel transport a vector V around
a closed loop defined by two vectors A and B.

The (infinitesimal) lengths of the sides of the loop are δa and δb, respectively.
Now, we know the action of parallel transport is independent of coordinates, so
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Fig. 2.2. Parallel transport around an in-
finitesimal loop generated by two vectors
A and B defines the Riemann tensor

there should be some tensor which tells us how the vector changes when it comes
back to its starting point; it will be a linear transformation on a vector, and therefore
involve one upper and one lower index. But it will also depend on the two vectors A
and B which define the loop; therefore there should be two additional lower indices
to contract with Aν and Bµ. Furthermore, the tensor should be antisymmetric in
these two indices, since interchanging the vectors corresponds to traversing the
loop in the opposite direction, and should give the inverse of the original answer.
(This is consistent with the fact that the transformation should vanish if A and B
are the same vector.) We therefore expect that the expression for the change V
experienced by this vector when parallel transported around the loop should be of
the form

δV � = δa δb Aν Bµ R�σνµ V σ . (2.141)

R is a (1, 3)-tensor, known as the Riemann tensor.

2.5.1 Mathematical Definition of Torsion and Curvature

Conventionally, the torsion fields T are defined as mappings T : X(M)×X(M)→
X(M) on the set of all vector fields on the manifold

T(X,Y) ≡ ∇XY −∇Y X − [X,Y ] . (2.142)

Curvature is defined as a mapping R : X(M)×X(M)×X(M)→ X(M)

R(X,Y)Z ≡ ∇X(∇Y Z)−∇Y (∇X Z)−∇[X,Y ]Z . (2.143)

They obviously satisfy the antisymmetry conditions

T(X,Y) = −T(Y, X) , R(X,Y) = −R(Y, X) (2.144)
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as well as

T( fX, gY) = fg T(X,Y) (2.145)

R( fX, gY)hZ = fgh R(X,Y)Z (2.146)

for any functions f , g and h.
The mapping of X∗(M)×X()M ×X(M) into the reals defined by

(ω, X,Y)→ 〈ω, T(X,Y)〉 (2.147)

is thus a tensor field in Π1
2 (M) and is known as the torsion tensor. Similarly,

a mapping

(ω, Z, X,Y)→ 〈ω, R(X,Y)Z〉 (2.148)

is a tensor field in Π1
3 (M) and is called curvature tensor.

In local coordinates, the components of the torsion tensor are given by

T k
ij = 〈dxk, T(∂i , ∂k)〉 = 〈dxk,∇∂i ∂ j −∇∂ j ∂i〉 . (2.149)

Please note that the Lie bracket vanishes in local coordinates. Therefore, the torsion
tensor gets the expression

T k
ij = Γ k

ij − Γ k
ji . (2.150)

If torsion vanishes, we have Γ k
ij = Γ k

ji in every chart. The components of the
curvature tensor are then similarly given by

Ri
jkl = 〈dxi, R(∂k, ∂l)∂ j〉 = 〈dxi, (∇∂k∇∂l −∇∂l∇∂k )∂ j〉
= 〈dxi,∇∂k (Γ

s
l j∂s)−∇∂l (Γ s

k j∂s)〉 . (2.151)

From this we get the famous expression

Ri
jkl = Γ i

l j,k − Γ i
k j,l + Γ s

l jΓ
i
ks − Γ s

k jΓ
i
ls . (2.152)

2.5.2 Bianchi Identities for Metric Connection

Torsion and curvature satisfy two identities which are known as Bianchi identities:

– First Bianch identity:∑
cyclic

{R(X,Y)Z} =
∑
cyclic

{T(T(X,Y), Z)+ (∇X T)(Y, Z)} , (2.153)

– Second Bianchi identity:∑
cyclic

{(∇X R)(Y, Z)+ R(T(X,Y), Z)} = 0 . (2.154)
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For vanishing torsion, the first Bianchi identity reads as

R(X,Y)Z + R(Z, X)Y + R(Y, Z)X = 0 (2.155)

or in components, these are four identities

Ra
bmn + Ra

nbm + Ra
mnb = 0 . (2.156)

Geometric indices and internal indices get mixed up. The second Bianchi identity
reads as

(∇X R)(Y, Z)+ (∇Z R)(X,Y)+ (∇Y R)(Z, X) = 0 , (2.157)

or in components

Ra
bmn;k + Ra

bkm;n + Ra
bnk;m = 0 . (2.158)

This reminds us of the homogeneous Maxwell equations for the Faraday tensor F

Fmn,k + Fkm,n + Fnk,m = 0 . (2.159)

In total, the curvature of a metric connection in a Riemannian manifold satisfies
the following three relations

Ra
bmn = −Ra

bnm (2.160)

Rabmn = −Rbamn (2.161)

Rabmn = Rmnab . (2.162)

The first relation tells us that the curvature tensor is a two-form, the second relation
that the curvature is an element of the Lie algebra of the rotation group, and the
third one that tensorial components are exchanged by internal components. This last
relation follows from the first Bianchi identity

R jkmn = −(R jnkm + R jmnk)

= Rn jkm + Rm jnk

= −(Rnkm j + Rnm jk)− (Rmnk j + Rmk jn)

= 2Rmn jk + (Rkm jn + Rknm j)

= 2Rmn jk − Rk jnm = 2Rmn jk − R jkmn . (2.163)

This means that

R jkmn = Rmn jk . (2.164)

Given these relationships between the components of the Riemann tensor, how
many independent quantities remain? The Riemann tensor is antisymmetric in the
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first two indices, antisymmetric in the last two indices, and symmetric under ex-
change of these two pairs. We can think of the Riemann tensor as a symmetric
matrix R[ab][mn], where the pairs are thought to be individual indices. A n × n sym-
metric matrix has n(n + 1)/2 (these are 10 in 4D) independent components, while
the corresponding antisymmetric matrix has n(n − 1)/2 independent components
(these are six in 4D). We therefore have

1

2

[
1

2
n(n − 1)

][
1

2
n(n − 1)+ 1

]
= 1

8
(n4 − 2n3 − 3n2 − 2n) (2.165)

independent components. In addition we have to satisfy the first Bianchi identity

Ra
[bmn] = 0 . (2.166)

These are another n(n − 1)(n − 2)(n − 3)/4! constraints. We are left with

1

8
(n4 − 2n3 − 3n2 − 2n)− 1

24
(n − 1)(n − 2)(n − 3) = 1

12
n2(n2 − 1) (2.167)

independent components of the Riemann tensor.
In four dimensions, therefore, the Riemann tensor has 20 independent com-

ponents, in two dimensions just one component, and in three dimensions six com-
ponents. In 4D, the metric tensor only has 10 independent components, but there is
more information in the Riemann tensor: 10 components are in the Ricci tensor, the
other 10 components are hidden in the Weyl tensor.

2.5.3 Ricci, Weyl and Einstein Tensor

The Riemann tensor Rijkl is antisymmetric in both pairs of indices. By these symme-
tries, the only nontrivial contraction we can make is that leading to the Ricci tensor
Rij defined as

Rmn = R j
m jn = Rnm (2.168)

and its trace R = Rm
m , the Ricci scalar. Accordingly, it will be convenient to separate

the Riemann tensor into trace-free parts and the Ricci part

Cijkl = Rijkl − 1

n − 2
[gik R jl + g jl Rik − g jk Ril − gil R jk]

+ 1

(n − 1)(n − 2)
R [gikg jl − gilg jk] . (2.169)

This Weyl tensor Cijkl has the same symmetries as the curvature tensor Rijkl . The
Weyl tensor is trace-free in the sense that

g jlCijkl = 0 . (2.170)
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The Weyl tensor is only defined, when the manifold carries a metric. The most
important property is its conformal invariance against transformations of the type
g → Ω2(x)g. In 4D, 10 components of the curvature tensor are in the Ricci
tensor, while the other 10 components are given by the Weyl tensor.

With the Ricci tensor we also define the Einstein tensor Gij by means of

Gij = Rij − 1

2
Rgij . (2.171)

This tensor is divergence-free, i.e. Gi
j;i = 0. This follows from contracting the

second Bianchi identity for vanishing torsion

Ri
jkl;m − gi p R jplm;k + Ri

jmk;l = 0 (2.172)

with respect to i and k

R jl;m − gk p R jplm;k − R jm;l = 0 . (2.173)

Raising j and contracting with m

R j
l; j + Rk

l;k − R,l = 0 (2.174)

or (
R j

l −
1

2
δ

j
l R

)
; j

= 0 . (2.175)

2.5.4 Cartan’s Structure Equations

Since torsion T(X,Y) and curvature R(X,Y) are antisymmetric tensors, they natu-
rally define corresponding two-forms

T(X,Y) = T a(X,Y) ea (2.176)

R(X,Y)eb = Ωa
b(X,Y) ea . (2.177)

The exterior derivatives of the basic one-formsΘa and of the connection forms
ω satisfy Cartan’s structure equations

T a = dΘa + ωa
b ∧Θb (2.178)

Ωa
b = dωa

b + ωa
d ∧ ωd

b . (2.179)

The wedge operator denotes the exterior products for p-forms. The two-form Ω is
the curvature two-form which gives, when expressed locally,

Ωa
b =

1

2
Ra

bcd Θ
c ∧Θd (2.180)
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the components of the Riemann tensor Ra
bcd in orthonormal coordinates. Similarly,

we have four torsion two-forms

T a = 1

2
T a

bcΘ
b ∧Θc . (2.181)

For the proof of Cartan’s structure equations, we use the above definition of
torsion. Written as one-forms, this means

T a(X,Y) ea = ∇XY −∇Y X − [X,Y ]
= ∇X(Θ

b(Y)eb)−∇Y (Θ
b(X)eb)−Θa([X,Y ])ea

= {X.Θa(Y)− Y.Θa(X)−Θa([X,Y ])}ea

+{Θa(Y)ωb
a(X)−Θa(X)ωb

a(Y)}ea

= dΘa(X,Y)ea + (ωa
b ∧Θb)(X,Y)ea . (2.182)

The proof of the second structure equation is similar. Written as a two-form, this
means

Ωa
c(X,Y) ea = ∇X∇Y ec −∇Y∇X ec − ωb

c([X,Y ])eb

= ∇X(ω
b
c(Y)eb)−∇Y (ω

b
c(X)eb)− ωa

c([X,Y ])ea

= {X.ωa
c(Y)− Y.ωa

c(X)− ωa
c([X,Y ])}ea

+{ωb
c(Y)ω

a
b(X)− ωb

c(X)ω
a
b(Y)}ea

= dωa
c(X,Y)ea + (ωa

b ∧ ωb
c)(X,Y)ea . (2.183)

Local Expressions

In local coordinates, a metric connection is expressed in terms of the Christoffel
symbols

Γ αµβ =
1

2
gα�(g�µ,β + g�β,µ − gµβ,�) (2.184)

such that the connection form is given in a local coordinate basis as

ωαβ = Γ αµβ dxµ , (2.185)

and therefore

dωαβ = Γ αµβ,ν dxν ∧ dxµ

= 1

2
(Γ αµβ,ν − Γ ανβ,µ) dxν ∧ dxµ . (2.186)

Also,

ωα� ∧ ω�β = Γ αν�Γ �µβ dxν ∧ dxµ

= 1

2
(Γ αν�Γ

�

µβ − Γ αµ�Γ �νβ) dxν ∧ dxµ (2.187)
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Accordingly, Cartan’s second structure equation is equivalent to the conventional
definition of the Riemann tensor in local coordinates

Rαβµν = Γ ανβ,µ − Γ αµβ,ν + Γ αµ�Γ �νβ − Γ αν�Γ �µβ . (2.188)

An Example: Curvature of a Two-Sphere

A simple example is the two-sphere with the line element given by

ds2 = a2 (dθ2 + sin2 θ dφ2) , gθθ = a2 , gφφ = a2 sin2 θ , (2.189)

where a is the radius. The nonzero Levi-Civita connection coefficients are

Γ θφφ = − sin θ cos θ (2.190)

Γ θθφ = Γ θφθ = cot θ . (2.191)

The Riemann tensor has essentially only one component given by

Rθφθφ = ∂θΓ θφφ − ∂φΓ θθφ + Γ θθαΓ αφφ − Γ θφαΓ αθφ = sin2 θ . (2.192)

From this we find the curvature

Rθφθφ = gθθ Rθφθφ = a2 sin2 θ (2.193)

and the corresponding Ricci tensor

Rθθ = gφφRφθφθ = 1 (2.194)

Rθφ = Rφθ = 0 (2.195)

Rφφ = gθθRθφθφ = sin2 θ . (2.196)

The Ricci scalar is found to be given by

R = gθθRθθ + gφφRφφ = 2

a2
. (2.197)

The Ricci scalar is a constant over this surface. This is a reflection of the fact
that the manifold is maximally symmetric. The curvature of maximally symmetric
manifolds satisfies the relation

Rabmn = 1

a2
[gam gbn − gangbm] . (2.198)

Notice that the Ricci scalar is not only constant for the two-sphere, it is manifestly
positive. We say that the sphere is positively curved. From the point of view of
someone living on a manifold which is embedded in a higher-dimensional Euclidean
space, if they are sitting at a point of positive curvature the space curves away from
them in the same way in any direction, while in a negatively curved space it curves
away in opposite directions. Negatively curved spaces are therefore saddle-like.
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Spin Connection of a Two-Sphere

Curvature in the coordinate basis has no invariant meaning. For this we compute the
curvature in the orthonormal frame

eθ̂ =
1

a
∂θ , eφ̂ =

1

a sin θ
∂φ (2.199)

with the corresponding dual basis

Θθ = a dθ , Θφ = a sin θ dφ . (2.200)

With respect to this basis the curvature tensor is given by

Rθ̂φ̂θ̂φ̂ = ei
θe

j
φem
θ en
φ Rijmn = 1

a2
, (2.201)

i.e. here the curvature is one over the square of the radius of the sphere.
The same result can directly be obtained by using the Cartan structure equations

dΘθ = 0 (2.202)

dΘφ = a cos θ dθ ∧ dφ = cos θ

a sin θ
Θθ ∧Θφ

= − cos θ

a sin θ
Θφ ∧Θθ = −ωφθ ∧Θθ . (2.203)

The first structure equation tells us that the connection one-form is given by

ω
φ
θ =

cos θ

a sin θ
Θφ = cos θ dφ . (2.204)

This is called the spin connection of the two-sphere. Since ωφθ is antisymmetric,
there is only one such connection form in 2D. Taking the exterior derivative, we
arrive at the curvature two-form

Ω
φ
θ = dωφθ + ωφj ∧ ω j

θ = dωφθ = − sin θ dθ ∧ dφ

= − 1

a2
Θθ ∧Θφ = 1

a2
Θφ ∧Θθ . (2.205)

In 2D, the second contribution vanishes (since SO(2) is Abelian). From this we can
directly read off the curvature component

Ω
φ
θ = Rφ̂

θ̂φ̂θ̂
Θφ ∧Θθ (2.206)

with

Rφ̂
θ̂φ̂θ̂
= Rφ̂θ̂φ̂θ̂ =

1

a2
= Rθ̂φ̂θ̂φ̂ . (2.207)

The last equality follows from the symmetries of the Riemann tensor.
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2.6 Gravity is a Lorentzian Connection on Spacetime

2.6.1 The Four Key Principles of General Relativity

As we discussed in the previous sections, the concept of spacetime in the form of
a pseudo-Riemannian four-dimensional manifold is essential for Einstein’s vision of
gravity:

Premise I: Spacetime is a four-dimensional manifold M endowed with a global
symmetric metric field g.

As we have seen, this guarantees that gravitational redshift is a natural consequence
for this description of gravity.

In order to compare tangent spaces at neighboring events, we also need a con-
nection on this manifold M. As in Riemannian geometry, this connection is required
to be metric, so that the corresponding Christoffel symbols are uniquely given by
derivatives of the metric elements. This is a basic postulate of Einstein’s theory
of gravity – one could construct more general theories of gravity which include
torsion.

Physically speaking, we associate observers ea (a = 0, 1, 2, 3), i.e. an orthonor-
mal tetrad (or Vierbein field), satisfying3

g(ea, eb) = ηab , (2.208)

where η is the flat Minkowskian metric with signature (+ − −−), or (− + ++).
An observer is a global orthonormal basis field in the tangent space of each event
p, where e0 is time-like and ei (i = 1, 2, 3) are space-like. One could also construct
null tetrads in order to define the geometry of the spacetime. The dual elements
of ea is a basis of the cotangent space T ∗p , denoted by Θa which define the metric
g = ηabΘ

a ⊗ Θb. The definition of these observer fields is not unique, since any
observer derived by means of a local Lorentz transformation Λ is also an observer

ēa|x = Λb
a(x) eb|x , Λ(x)ηΛT (x) = η . (2.209)

These are Lorentz transformations operating in the tangent space of each event.
For any pseudo-Riemannian manifold there is then a unique affine connection

∇ such that it is (i) torsion-free and (ii) metric. This particular connection is usually
called the Levi-Civita connection, or pseudo-Riemannian connection.

Premise II: It is now one of the fundamental postulates of Einstein’s theory of
gravity that gravity is related to the Levi-Civita connection of the Lorentzian

3 In the following, the convention for indices is as follows: Greek indices are related to local
coordinate systems, Latin indices a, b, c, . . . mark observer fields, Latin indices i, k, l, . . .
specify spatial components.
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manifold. This means in particular that there is no torsion associated with grav-
ity!

The Einstein principle of equivalence states that effects of gravitation can be trans-
formed away locally by suitably accelerated frames of reference (by going to local
inertial coordinates). It also includes the stronger requirement

Premise III: Any physical interaction (other than gravitation) behaves in a local
inertial frame as if gravitation were absent. Maxwell’s equations, for example,
will have their familiar forms as in SR.

This principle of equivalence allows us to extend any physical law that is expressed
in a covariant way to curved spacetime. Ordinary derivatives are just replaced by
covariant ones.

The energy–momentum tensor of a perfect fluid is then readily extended to
a general spacetime just by replacing the flat metric η in terms of the metric field g
(signature (−+++))

Tµν = (�+ P)uµuν + Pgµν . (2.210)

As in special relativity, � is the total energy density, P the pressure and uµ the
velocity field. Since in special relativity, the equations of motion follow from the
divergence of this energy–momentum tensor, the above principle just requires the
replacement of the ordinary derivatives by covariant ones

Tµν;ν = 0 . (2.211)

We already know of a symmetric (0, 2) tensor, constructed from the Ricci tensor,
which is automatically conserved: the Einstein tensor

Gµν = Rµν − 1

2
Rgµν , (2.212)

which always obeys ∇µGµ
ν = 0 (see last section). Einstein was therefore led to

propose [141]

Gµν = κTµν (2.213)

as field equations for the metric. This equation satisfies all of the obvious require-
ments; the right-hand side is a covariant expression of the energy and momentum
density in the form of a symmetric and conserved (0,2) tensor, while the left-hand
side is a symmetric and conserved (0,2) tensor constructed from the metric and its
first and second derivatives. It only remains to see whether it actually reproduces
gravity as we know it.

In order to prove this, we go to the Newtonian limit

g00 = 1+ h00 , g0i = 0 , gik = −δik . (2.214)
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As a source we take the energy–momentum tensor of a perfect fluid with vanishing
pressure (sometimes called dust)

Tµν = �uµuν . (2.215)

In the rest frame of the fluid we have

uµ = (u0, 0, 0, 0) (2.216)

and therefore from the normalization uµuµ = 1

u0 = 1+ 1

2
h00 � 1 . (2.217)

The trace of T is then

T = g00 T00 = T00 = � . (2.218)

On the other hand we find from the proposed field equations

Rµν = κ(Tµν − 1

2
Tgµν) , (2.219)

since in four dimensions R = −κT . This is essentially the same equation. The
essential component predicts therefore

R00 = 1

2
κ� . (2.220)

We have to calculate R00 = Ri
0i0 with

Ri
0 j0 = Γ i

00, j − Γ i
j0,0 + Γ i

jαΓ
α
00 − Γ i

0αΓ
α
j0 . (2.221)

The second term is a time derivative which vanishes for static fields. The third and
fourth terms are quadratic in the Christoffels, and we are only looking for first-order
terms. So they can be neglected. From this we get

R00 = Ri
0i0 = Γ i

00,i

= ∂i

[
1

2
giα(gα0,0 + g0α,0 − g00,α)

]
= −1

2
gij∂i∂ j g00 = +1

2
δij∂i∂ jh00 = 1

2
∇2h00 . (2.222)

So we see that the time component of equation (2.219) predicts in the Newtonian
limit the Poisson equation

∇2h00 = κ� . (2.223)
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Since the gravitational redshift has already fixed the Newtonian limit of the met-
ric element, h00 = 2Φ/c2, this is the correct Poisson equation provided the cou-
pling constant is set to κ = 8πG/c4. This defines the field equations of general
relativity

Gµν = Rµν − 1

2
Rgµν = 8πG

c4
Tµν . (2.224)

G, of course, is the Newtonian gravitational constant. We have seen, Einstein’s
equations can also be written in the form for the Ricci tensor alone

Rµν = 8πG

c4
(Tµν − 1

2
Tgµν) . (2.225)

They tell us in particular that vacuum fields satisfy

Rµν = 0 . (2.226)

Premise IV: In November 1915, Einstein postulated that the tensor Gµν couples
to the matter content of the Universe

Gµν = 8πG

c4
Tµν , (2.227)

where Tµν is the symmetric energy–momentum tensor of all matter in the Universe
(particles, baryons, galaxies, photons, neutrinos, quantum fields, as well as vacuum
energy). As a consequence of the above properties, the divergence of the energy–
momentum tensor vanishes identically

Tµν;ν = 0 . (2.228)

2.6.2 The Hilbert Action and Einstein’s Field Equations

To increase your confidence that Einstein’s equations as we have derived them
are indeed the correct field equations for the metric, let’s see how they can be
derived from a more modern viewpoint, starting from an action principle. In fact
the equations were first derived by Hilbert, not Einstein, and Hilbert did it using
the action principle. But he had been inspired by Einstein’s previous papers on the
subject, and Einstein himself derived the equations independently, so they are rightly
named after Einstein. The action, however, is rightly called the Hilbert action. The
action should be the integral over spacetime of a Lagrange density (Lagrangian for
short, although strictly speaking the Lagrangian is the integral over space of the
Lagrange density)

SH =
∫

L d4x . (2.229)
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The Lagrange density is a tensor density, which can be written as
√−g times a scalar.

What scalars can we make out of the metric? Since we know that the metric can be
set equal to its canonical form and its first derivatives set to zero at any one point, any
nontrivial scalar must involve at least second derivatives of the metric. The Riemann
tensor is of course made from second derivatives of the metric, and we argued earlier
that the only independent scalar we could construct from the Riemann tensor was the
Ricci scalar R. What we did not show, but is nevertheless true, is that any nontrivial
tensor made from the metric and its first and second derivatives can be expressed in
terms of the metric and the Riemann tensor. Therefore, the only independent scalar
constructed from the metric, which is no higher than second order in its derivatives,
is the Ricci scalar. Hilbert figured out that this was therefore the simplest possible
choice for a Lagrangian, and proposed LH = √−gR, i.e. the Hilbert action reads
as

SH =
∫ √−g R d4x . (2.230)

The Hilbert action principle is valid in any dimension of the manifold. It can be
formulated, for example, for 11D supergravity.

2.6.3 On the Cosmological Constant

Let us now consider a new matter action L ′matter = Lmatter − Λ/(8πG), where Λ
is a real constant. The equation of motion for the matter does not change under
this transformation, since Λ is constant. But the action now picks up an extra term
proportional to Λ, which can be written in two different ways,

S = − 1

16πG

∫
R
√−g d4x +

∫ (
Lmatter(Φ, ∂Φ)− Λ

8πG

)√−g d4x

= − 1

16πG

∫
(R + 2Λ)

√−g d4x +
∫

Lmatter(Φ, ∂Φ)
√−g d4x (2.231)

and Einstein’s equations get modified. This simple manipulation has many backdrops
in theoretical physics. It can be interpreted in different manners:

– The first interpretation is based on the first line of the above equations, it treatsΛ
as a shift in the matter Lagrangian, which in turn will lead to a shift in the matter
Hamiltonian. This could be thought of as a shift in the zero point energy of the
matter system. Such a constant shift in energy does not affect the dynamics of
matter, while gravity picks up an extra contribution in the form of a new term
Qµν in the energy–momentum tensor

Rµν −
1

2
Rδµν = 8πG(Tµν + Qµ

ν ) , Qµ
ν =

Λ

8πG
δµν . (2.232)

– The second line in Eq (2.231) can be interpreted as a gravitational field, described
by the Lagrangian of the form Lgrav ∝ (1/G)(R+2Λ), interacting with matter. In
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this interpretation, gravity is described by two constants, the Newton’s constant
G and the cosmological constant Λ. It is then natural to modify the left-hand
side of Einstein’s equations in the form of

Rµν −
1

2
Rδµν − δµν Λ = 8πG Tµν . (2.233)

In this interpretation, the spacetime is curved even in the absence of matter,
Tαβ = 0, since the left-hand side does not admit flat spacetimes as solutions.

– It is even possible to consider a situation where both effects can occur. If gravi-
tational theories are in fact described by the Lagrangian of the form (R + 2Λ),
then there is an intrinsic cosmological constant in nature, just as there is a New-
tonian constant G in nature. If the matter Lagrangian contains energy densities
which change due to the dynamics, then Lmatter can pick up constant shifts during
dynamical evolution. For this we consider a scalar field with the Lagrangian

LΦ = (1/2)∂µΦ ∂µΦ − V(Φ) , (2.234)

which has the energy–momentum tensor

Tµν = ∂µΦ ∂νΦ − δµν
(

1

2
∂µΦ ∂νΦ − V(Φ)

)
. (2.235)

For field configurations which are constant (e.g. at the minimum of the potential
V ), this contributes an energy–momentum tensor Tµν = V(Φmin) δ

µ
ν , which has

exactly the same form as a cosmological constant. It is then the combination of
these two effects – of very different nature – which is relevant and the source
will be

T eff
µν = [V(Φmin)+Λ/(8πG)] gµν . (2.236)

Φmin can change during the dynamical evolution, leading to a time-dependent
cosmological constant.

The term Qµν in Einstein’s equations behaves very peculiarly compared to the
energy–momentum tensor of normal matter. Qµ

ν = �Λδµν is in the form of an energy–
momentum tensor of an ideal fluid with energy density �Λ and pressure PΛ = −�Λ.
Obviously, either the pressure or the energy density of this fluid must be negative.

Such an equation of state, P = −�, also has another important implication in
GR. The relative acceleration between two geodesics, g, satisfies in GR the following
equation (without proof)

∇ · g = −4πG(�+ 3P) . (2.237)

The source of this relative acceleration between geodesics is �+3P and not � alone.
This shows, as long as �+3P> 0, gravity remains attractive, while �+3P< 0 leads
to repulsive forces. A positive cosmological constant therefore leads to repulsive
gravity.
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The condition �+ 3P< 0 has for a long time been considered to be unphysical.
In fact, the so-called strong energy condition requires �+ P ≥ 0 and �+ 3P ≥ 0.
This would mean that gravity is always attractive. In the meantime, we have however
learnt that at least vacuum energy will violate the strong energy condition – and this is
in fact realized in the present Universe: it seems that vacuum energy is the dominant
contribution to the source of gravity in the present Universe.

2.6.4 Limits of General Relativity

General relativity is a classical field theory. In other field theories (electromagnetism,
weak and strong interaction), there are well-understood procedures for quantizing
these theories. For general relativity, however, these procedures run into technical
and conceptual difficulties (infinities, nonrenormalizability, etc.).

The regime where observational effects of quantum gravity are expected to
become important is far from the weak limit. In 1899, Planck noticed that his
constant h could be combined with Newton’s constant G and the speed of light c to
form a basic set of scales4

– Planck mass m P , defined as

m P =
√
�c

G
= 2.18× 10−5 g = 1.22× 1019 GeV/c2 , (2.238)

– Planck length ΛP , defined as

ΛP = �

m Pc
=

√
�G

c3
= 1.62× 10−33 cm , (2.239)

– Planck time tP , defined as

tP = ΛP

c
=

√
�G

c5
= 5.34× 10−44 sec . (2.240)

Quantum gravity is expected to become important, when physical scales are of the
order of the Planck scales, i.e. when masses m � m P , or when curvature radii
� ΛP , or when time-scales in collapse situations and in the early Universe are� tP .
A discussion of the Big Bang for time-scales shorter than 10 tP is not meaningful.
Quantum gravity is therefore important in the very early Universe and near the
singularities of black holes, but certainly not in the Solar System.

At present, one of the deepest problems in theoretical physics is harmonizing the
theory of general relativity, which describes gravitation and applies to large-scale
structures (stars, planets, galaxies), with quantum mechanics, which describes the
other three fundamental forces acting on the microscopic scale.

A fundamental lesson of general relativity is that there is no fixed spacetime
background, as found in Newtonian mechanics and special relativity; the spacetime

4
� = 1.05× 10−27 g cm2 s−1, G = 6.67× 10−8 cm3 g−1 s−1, c = 2.998× 1010 cm s−1.
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geometry is dynamical. While easy to grasp in principle, this is the hardest idea to
understand about general relativity, and its consequences are profound and not fully
explored, even at the classical level. To a certain extent, general relativity can be
seen to be a relational theory, in which the only physically relevant information is
the relationship between different events in spacetime.

On the other hand, quantum mechanics has depended since its invention on
a fixed background (nondynamical) structure. In the case of quantum mechanics,
it is time that is given and not dynamical, just as in Newtonian classical mechan-
ics. In relativistic quantum field theory, just as in classical field theory, Minkowski
spacetime is the fixed background of the theory. Finally, string theory started out
as a generalization of quantum field theory where instead of point particles, string-
like objects propagate in a fixed spacetime background; condensation of particular
vibration modes of strings is equivalent to a modification of the original back-
ground.

In the 1920s the French mathematician Elie Cartan formulated Einstein’s theory
in the language of bundles and connections, a generalization of Riemann’s geometry
to which Cartan made important contributions. The so-called Einstein–Cartan theory
of gravity not only reformulated, but also generalized general relativity, and allowed
spacetimes with torsion as well as curvature. In Cartan’s geometry of bundles,
the concept of parallel transport is more fundamental than that of distance, the
centerpiece of Riemannian geometry. A similar conceptual shift occurs between
the invariant interval of Einstein’s general relativity and the parallel transport of
Einstein–Cartan theory.

In the 1960s, Roger Penrose explored the idea of space arising from a quan-
tum combinatorial structure. His investigations resulted in the development of spin
networks. Because this was a quantum theory of the rotational group and not the
Lorentz group, Penrose went on to develop twistors.

In 1986, Abhay Ashtekar [44,45] reformulated Einstein’s field equations of gen-
eral relativity using what have come to be known as Ashtekar variables, a particular
flavor of Einstein–Cartan theory with a complex connection. Using this reformula-
tion, he was able to quantize gravity using well-known techniques from quantum
gauge field theory. In the Ashtekar formulation, the fundamental objects are a rule
for parallel transport (technically, a connection) and a coordinate frame (called
a vierbein) at each point.

Loop quantum gravity [12] is the best one can do so far in trying to under-
stand quantum spacetime, from a nonperturbative, background-independent point
of view. Theoretically, we have reasons to suspect that this approach could repre-
sent a consistent quantum theory with the correct classical limit, but there are also
some worrying contrary indications. The theory yields a definite physical picture
of quantum spacetime and definite quantitative predictions, but a systematic way of
extracting physical information is still lacking. Experimentally, there is no support
to the theory, neither direct nor indirect. The spectra of area and volume computed
in the theory could or could not be physically correct.

The most remarkable physical result obtained from loop quantum gravity is
evidence for a physical (quantum) discreteness of space at the Planck scale.
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This is manifested in the fact that certain operators corresponding to the mea-
surement of geometrical quantities, in particular area and volume, have discrete
spectrum. According to the standard interpretation of quantum mechanics, this
means that the theory predicts that a physical measurement of an area or a vol-
ume will necessarily yield quantized results. Since the smallest eigenvalues are
of Planck scale, this implies that there is no way of observing areas or volumes
smaller than Planck scale. Space comes in “quanta” in the same manner as the
energy of an oscillator. The spectra of the area and volume operators have been
computed with much detail in loop quantum gravity. These spectra have a com-
plicated structure, and they constitute detailed quantitative physical predictions of
loop quantum gravity on Planck scale physics. If we had experimental access to
Planck scale physics, they would allow the theory to be empirically tested in great
detail.

2.7 Gravitational Waves

In the previous sections we have formulated the Einstein field equations in a neat
and compact form. This should not hide the fact that the Einstein tensor G is
in fact a complicated function of the metric g and its first and second deriva-
tives. Due to the symmetry of the Einstein tensor and the energy momentum ten-
sor the field equations represent 10 coupled, nonlinear partial differential equa-
tions.

It therefore came as quite a surprise when Karl Schwarzschild found a nontrivial,
analytic solution to these equations just some months after their publication. Since
then many analytic solutions have been found and a whole branch of the studies
of general relativity is concerned with their classification. Enormous insight into
the structure of general relativity has been gained from these analytic solutions, but
due to the complexity of the field equations these solutions are normally idealized
and restricted by symmetry assumptions. In order to obtain accurate descriptions
of astrophysically relevant scenarios one may therefore have to go beyond purely
analytic studies.

2.7.1 The Geodesic Deviation – Relativistic Tidal Forces

Let us consider a congruence of time-like geodesics xµ(τ, s) given by their proper
time τ and a coordinate s perpendicular to the geodesics. With this we can define
the four-velocity Uµ = ∂xµ/∂τ and a space-like connecting vector Xµ = ∂xµ/∂s.
These two fields obviously commute

[U, X] = 0 . (2.241)

Therefore

[U, X] = ∇U X −∇XU = 0 . (2.242)
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Let us now calculate the transverse acceleration

D2 Xµ

dτ2
= U�∇�(Uσ∇σ Xµ)

= U�∇�(Xσ∇σUµ)

= (U�∇�Xσ )(∇σUµ)+U�Xσ∇�∇σUµ

= (Xσ∇σU�)(∇σUµ)+U�Xσ
[
∇σ∇�Uµ + Rµν�σUν

]
= (Xσ∇σU�)(∇�Uµ)+ Xσ∇σ (U�∇�Uµ)

−(Xσ∇σU�)(∇�Uµ)+ Rµν�σUνU�Xσ

= Rµν�σUνU�Xσ . (2.243)

The two first terms cancel each other and the second term vanishes for geodetic
motion. The transverse acceleration is the generalization of the tidal force equation
in Newtonian mechanics.

2.7.2 Gravity Wave Experiments

A particularly important area of research connected with general relativity that has
emerged in recent years concerns the detection of gravitational waves. In analogy
to the prediction of electromagnetic waves by the Maxwell equations of electrody-
namics, the Einstein field equations admit radiative solutions with a characteristic
propagation speed given by the speed of light. In contrast to electromagnetic waves,
which will only exert a force on charged particles, gravitational waves will have an
effect on any kind of matter. This effect is best illustrated by considering a set of
freely moving test particles arranged in a circle (see Fig. 2.4). If a gravitational wave
falls onto the plane spanned by these test particles (i.e. coming out of the picture),
it will cause the particles to move. Gravitational waves are known to possess two
states of polarization called plus (+) and cross (×) and the induced motion of the
particles will depend on the polarization.

Due to the weak coupling constant of the gravitational interaction, the particle
motion induced by gravitational waves will have an extremely small amplitude in
reality. If one considers for example a bar of a length of several kilometers, estimates
have shown that the detection of gravitational waves requires one to measure changes
in length orders of magnitude smaller than the diameter of an atomic nucleus. Even
though attempts to detect gravitational radiation go back to the work of Joe Weber
in the early sixties, it is only the recent advance of computer and laser technology
that provides scientists with a realistic chance of success. The current generation
of gravitational wave detectors GEO-600, LIGO, TAMA and VIRGO that have
been constructed for this purpose are complex multinational collaborations and have
recently gone online or are expected to go online in the near future. The following
image gives an overview over all wave experiments presently in operation or under
construction (Fig. 2.3).

These detectors essentially consist of two bars with a length of hundreds of
meters or kilometers arranged in the shape of an “L”. Variations in length of these
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Fig. 2.3. Gravity wave experiments based on laser interferometric techniques

bars are measured by lasers to very high accuracy. Due to the extreme smallness of
the signals, however, the accumulation of data over several years will be necessary
to improve the chances of a positive identification of gravitational wave signals from
extragalactic sources.

Confidence in the existence of gravitational waves has been significantly boosted
by the Nobel prize winning discovery of the binary neutron star system PSR1913+16
(sometimes referred to as the Hulse and Taylor pulsar). The spin-down of this
system has been found to agree remarkably well with the energy loss predicted by
general relativity due to the emission of gravitational waves and is generally accepted
as indirect proof of the existence of gravitational radiation (will be discussed in
Sect. 6.5).

In order to simplify the enormous task of detecting gravitational waves, it is
vital to obtain information about the structure of the signals one is looking for. It
is necessary for this purpose to accurately model the astrophysical scenarios that
are considered likely sources of gravitational waves and extract the corresponding
signals from these models. According to Birkhoff’s theorem the Schwarzschild so-
lution, which describes a static, spherically symmetric vacuum spacetime, is the
only spherically symmetric, asymptotically flat solution to the Einstein vacuum field
equations. As a consequence a spherically symmetric spacetime, even if it contains
a radially pulsating object, will necessarily have an exterior static region and be
nonradiating. It is necessary, therefore, to use less restrictive symmetry assump-
tions in the modelling of astrophysical sources of gravitational waves. In fact the
most promising sources of gravitational waves currently under consideration are the
in-spiralling and merger of two compact bodies (neutron stars or black holes) and
complicated oscillation modes of neutron stars that increase in amplitude due to
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the emission of gravitational waves by extracting energy from the rotation of the
star. Even though a great deal of information about these scenarios has been gained
from approximative studies, such as the post-Newtonian formalism or the use of per-
turbative techniques, a detailed simulation will require the solution of the Einstein
equations in three dimensions. The complicated structure of the corresponding mod-
els in combination with the enormous advance in computer technology has given
rise to numerical relativity, the computer based generation of solutions to Einstein’s
field equations.

2.7.3 The Nature of Gravitational Waves

Gravitational waves are ripples in the fabric of space and time produced by violent
events in the distant Universe, for example by the collision of two black holes or by
the cores of supernova explosions. Gravitational waves are emitted by accelerating
masses much as electromagnetic waves are produced by accelerating charges. These
ripples in the spacetime fabric travel to Earth, bringing with them information about
their violent origins and about the nature of gravity.

Linearized Gravity

The weakness of the gravitational field is once again expressed as our ability to
decompose the metric into the flat Minkowski metric plus a small perturbation,

gµν = ηµν + hµν , |hµν| � 1 . (2.244)

Under this condition, the inverse metric is simply given by

gµν = ηµν − hµν , (2.245)

where hµν = ηµ�ηνσ h�σ . We can raise and lower indices just by using the flat
Minkowski metric η. For this reason we may consider hµν as a symmetric tensor of
second rank defined on Minkowski space.

We want to find the equation of motion obeyed by the perturbations h, which
come by examining Einstein’s equations to first order. We begin with the Christoffel
symbols, which are given by

Γ �µν =
1

2
η�σ (∂µhνσ + ∂νhµσ − ∂σhµν) . (2.246)

Since the connection coefficients are first-order quantities, the only contribution to
the Riemann tensor will come from the derivatives of the Γ ’s, not the Γ 2 terms.
Lowering an index for convenience, we obtain

Rµν�σ = ηµλ∂�Γ λνσ − ηµλ∂σΓ λν�
= 1

2
[∂�∂νhµσ + ∂σ∂µhν� − ∂σ∂νhµ� − ∂�∂µhνσ ] . (2.247)
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The Ricci tensor is obtained by contracting over µ and �, giving

Rµν = 1

2
[∂σ∂νhσµ + ∂σ∂µhσν − ∂µ∂νh −�hµν] . (2.248)

Here we have defined the trace of the perturbation, h = ηµνhµν, and the d’Alember-
tian operator in Minkowski space � = ηµν∂µ∂ν = ∂2

t − ∂2
x − ∂2

y − ∂2
z . Finally, we

obtain the Ricci scalar

R = ∂µ∂νhµν −�h . (2.249)

Putting all this together, we obtain the Einstein tensor

Gµν = Rµν − 1

2
Rηµν

= 1

2
[∂σ∂νhσµ + ∂σ∂µhσν − ∂µ∂νh
−�hµν − ηµν∂�∂λh�λ + ηµν�h] . (2.250)

The linearized field equations are then

Gµν = 8πGTµν , (2.251)

where Tµν is the energy–momentum tensor calculated in zeroth order from h. We
do not include higher-order corrections to the energy–momentum tensor, because
the amount of energy and momentum must itself be small for the weak-field limit
to apply. In other words, the lowest nonvanishing order in T is automatically of the
same order of magnitude as the perturbation. Notice that the conservation law to
lowest order is simply ∂µTµν = 0. We will most often be concerned with the vacuum
equations, which as usual are just Rµν = 0, where R is given by (2.248).

On Gauge Invariance

With the linearized field equations in hand, we are almost prepared to set about
solving them. First, however, we should deal with the important issue of gauge
invariance. This issue arises because the demand that gµν = ηµν + hµν does not
completely specify the coordinate system on spacetime; there may be other coordi-
nate systems, in which the metric can still be written as the Minkowski metric plus
a small perturbation, but the perturbation will be different. Thus, the decomposition
of the metric into a flat background plus a perturbation is not unique.

The notion that the linearized theory can be thought of as one governing the
behavior of tensor fields on a flat background can be formalized in terms of a
“background spacetime” M0, a “physical spacetime” Mp, and a diffeomorphismΦ :
M0 → Mp. As manifolds M0 and Mp are “the same” (since they are diffeomorphic),
but we imagine that they possess some different tensor fields; on M0 we have
defined the flat Minkowski metric η, while on Mp we have some metric g which
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obeys Einstein’s equations. (We imagine that M0 is equipped with coordinates x
and Mp is equipped with coordinates y, although these will not play a prominent
role.) The diffeomorphism Φ allows us to move tensors back and forth between the
background and physical spacetimes. Since we would like to construct our linearized
theory as one taking place on the flat background spacetime, we are interested in
the pullback (Φ∗g) of the physical metric. We can define the perturbation as the
difference between the pulled-back physical metric and the flat one:

hµν = (Φ∗g)µν − ηµν . (2.252)

From this definition, there is no reason for the components of h to be small; however,
if the gravitational fields on Mp are weak, then for some diffeomorphismsΦ we will
have |hµν| � 1. We therefore limit our attention only to those diffeomorphisms for
which this is true. Then the fact that g obeys Einstein’s equations on the physical
spacetime means that h will obey the linearized equations on the background space-
time (since Φ, as a diffeomorphism, can be used to pull back Einstein’s equations
themselves).

In this language, the issue of gauge invariance is simply the fact that there
are a large number of permissible diffeomorphisms between M0 and Mp (where
“permissible” means that the perturbation is small). Consider a vector field ξµ(x)
on the background spacetime. This vector field generates a one-parameter family of
diffeomorphisms Ψε : M0 → M0. For ε sufficiently small, if Φ is a diffeomorphism
for which the perturbation defined by h is small than so will (Φ · Ψε) be, although
the perturbation will have a different value. Specifically, we can define a family of
perturbations parameterized by ε

h(ε)µν = [(Φ · Ψε)∗g]µν − ηµν = [Ψε(Φ∗g)]µν − ηµν . (2.253)

The second equality is based on the fact that the pullback under a composition
is given by the composition of the pullbacks in the opposite order, which follows
from the fact that the pullback itself moves things in the opposite direction from the
original map. Plugging in the relation for h, we find

h(ε)µν = Ψ ∗ε (h + η)µν − ηµν = Ψ ∗ε (h)µν + Ψ ∗ε (η)µν − ηµν , (2.254)

since the pullback of the sum of two tensors is the sum of the pullbacks. Now we
use our assumption that ε is small; in this case Ψ ∗ε (h) will be equal to h to lowest
order, while the other two terms give us a Lie derivative

h(ε)µν = Ψ ∗ε (h)+ ε
[
Ψ ∗ε (ηµν)− ηµν

ε

]
= hµν + ε Lξηµν . (2.255)

Since the background metric is flat, we therefore find

h(ε)µν = hµν + ε (∂µξν + ∂νξµ) . (2.256)
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This formula represents the change of the metric perturbation under an infinitesimal
diffeomorphism along the vector field εξµ: this is called a gauge transformation
in linearized theory.

The infinitesimal diffeomorphisms Ψε provide a different representation of the
same physical situation, while maintaining our requirement that the perturbation be
small. Therefore, the above result tells us what kind of metric perturbations denote
physically equivalent spacetimes – those related to each other by ε (∂µξν+∂νξµ), for
some vector field ξµ. The invariance of our theory under such transformations is anal-
ogous to traditional gauge invariance of electromagnetism under Aµ → Aµ + ∂µλ.
(The analogy is different from the previous analogy we drew with electromag-
netism, relating local Lorenz transformations in the orthonormal-frame formalism
to changes of basis in an internal vector bundle.) In electromagnetism the invariance
comes about because the field strength Fµν = ∂µAν − ∂νAµ is left unchanged by
gauge transformations; similarly, we find that the transformation (2.256) changes
the linearized Riemann tensor by

δRµν�σ = 0 . (2.257)

Our abstract derivation of the appropriate gauge transformation for the metric per-
turbation is verified by the fact that it leaves the curvature (and hence the physical
spacetime) unchanged.

Gauge invariance can also be understood from the slightly more lowbrow, but
considerably more direct route of infinitesimal coordinate transformations. Our dif-
feomorphism Ψε can be thought of as changing coordinates from xµ to xµ − εξµ.
(The minus sign, which is unconventional, comes from the fact that the “new” met-
ric is pulled back from a small distance forward along the integral curves, which is
equivalent to replacing the coordinates by those a small distance backward along the
curves.) Following through the usual rules for transforming tensors under coordi-
nate transformations, you can derive precisely (2.256) – although you have to cheat
somewhat by equating components of tensors in two different coordinate systems.

2.7.4 Degrees of Freedom

The metric perturbation hµν is a symmetric (0,2) tensor on Minkowski spacetime.
This means, under spatial rotations the 00 component is a scalar, the 0i component
form a three-vector, and the ij components form a two-index symmetric spatial
tensor. Each spatial tensor can be decomposed into a trace and a trace-free part (in
group representations this corresponds to irreducible representations of the rotational
group SO(3)). We therefore write hµν as

h00 = 2Φ (2.258)

h0i = −wi (2.259)

hij = 2Ψδij − 2sij . (2.260)

Ψ denotes the trace of hij , and sij is traceless
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Ψ = 1

6
δijhij (2.261)

sij = −1

2

(
hij − 1

3
δklhkl δij

)
. (2.262)

The entire metric can thus be written as5

ds2 = (1+ 2Φ) dt2 −wi(dt dxi + dxi dt)− [(1− 2Ψ)δij − 2sij] dxi dx j .

(2.263)

Here we have not yet chosen a gauge, we just have conveniently decomposed the
metric perturbations into two scalar modes, one vector mode and a tensor mode,
adding to 10 independent components of the perturbation hµν.

To get a feeling for the physical interpretation of these modes, we consider the
motion of test particles as described by the geodesic equation. For this we need the
Christoffel symbols

Γ 0
00 = ∂0Φ (2.264)

Γ i
00 = ∂iΦ + ∂0wi (2.265)

Γ 0
j0 = ∂ jΦ (2.266)

Γ i
j0 =

1

2
[∂ jwi − ∂iw j + ∂0hij] (2.267)

Γ 0
jk = −

1

2
[∂ jwk + ∂kw j − ∂0hij] (2.268)

Γ i
jk =

1

2
[∂ jhki + ∂kh ji − ∂ih jk] . (2.269)

Here we use hij = −2sij+2Ψδij . We decompose the four-momentum pµ = dxµ/dλ,
where λ = τ/m for massive particles, in terms of the energy E and the three-velocity
vi = dxi/dt

p0 = dt

dλ
= E , pi = Evi . (2.270)

Then we write the geodesic equation as though a force would act on the particles

dpµ

dt
= −Γ µ�σ

p� pσ

E
. (2.271)

For µ = 0 we get the energy evolution

dE

dt
= −E

[
∂0Φ + 2(∂kΦ)v

k − 1

2

(
∂ jwk + ∂kw j − ∂0h jk

)
v jvk

]
. (2.272)

5 This ansatz can easily be generalized to cosmological spacetimes in order to describe
general perturbations evolving under the expansion of the Universe.
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The spatial components µ = i become

1

E

dpi

dt
= −∂iΦ − ∂0wi − (∂iw j − ∂ jwi + 2∂0hij) v

j

−1

2

(
∂ jhki + ∂kh ji − ∂i h jk

)
v jvk . (2.273)

For a physical interpretation we introduce the gravitoelectric and gravitomagnetic
field in terms of scalar and vector potentials, where the three-vector w acts as a vector
potential

Gi = −∂iΦ − ∂0wi (2.274)

Hi = (∇ × w)i = εijk ∂ jwk . (2.275)

Then we can write

1

E

dpi

dt
= Gi + (v×H)i − 2(∂0hij)v

j − 1

2

(
∂ jhki + ∂kh ji − ∂ih jk

)
v jvk .

(2.276)

The first two terms on the right-hand side describe how the test particle responds
to the scalar and vector perturbations Φ and wi in a way reminiscent of the Lorenz
force in electromagnetism. We also find couplings to the spatial perturbations hij of
linear and quadratic order in the velocity.

Einstein’s Equations

We can now decompose the Riemann tensor in our variables6

R0 j0l = ∂ j∂lΦ + ∂0∂( jwl) − 1

2
∂2

0h jl (2.279)

R0 jkl = ∂ j∂[kwl] − ∂0∂[khl]k (2.280)

Rijkl = ∂ j∂[khl]i − ∂i∂[khl] j . (2.281)

To obtain the Ricci tensor we contract with the flat metric η

R00 = ∇2Φ + ∂0∂kw
k + 3∂2

0Ψ (2.282)

R0 j = −1

2
∇2w j + 1

2
∂ j∂kw

k + 2∂0∂ jΨ + ∂0∂ksk
j (2.283)

Rij = −∂i∂ j(Φ − Ψ)− ∂0∂(iw j) +�Ψδij −�sij + 2∂k∂(i s
k
j) , (2.284)

6 We use the notation

2∂( jwk) = ∂ jwk + ∂kw j (2.277)

2∂[ jwk] = ∂ jwk − ∂kw j . (2.278)
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where∇2 = δij∂i∂ j is the flat Laplacian. Finally, we can calculate the Einstein tensor

G00 = 2∇2Ψ + ∂k∂ls
kl (2.285)

G0 j = −1

2
∇2w j + 1

2
∂ j∂kw

k + 2∂0∂ jΨ + ∂0∂ksk
j (2.286)

Gij = (δij∇2 − ∂i∂ j)(Φ − Ψ)+ δij ∂0∂kw
k − ∂0∂(iw j)

+2δij ∂
2
0Ψ −�sij + 2∂k∂(i s

k
j) − δij ∂k∂mskm . (2.287)

With this decomposition we see that in fact four equations are just constraint
equations and do not present true dynamical evolution equations. To see this we start
with the first equation which can be written as

∇2Ψ = 4πGT00 − 1

2
∂k∂mskm . (2.288)

This is an equation forΨ with no time derivatives. If we know what are T00 and sij are
doing all the time, the potential Ψ is uniquely determined by boundary conditions.
Ψ is therefore not a propagating degree of freedom, it will be determined by the
energy–momentum tensor and the strain. Next we consider the 0i equation, which
we write as

(δ jk∇2 − ∂ j∂k)w
k = −16πGT0 j + 4∂0∂ jΨ + 2∂0∂ks k

j . (2.289)

This is an equation for the vector field w j which also does not contain time deriva-
tives. Finally, the ij equation is

(δij∇2 − ∂i∂ j)Φ = 8πGTij + (δij∇2 − ∂i∂ j − 2δij∂
2
0)Ψ

−δij ∂0∂kw
k +∂0∂(iw j) +�sij − 2∂k∂(i s

k
j) − δij ∂k∂ms jm . (2.290)

Once again, there are not time derivatives acting onΦ, which is therefore determined
from the other fields.

The only propagating degrees of freedom in Einstein’s theory are those in the
strain tensor sij . In terms of fields, which depend on the behavior under spatial
rotations we may classify the scalars Ψ and Φ as spin-0, the vector wi as spin-1 and
the strain tensor as spin-2 degrees of freedom. Only the spin-2 degree of freedom is
a true dynamical mode in general relativity.

Transverse Gauge

The different metric components of hµν will transform under a general gauge trans-
formation generated by a vector field ξµ as

Φ→ Φ + ∂0ξ
0 (2.291)

wi → wi + ∂0ξ
i − ∂iξ

0 (2.292)

Ψ → Ψ − 1

3
∂iξ

i (2.293)

sij → sij − ∂(iξ j) − 1

3
∂kξ

k δij . (2.294)
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First we consider the transverse gauge. This is closely related to the Coulomb gauge
of electromagnetism, ∂i Ai = 0. Similarly, we fix the strain by means of

∂i s
ij = 0 , (2.295)

by choosing ξ j to satisfy

∇2ξ j + 1

3
∂ j∂iξ

i = −2∂i s
ij . (2.296)

The value of ξ0 is still undetermined. We can choose this term for the condition
∂iw

i = 0 by means of

∇2ξ0 = ∂iw
i + ∂0∂iξ

i . (2.297)

With this gauge, Einstein’s equations become

G00 = 2∇2Ψ = 8πGT00 (2.298)

G0 j = −1

2
∇2w j + 2∂0∂ jΨ = 8πGT0 j (2.299)

Gij = (δij∇2 − ∂i∂ j)(Φ − Ψ)
−∂0∂(iw j) + 2δij∂

2
0Ψ −�sij = 8πGTij . (2.300)

2.7.5 Gravitational Wave Solutions

Let us consider now the transverse gauge, by neglecting source terms, Tµν = 0.
Then the 00 equation is

∇2Ψ = 0 . (2.301)

For suitable boundary conditions we can achieve Ψ = 0 everywhere. The 0i com-
ponent is then

∇2wi = 0 , (2.302)

which again implies wi = 0. We turn next to the trace of the ij component with the
above values

∇2Φ = 0 , (2.303)

which also implies Φ = 0.
We are then left with the trace-free part of the ij equation

�sij = 0 , (2.304)

which becomes a wave equation for the traceless strain tensor. It is convenient to
express the metric tensor in this transverse traceless gauge
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hTT
µν =

⎛⎜⎜⎝
0 0 0 0
0
0 −2sij

0

⎞⎟⎟⎠ (2.305)

This quantity is purely spatial, traceless and transverse, i.e.

hTT
00 = 0 (2.306)

ηµν hTT
µν = 0 (2.307)

∂µhTT
µν = 0 . (2.308)

In analogy to electromagnetism, plane waves are solutions of this equation

hTT
µν = Aµν exp(ik · x) , (2.309)

where Aµν is a constant symmetric (0, 2) tensor, which is purely spatial and traceless

A0µ = 0 , ηµν Aµν = 0 . (2.310)

The constant k-vector is the wavevector with kµkµ = 0. The plane wave (2.309) is
a solution of the linearized equation, provided the wavevector is null. This means
that gravitational waves propagate with the speed of light. Any superposition of
plane waves is also a solution.

The condition of transversality means that

∂µ hTT
µν = ikµAµν exp(ik · x) = 0 (2.311)

or that

kµ Aµν = 0 . (2.312)

We now consider a wave travelling in the z-direction, i.e.

kµ = (ω, 0, 0, k3) = (ω, 0, 0, ω) . (2.313)

In this case, the transversality requires that A3ν = 0. The only nonzero components
are therefore A11, A12, A21, A22. But Aµν is traceless and symmetric, i.e. of the form

Aµν =

⎛⎜⎜⎝
0 0 0 0
0 A11 A12 0
0 A12 −A11 0
0 0 0 0

⎞⎟⎟⎠ . (2.314)

For a plane wave travelling in the z-direction, the two amplitudes A11 and A12

completely characterize the wave.
For getting a feeling what happens if a wave passes by, we consider the motion

of test particles in the presence of the gravitational field represented by the wave. For
this we consider the relative motion of nearby particles with four-velocities described
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by the vector field Uµ. Nearby geodesics are then given in terms of a separation
vector Xµ, which satisfies the equation of geodesic deviation

D2

dτ2
Xµ = Rµν�σ UνU� Xσ . (2.315)

The four-velocity is simply given by

Uµ = (1, 0, 0, 0) . (2.316)

Therefore, we only need to compute the Riemann tensor Rµ00σ which is given by

Rµ00σ = 1

2

(
∂2

0hTT
µσ + ∂σ∂µhTT

00 − ∂σ∂0hTT
µ0 − ∂µ∂0hTT

σ0

)
. (2.317)

But with hTT
µ0 = 0, we get simply

Rµ00σ = 1

2
∂2

0hTT
µσ . (2.318)

For slowly moving particles we have in lowest order τ = t = x0, so the equation of
geodesic deviation becomes

∂2

∂t2
Xµ = 1

2
∂2

0hTT,µ
σ Xσ . (2.319)

For our plane wave this means that only X1 and X2 will be affected – the test
particles are only disturbed in directions perpendicular to the wavevector. This
is similar to electromagnetism, where the electric and magnetic fields are orthogonal
in a plane wave.

Our plane wave is characterized by two amplitudes which are denoted for con-
venience as follows

h+ = A11 (2.320)

h× = A12 , (2.321)

so that the amplitude tensor has the form

Aµν =

⎛⎜⎜⎝
0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

⎞⎟⎟⎠ . (2.322)

Let us consider the effects exerted by h+ for h× = 0. Then we have the two
equations

∂2
0 X1 = 1

2
X1 ∂2

0[h+ exp(ik · x)] (2.323)

∂2
0 X2 = −1

2
X2 ∂2

0[h+ exp(ik · x)] . (2.324)



86 2 Gravity of Compact Objects

Fig. 2.4. Top: The + mode of gravitational waves. Bottom: The×mode of gravitational waves.
The phases shown are 0, π/2, π, 3π/2, 2π

These can be solved immediately in lowest order as

X1 =
(

1+ 1

2
h+ exp(ik · x)

)
X1(0) (2.325)

X2 =
(

1− 1

2
h+ exp(ik · x)

)
X2(0) . (2.326)

Thus particles initially separated in the x-direction will oscillate in the x-direction,
and likewise for those in the y-direction. If we start with a ring of stationary particles
in the x − y plane, they will bounce back and forth in the shape of a +, as the wave
passes by (Fig. 2.4).

The equivalent analysis for the case where h+ = 0, but h× �= 0 would yield the
solutions

X1 = X1(0)+ 1

2
X2(0) h× exp(ik · x) (2.327)

X2 = X2(0)+ 1

2
X1(0) h× exp(ik · x) . (2.328)

In this case, the circle of particles would bounce back and forth in the shape of
a ×, as shown in Fig. 2.4. These two quantities measure therefore two independent
modes of linear polarization of a gravitational wave, known as the plus and cross
polarizations. The sensitivity achieved in 2006 by the GEO600 interferometers is
shown in Fig. 2.5. Details for all these experiments are available from their home
pages.
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S1 Aug 26 ‘02
S3I Nov 5 ‘03
S3II Dec 31 ‘03
S4 Feb 22 ‘05
S5 N&W Mar 23 ‘06

Fig. 2.5. GEO600 sensitivity achieved in various runs. Credit: GEO600 Collaboration

2.7.6 The Quadrupole Formula

Already Albert Einstein [142] found some radiative solutions to the field equations
of general relativity and deduced the existence of gravitational waves, which could
be interpreted as ripples in the curvature of spacetime propagating with the speed
of light. In a subsequent paper [143], he computed the total power emitted in the
form of gravitational waves by an isolated Newtonian source, and found that this
power depends quadratically on the variations of the quadrupole moment of the
source in a celebrated formula known today as Einstein’s quadrupole formula. The
fact that gravitational waves from an isolated source are dominantly quadrupolar is
a consequence of the equivalence principle, which implies the conservation (or linear
variation in time) of the source’s monopole and dipole moments as the consequence
of the equations of motion.

Experimental research on gravitational radiation is presently very active with
the development of new technologies for bar detectors, and most importantly with
the construction of large scale laser interferometric detectors for observation of the
waves in the frequency bandwidth between ≈ 10 Hz and ≈ 1000 Hz: the American
LIGO detector, the German GEO600 detector (Fig. 2.5) and the Franco-Italian
VIRGO detector. These detectors should observe at least one type of source, the



88 2 Gravity of Compact Objects

inspiralling compact binary. This source is composed of two neutron stars or black
holes spiralling very rapidly around each other in the last rotations preceding their
final coalescence. Orbital velocities are much larger than in the binary pulsar for
instance, which will coalesce with its companion in few hundreds of millions years.

A useful characterization of slowly moving sources is that their spatial extension
is small (and of order ε) as compared to one typical wavelength of the radiation.
Indeed the wavelength is given byλ = cP where P is a period of motion in the source.
But a ≈ vP with v ≈ εc, thus cP ≈ a/ε and therefore a/λ ≈ ε which is indeed the
statement above. Note that since G M/ac2 ≈ ε2, we also have G M/λc2 ≈ ε3.

It is convenient for slowly moving sources to introduce an interior domain Di ,
sometimes called also the near zone, defined by Di = {(x, t), |x| < ri}, where the
radius ri is such that ri ≈ ελ and ri > a [78]. The near zone Di is small with respect
to the wavelength of the radiation and covers entirely the source. This is possible
only for a slowly moving source. We choose ri to be strictly larger than a (instead
of being a itself) for later convenience.

The near-zone is the domain where one can confidently use the post-Newtonian
expansion. The real precision of some post-Newtonian expression will be exactly
given, in Di , by the formal order in ε of the neglected terms. Note that all powers
of 1/c must be taken into account in finding the magnitude of a term in terms of
ε ≈ 1/c, including the ones which arise from the temporal gradients ∂0 = c−1∂/∂t
(which are really of order ε with respect to the spatial gradients ∂i). This is clear
from the definition of the near zone, where the field is quasistatic and propagation
effects are small. Similar arguments are used in the discussion of electromagnetic
radiation.

Having clarified the concept of near-zone Di , it is now necessary to introduce an
exterior domain defined by De = {(x, t), |x| > re}, where the radius re is chosen to
be strictly between a and ri , i.e. a < re < ri . This choice, which can always be done
for slowly moving sources, is in order that the intersection between Di and De (the
exterior part of the near zone Di ∩ De) exists.

Included in the exterior domain De, we also consider the so-called exponentially
far wave zone, namely the domain Dw = {(x, t), |x| > rω}, where rω is a radius such
that rω ≈ λeλc2/G M . In Dw, where the observer will be located, one can expand the
field in powers of the distance of the source, and keep the leading order term in this
expansion. The error done in assuming this will be negligible for future astrophysical
sources of radiation.

For very relativistic sources like inspiralling compact binaries, the precision given
by the Einstein quadrupole formula for the energy in the waves is insufficient. What
is required is a relativistic or post-Newtonian formalism (involving an expansion
when the speed of light goes to infinity) for both the emission and reaction of waves
from isolated sources with substantially large internal velocities.

By quadrupole formalism we mean the lowest order formalism, in the post-
Newtonian expansion ε→ 0, for the generation of gravitational radiation from the
source, and also for the reaction of the radiation onto the source. Although this
may seem to be a little paradoxical, the quadrupole formalism can thus be viewed
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as a Newtonian formalism. Relativistic corrections to the formalism are referred to
as post-Newtonian corrections accordingly to which post-Newtonian order in the
equations of motion of the source (beyond the usual Newtonian acceleration) is
needed in order to reduce all accelerations with consistent accuracy. For instance,
the first-post-Newtonian (in short 1PN) formalism retains all terms in the radiation
field and in the reaction which can be computed consistently using the 1PN equations
of motion, which include the corrections ε2 beyond the Newtonian force (using the
standard practice that the nth post-Newtonian order refers to the order ε2n).

The quadrupole formalism for the wave generation expresses the gravitational
field hTT

ij in a transverse and traceless (TT) coordinate system as

hTT
ij =

2G

c4 R
Pijkm(n)

{
d2 Qkm

dT 2
(T − R/c)+ O(ε)

}
+ O

(
1

R2

)
. (2.329)

The coordinate system (x, T) is centered on the source, with R = |x| the distance
to the source and n = x/R the unit direction from the source to the observer. The
retarded time at the observer position in Dw is T − R/c, and terms of order 1/R2 in
the distance of the source are neglected (in addition to the post-Newtonian terms of
order ε). In front of (2.329) appears

Pijkm(n) = (δik − nink)(δ jm − n jnm)− 1

2
(δij − nin j)(δkm − nknm) (2.330)

which is the TT projection operator onto the plane orthogonal to the direction n. The
quadrupole moment of the source takes the familiar Newtonian form

Qij(t) =
∫

d3x �(x, t)
(

xi x j − 1

3
δijx2

)
, (2.331)

where � denotes the Newtonian mass density of the source. The quadrupole moment
(2.331) is taken to be trace-free (δij Qij = 0). This is not important in the waveform
(2.329) because at the quadrupolar level the TT operator in front cancels any possible
trace in the moment.

The gravitational wave produced by an isolated nonrelativistic object is therefore
proportional to the second time derivative of the quadrupole moment of the mass
density at the point where the past light cone of the observer intersects the source. In
contrast to this, electromagnetic radiation is generated by a time-dependent dipole
moment of the charge density. Oscillation of the center-of-mass of an isolated sys-
tem would violate conservation of momentum. For this, there is no dipolar mode
for gravitational waves. Gravitational radiation is typically also much weaker than
electromagnetic radiation, since quadrupole moments are in general much smaller
than dipole moments.

By differentiating with respect to time the waveform (2.329)–(2.331), squaring
the result using standard formulae and integrating over all the directions n, one
obtains the total power in the gravitational waves emitted by the source (see e.g. [2]
or [18]),
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PGW = G

5c5

⎧⎨⎩
3∑

i, j=1

d3 Qij

dT 3

d3 Qij

dT 3
+ O(ε2)

⎫⎬⎭ . (2.332)

This result is the famous Einstein quadrupole formula [143], which neglects post-
Newtonian terms of order ε2. It was derived originally by Einstein under the very re-
strictive assumption that the motion of the source is nongravitational. The quadrupole
formula applies also to a gravitationally bound system, for instance a Newtonian bi-
nary star system (see Sect. 6.4.4). Many improvements in the derivation of this
formula have been obtained later (for this, see Blanchet [78]). The notation PGW

stands for the total luminosity of the source in gravitational waves, by analogy with
the total luminosity of a star in electromagnetic waves.

The merger of two black holes, or two neutron stars is one of the most extraor-
dinary events in the Universe. Made of pure gravity, the black holes combine to
form a single hole, emitting a strong burst of gravitational radiation. Ground-based
detectors are currently searching for such bursts from black holes formed in the
evolution of binary stars. The space-based LISA detector is being designed to search
for such bursts from merging very massive black holes in the centers of galaxies,
events that would emit many thousands of solar masses of pure gravitational wave
energy over a period of only a few minutes. The black holes spend almost all their
time in this first phase of the dynamics, where the stars orbit one another and gradu-
ally spiral together. In this first phase (Fig. 2.6), the post-Newtonian approximation

Fig. 2.6. The three phases of black hole merger. The merging of compact objects can be
divided up into the inspiral phase, the merger phase, and the ring-down phase. Credit: Figure
provided by Kip Thorne
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– an asymptotic approximation to general relativity valid for small orbital velocity
(v/c � 1) in gravitationally bound systems – provides a systematic approach to
studying the orbital inspiral phase, where orbits shrink and lose eccentricity through
the radiation of energy and angular momentum in gravitational waves. The actual
merger phase has to be simulated on the computer, since nonlinear effects in the
gravitational fields are dominating the time evolution. Finally, the newly formed
black hole is relaxing towards a Kerr solution by emission of gravitational waves.

2.8 3+1 Split of Einstein’s Equations

In order to numerically solve Einstein’s field equations, it is necessary to cast the
equations in a form suitable for a computer based treatment. Among the formulations
proposed for this purpose, by far the most frequently applied is the canonical 3+1
decomposition of Arnowitt, Deser and Misner [40] commonly referred to as the
ADM formalism. In this approach, spacetime is decomposed into a one-parameter
family of three-dimensional space-like hypersurfaces and the Einstein equations
are put into the form of an initial value problem. Initial data is provided on one
hypersurface in the form of the spatial three-metric and its time derivative and this
data is evolved subject to certain constraints and the specification of gauge choices.

It is a known problem, however, that the ADM formalism does not result in
a strictly hyperbolic formulation of the Einstein equations and, in combination with
its complicated structure, the stability properties of the ensuing finite differencing
schemes remain unclear. These difficulties have given rise to the development of
modified versions of the ADM formulation in which the Einstein equations are
written in a somewhat more hyperbolic form. Such modifications of the canonical
ADM scheme have been successfully tested, but the optimal 3+1 formulation has
yet to be found.

An entirely different approach to the field equations is based on the decompo-
sition of spacetime into families of null surfaces, the characteristic surfaces of the
propagation of gravitational radiation [177]. The Einstein field equations are again
formulated as an initial value problem and by virtue of a suitable choice of character-
istic coordinates one obtains a natural classification of the equations into evolution
and hypersurface equations. The characteristic initial value problem was first for-
mulated by Bondi et al. (1962) and Sachs (1962) in order to facilitate a rigorous
analysis of gravitational radiation which is properly described at null infinity only.
It is a generic drawback of 3+1 formulations that null infinity cannot be included
in the numerical grid by means of compactifying spacetime and instead outgoing
radiation boundary conditions need to be used at finite radius. Aside from the nonrig-
orous analysis of gravitational radiation at finite distances these artificial boundary
conditions give rise to spurious numerical reflections. A characteristic formulation
resolves these problems in a natural way but is itself vulnerable to the formation of
caustics in regions of strong curvature.

To perform now the ADM decomposition of a spacetime, we need to introduce
a global time function t and some quantities, which develop in time. A globally
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hyperbolic spacetime (M, g) possesses these requirements. It can be foliated by
Cauchy surfaces Σt , which are parametrized by a global time function t.

2.8.1 Induced Spatial Metric and Extrinsic Curvature

Given a manifold M and an open set O, a family of curves is said to be a congruence
in O, if exactly one curve in the family passes through each point p ∈ O. Due to
the uniqueness of the curve at each point, the tangents to a congruence build up
into a vector field in O, and every continuous vector field yields a congruence. The
congruence is called smooth if the corresponding vector field is smooth.

Subsequently, we consider smooth congruences of time-like geodesics. As we
consider only time-like geodesics, we can choose the parametrization by proper time
τ , hence, the vector field Uµ of tangents is normalized to unit length, UµUµ = −1 .
Now we can define the tensor field Bµν

Bµν = ∇νUµ , (2.333)

with the properties

BµνU
ν = 0 = BµνU

ν . (2.334)

Thus, B is said to be purely spatial. The meaning of the introduced tensor field
can easily be seen, if we consider a one-parameter subfamily of geodesics in the
congruence. Let ηµ be the orthogonal deviation vector from γ0 for this subfamily.
Since the tangent vector field U and the deviation vector field η build a coordinate
system, we have LUη = 0 and thus

Uν ∇νηµ = ην ∇νUµ = Bµνη
ν (2.335)

From this, we see that Bµν measures the failure to parallel transport η along the
geodesic. Bµν indicates how the geodesics, infinitesimally near to geodesic γ0, are
twisted and expanded around γ0.

Now we are able to split Bµν in several parts: expansion Θ, shear σµν and twist
ωµν. To perform this decomposition, we first introduce the so-called spatial metric
by γµν = gµν + UµUν. The name “spatial” is justified because γµν = gµ�γ�ν acts
like a projection operator onto the three-dimensional subspace generated by vectors
orthogonal to the tangent vector U . Now we are ready to carry out the splitting. The
expansion Θ, defined by

Θ = Bµνγµν = Bµµ = B (2.336)

describes the average convergence or divergence of neighboring geodesics. The shear
σµν defined by

σµν = B(µν) − 1

3
Θγµν (2.337)
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is a symmetric, traceless tensor, and finally the twist ωµν = B[µν] represents the
antisymmetric part of Bµν. This shows that both, twist and shear, are totally spatial.
All together, they build the original tensor

Bµν = 1

3
Θγµν + σµν + ωµν , (2.338)

where the first part contains uniquely nonvanishing diagonal elements.
Until now we only have considered congruences of time-like geodesics. In the

case of null geodesics there appear difficulties in the construction of the orthog-
onal deviation vector. For null vectors only two orthogonal, linearly independent
vectors can be found and thus the “spatial” metric projects onto a two-dimensional
subspace.

So far we just have considered a deviation vector for a one-parameter subfamily of
the congruence. The vectors orthogonal to the tangent vector of a time-like geodesic
form a three-dimensional, space-like hypersurfaces Σ. The spatial metric γ is the
metric induced on this hypersurface with constant proper time τ . The change of γ
with proper time can be expressed by the extrinsic curvature Kµν, defined by

Kµν = −Bνµ = −∇µUν . (2.339)

Since the congruence is hypersurface orthogonal, the antisymmetric part of Kµν
vanishes, i.e. ωµν = 0, and thus Kµν is a symmetric tensor. The symmetry enables
us to express Kµν in terms of the Lie derivative. Thus we have

Kµν = −1

2
LU gµν = −1

2
LUγµν . (2.340)

The minus sign is a matter of convention. Kµν measures the rate of change of
the spatial metric γ as it proceeds along the geodesic congruence. Kµν tells us
how γµν, and thus the curvature of the hypersurface Σ, varies in the space-
time.

2.8.2 Hypersurface Embedding

Let nα be the unit orthogonal vector to the hypersurface Σt , then the spacetime
metric g induces (like above) a spatial metric γαβ on each Σt by

γαβ = gαβ + nαnβ , (2.341)

which is also called the first fundamental form. The unit vector n can also be
identified with the four-velocity of a class of observers, called Eulerian observers,
whose worldlines are orthogonal to Σt . The one-form n dual to the vector field n is
parallel to the gradient of the scalar field t

n = −N dt . (2.342)
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Fig. 2.7. The 3+1 decomposition of spacetime with redshift factor α and shift function β, also
called foliation by a family of space-like hypersurfaces Σt . The hypersurfaces Σt are given
as the level surfaces of time t and have a metric γij

The proportionality factor N is called lapse function. This ensures the normalization
condition

n · n = 〈n, n〉 = −1 . (2.343)

The bending of a hypersurface Σt in M is described by the Weingarten map
or second fundamental form which associates with each vector tangent to Σt the
covariant derivative of the unit normal n along this vector field,

καβ = γµβ ∇µnα . (2.344)

We then define the extrinsic curvature of the hypersurface Σt as minus the second
fundamental form

Kαβ = γµβ ∇µnα . (2.345)

Replacing nα in terms of its gradient leads to

Kαβ = γµβ (N∇µt) . (2.346)

Hence

Kαβ = −∇αnβ − nα(Dβ ln N) . (2.347)
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The extrinsic curvature is often expressed in terms of the Lie derivative

Kαβ = −1

2
Lnγαβ . (2.348)

By using integral curves of tµ to construct a diffeomorphism betweenΣ0 andΣt ,
we may view the “flow of time” as changing the spatial metric on a three-dimensional
hypersurface from γ(0) to γ(t). Thus, in a more intuitive image, a globally hyperbolic
spacetime (M, g) represents the time development of a Riemannian metric γ on
a fixed three-dimensional manifold Σ. Above, we defined the quantity extrinsic
curvature K , which turned out to be a measure of change of the induced spatial
metric γ on an orthogonal hypersurface Σ, as γ moves along time-like geodesics
in a congruence. Up to now the time-like unit tangent vector of a geodesic in
the congruence yielded the extrinsic curvature of a hypersurface orthogonal to the
geodesics. But now we have only the foliation with Cauchy surfaces Σt and a unit
vector field nµ orthogonal to these Cauchy surfaces. If we suppose ξµ to be the
tangent vectors of geodesics of a congruence on the Cauchy surface Σt , both vector
fields, ξ and n, coincide on the hypersurface Σt . And thus, the extrinsic curvature
can be expressed in terms of the normal vector field nµ by

Kµν = −∇µξν = −γ �
µ ∇�ξν = −

1

2
Lnγµν . (2.349)

Hence, we do not have the requirement of geodesics to construct the notion of
extrinsic curvature.

As the vector field denotes the flow of time and and the unit normal vector are
related through n = (1,−β)/α, we get for the time derivative

∂tγµν = Ltγµν = α Lnγµν + Lβγµν
= −2αKµν + Lβγµν
= −2αKµν + Dµβν + Dνβµ . (2.350)

2.8.3 Split of Affine Connection and Curvature

The above splitting of the manifold into a foliation of three-surfaces will induce
a corresponding splitting of the affine connection. For this we define an orthonormal
tetrad field given by

e0 = 1

α
(∂t − βi∂i) (2.351)

ei = ēi , (2.352)

where ēi is an orthonormal triad on the hypersurface Σ. The corresponding dual
one-forms are given by

Θ0 = α dt (2.353)

Θi = Θ̄i + βi dt , (2.354)
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where Θ̄i(ēk) = δi
k. The corresponding spacetime metric is then

ds2 = [−α2 + βiβi] dt2 + 2βi dt dxi + γik dxi dxk (2.355)

which is often written as

ds2 = α2 dt2 + γik(dxi + βi dt)(dxk + βk dt) . (2.356)

α is called the lapse function or redshift factor and βi are the shift vectors.
The connection of a spacetime is given by six one-forms ωa

b which can be
decomposed into

ω0
j = ω0

j(e0)Θ
0 + ω0

j(ēi)Θ
i (2.357)

ωi
j = ωi

j(ēm)Θ
m + ωi

j(e0)Θ
0

= ωi
j(e0)Θ

0 + ωi
j(ēm)

[
Θ̄m + 1

α
βmΘ0

]
= ωi

j(ēm)Θ
m +

[
ωi

j(e0)+ 1

α
ωi

j(β)

]
Θ0 . (2.358)

The coefficient ω0
i(e0) follows from the first structure equation

dΘ0 = α,iΘ̄i ∧ dt = ∇i lnαΘi ∧Θ0 = −∇i lnαΘ0 ∧Θi , (2.359)

i.e.

ω0
i(e0) = ∇i lnα . (2.360)

From the definition of the extrinsic curvature, Kij = −ni| j = −e0| j , and the defini-
tion of the covariant derivative

∇Xe0 = ωi
0(X)ei (2.361)

we find

ω0
i(e j) = −Kij . (2.362)

With the definition of ∂tΘ̄
i = ci

jΘ̄
j we can calculate the exterior derivatives

dΘi = dΘ̄i + dt ∧ ∂tΘ̄
i + dβi ∧ dt

= −ω̄i
j ∧ Θ̄ j + 1

α
Θ0 ∧ [ci

jΘ̄
j − dβi] . (2.363)

By comparing this with the first structure equation

dΘi = −ωi
0 ∧Θ0 − ωi

j ∧Θ j

= −ω0
i(em)Θ

m ∧Θ0 − ωi
j(e0)Θ

0 ∧Θ j − ωi
j(em)Θ

m ∧Θ j , (2.364)
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we find

[Kij + ωij(e0)+ 1

α
ω̄ij(β)]Θ j ∧Θ0

= − 1

α
cijΘ

j ∧Θ0 + 1

α
dβi ∧Θ0 + 1

α
ω̄ij(β)Θ

j ∧Θ0 . (2.365)

Since dβi + ω̄i
j(em)β

mΘ j = Dβi is the covariant derivative in the hypersurface, we
gain the identity

ωij(e0)+ Kij = 1

α

[
βi| j − cij − ω̄ij(β)

]
(2.366)

with its solution for the symmetric part

Kij = 1

α

[
β(i| j) − c(ij)

]
(2.367)

and for the antisymmetric part

ωij(e0) = 1

α

[
β[i| j] − c[ij] − ω̄ij(β)

]
. (2.368)

In total, we have derived a closed expression for the connection forms

ω0
j = (∇ j lnα)Θ0 − Kij Θ

j (2.369)

ωi
j = ω̄i

j + Hi
jΘ

0 . (2.370)

The connection of spacetime is given by the connection of the hypersurface, the
gravitational force ∇ lnα, the extrinsic curvature Kij and the antisymmetric gravit-
omagnetic field H defined as

Hij = 1

α

[
β[i| j] − c[ij]

]
. (2.371)

Split of the Curvature

The Gauss–Codazzi equations are a collection of equations which relate the four-
dimensional Riemann tensor Rabcd , Ricci tensor Rab and Ricci scalar R to their
projection onto a three-dimensional hypersurface embedded within four-dimensional
spacetime. For this we consider the decomposition of the curvature two-form. For
the curvature on the three-surface Σ we find the Gauss form (for a derivation,
see Appendix C)

Ωi
j |Σ = Ω̄i

j + Ki
s K jt Θ̄

s ∧ Θ̄t . (2.372)

In components, this means for the Riemann tensor of the hypersurface
(3)Rijkm = h p

i hq
j h

r
khs

m Rpqrs − Kik K jm + Kim K jk , (2.373)

where hab = gab + nanb is the projection tensor with nana = −1. The Codazzi–
Mainardi equation is then given by

Ω0
i(e j, e0) = 1

α
D j(α,i)+ 1

α
(∂t − Lβ)Kij + K jm K m

i . (2.374)
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2.8.4 Split of Einstein’s Equations

For Einstein’s equations we only need the split of the Ricci tensor

R00 = Ωi
0(ei, e0) = Ω0

i(ei, e0) (2.375)

R0i = Ω j
0(e j, ei) = Ω0

j(e j, ei) = Ω0
j(ē j, ēi) (2.376)

Rij = Ω0
i(e0, e j)+Ωm

i (em, e j) . (2.377)

Poisson Equation

For the Ricci component R00 we need the trace of equation (C.12). Thereby

γ im∂t Kim = ∂t Tr(K)− Kim∂tγ
im = ∂t Tr(K)+ Kim∂tγim . (2.378)

As usual, Tr denotes the trace of a matrix. Similarly, we find for the Lie derivative

γ im LβKim = LβTr(K)− Kim Lβγ
im

= LβTr(K)+ Kim Lβγim

= LβTr(K)+ Kim
[
2αKim + ∂tγim

]
. (2.379)

In this way, the time component of Einstein’s equations provides the generalization
of the Poisson equation

1

α
∆̄α+ 1

α

(
∂t − Lβ

)
Tr(K)− Tr(K2) = 8πG

(
E + 1

2
Tr(T)

)
. (2.380)

∆̄ is the Laplacian on the hypersurface. Since in the Newtonian limit α � 1 + Φ,
this equation is the natural generalization of the Poisson equation. It determines the
redshift factor α in terms of the matter distribution and some nonlinearities due to
the embedding of the hypersurface into spacetime.

Constraint Equations

The most widely used approach for analyzing solutions of Einstein’s gravitational
field equations is the initial value formulation, and the key to the initial value
formulation is the set of Einstein constraint equations. The study of the constraint
equations and their solutions plays a major role in the search to understand the
degrees of freedom of the gravitational field, in the search for a theory of gravity
consistent with the quantum principle, and in the search for physically realistic
models of astrophysical and cosmological gravitational systems. During the past
few years, there has been significant progress in our understanding of the Einstein
constraints.

The relativistic Poisson equation still includes a time dependence. Einstein’s
equations in fact contain four equations which are time-independent. For this we
consider the G00 component



2.8 3+1 Split of Einstein’s Equations 99

G00 = R00 − 1

2
η00 R

= R00 + 1

2
(R0

0 + Ri
i)

= R00 − 1

2
R00 + 1

2
Rii = 1

2
(R00 + Rii)

= 1

2

(
Ω0

i(ei, e0)+Ω0
i(e0, ei)+Ωk

i(ek, ei)
)

= 1

2
Ωk

i(ek, ei) . (2.381)

G00 and R0i will only depend on the curvature forms that are defined on the three-
space

G00 = 1

2
Ωk

i(ēk, ēi) (2.382)

R0i = Ω0
j(ē j, ēi) . (2.383)

We now insert the above results into G00 to obtain

G00 = 1

2

[
Ω̄k

i + K k
s KitΘ̄

s ∧ Θ̄t
]
(ēk, ēi)

= 1

2

[∑
i

R̄ii + K k
s Kit(Θ̄

s(ēk)Θ̄
t(ēi)− Θ̄s(ēi)Θ̄

t(ēk)

]
= 1

2

[
R̄ + K k

s Kit(δ
s
kδ

t
i − δs

i δ
t
k)
]

= 1

2

[
R̄ + K k

k Ktt − K k
i Kik

]
= 1

2

[
R̄ + [Tr(K)]2 − Tr(K 2)

]
, (2.384)

and similarly for R0i

R0i = −DK js ∧ Θ̄s(ē j, ēi)

= −Dm K js Θ̄
m ∧ Θ̄s(ē j, ēi)

= −Dm K js(δ
m
j δ

s
i − δm

i δ
s
j)

= −D j K ji + Di K jj

= Di K j
j − D j K j

i . (2.385)

These constraints equations can be summarized

R̄ + [Tr(K)]2 − Tr
(
K 2) = 16πGT(00) (2.386)

Di K j
j − D j K j

i = −8πGT(0i) . (2.387)

They have to be satisfied for all times and on any time-slice. The first step in the
building of a spacetime solution of Einstein’s gravitational field equations via the
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initial value formulation is finding a solution of the Einstein constraint equations.
One useful step towards this goal is learning how to glue together known solutions
of the constraint equations. We will not discuss these topics in detail here.

Evolution Equations

The remaining six equations determine the time evolution of the three-metric of
the slices. The spatial part of the Ricci tensor follows from the decomposition of
equation (C.12) and equation (C.3)

Rij = R̄ij − 1

α
α|ij + Tr(K)Kij − 2K2

ij −
1

α
(∂t − Lβ)Kij . (2.388)

This is the fundamental dynamical equation in Einstein’s theory. The dynamical
equations are then often written as a pair of equations for the metric of the three-
surface γij and for the extrinsic curvature

(∂t − Lβ)γij = −2α Kij (2.389)

(∂t − Lβ)Kij = αR̄ij(γ)− α|ij + αTr(K)Kij − 2αK2
ij

−4πGα
(
2Sij − γij T

)
. (2.390)

They have to be solved together with the four constraints equations

R̄ + [Tr(K)]2 − Tr
(
K 2) = 16πG E (2.391)

D̄i K j
j − D̄ j K j

i = −8πGSi . (2.392)

In the above equations the energy density E = T(00), the momentum density Si

and the spatial stress density Sij are functions of the nongravitational fields and the
metric as well as their derivatives.

Now, we have a system of second-order differential equations for the spatial
metric γij on a three-dimensional manifold Σ. Given the initial data (γij(0), Kij(0))
on Σ, the evolution of γij constructs a globally hyperbolic spacetime (M, g) and Σ
is a Cauchy hypersurface of (M, g), on which the initial data are induced.

2.8.5 Black Hole Simulations and Gravitational Waves

The fundamental importance of obtaining stable accurate simulations of black holes
arises from the fact that the inspiral and merger of binary black holes is considered
one of the most promising sources of detectable gravitational waves.

Among the various difficulties one faces in black hole simulations we highlight
the two most pronounced ones (for more details, see e.g. [322]):

– A generic difficulty one faces in general relativity arises from the coordinate
invariance of the theory. For numerical purposes this means that the physical
scenario is independent of the coordinate system used for the simulation. The
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numerical properties of a code, however, will depend very sensitively on the
choice of coordinates, i.e. gauge conditions. It is a highly nontrivial, and as yet
unsolved, task to find gauge conditions suitable for the simulation of strongly
dynamic black hole systems.

– A second major difficulty is a particular feature of black holes and can be il-
lustrated easily in the case of a single black hole. The extrinsic curvature takes
on increasingly large values in the vicinity of the black hole. In fact it becomes
infinite at the black hole center. It is known that the center of a stationary sin-
gle black hole represents a true physical singularity, which cannot be described
by traditional numerical techniques. When a computer encounters such a sin-
gularity in an evolution, it will simply crash, because it cannot handle infinite
numbers. In order to circumvent this problem, one can proceed along two dif-
ferent lines.
• Using so-called singularity avoiding slicing one ensures that a numerical

simulation slows down near a singularity and does not reach such a point in
a finite time.

• A technique called Black Hole Excision simply removes a finite region
around the black hole singularity from the computational domain.

The main motivation for using black hole excision arises from Cosmic Censor-
sphip which states that a singularity is always surrounded by an event horizon,
a boundary of finite extension which causally disconnects the interior with the
singularity from the outside world. Whatever goes on inside the event hori-
zon will under no circumstances affect the physics in the outer region. In
particular one may therefore remove a region inside the event horizon from
the numerical evolution without observing any changes in the outside evolu-
tion.

Problems

2.1. Gauss’ Theorem: Since n-forms on a manifold M of dimension n are propor-
tional to the volume form, the volume integration over a n-form gives a mapping
to the real numbers. For any (n − 1)-form ω on M, dω is an n-form, which can be
integrated over M, while ω itself can be integrated over ∂M. Stokes’ theorem tells
us then that [11] ∫

M
dω =

∫
∂M
ω . (2.393)

Let us consider a one-form A = An dxn . Its Hodge dual defines then a (n−1)-formω

ω = ∗A , (2.394)

or in components

ωi1···in−1 = Aa ηai1···in−1 , (2.395)
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where η is the Levi-Civita n-form on M. We can reconstruct A from ω by means of

A = (−1)s+n−1 ∗ ∗A = (−1)s+n−1 ∗ ω . (2.396)

s equals +1 for Euclidean signatures and −1 for Lorentzian signatures.
Prove that the exterior derivative of ω is proportional to the divergence of A, i.e.

dω = (∇a Aa)
√|g| dn x . (2.397)

Similarly, ω itself can be represented as a volume-form on ∂M

ω = (na Aa)
√|γ | dn−1x , (2.398)

where na is the unit normal to the boundary ∂M and γ is the intrinsic metric of ∂M.
Putting both formulae together, Stokes’ theorem relates the divergence of a vector
field A to its flux through the boundary∫

M
(∇a Aa)

√|g| dn x =
∫
∂M
(na Aa)

√|γ | dn−1 y . (2.399)

The unit normal n should be chosen outward-pointing if the boundary is space-like,
and inward-pointing for time-like boundaries.

2.2. Spin Connection of the Three-Sphere: The metric of a three-sphere is given
in the coordinates (ψ, θ, φ)

ds2 = a2
[
dψ2 + sin2 ψ(dθ2 + sin2 θ dφ2)

]
. (2.400)

Find orthonormal frames ei and dual framesΘi such that the metric tensor becomes
δik. Compute the component of the spin connection by solving Cartan’s first structure
equation. Compute the components of the Riemann tensor by solving the second
Cartan structure equation. Calculate the Christoffels in a coordinate frame and the
corresponding Riemann tensors. Compare your results with the Cartan method.
Confirm that the three-sphere is a maximally symmetric space.

2.3. Light Deflection in Weak Gravitational Fields: Use the metric for weak
gravitational fields

ds2 = −[1+ 2Φ(x)] dt2 + [1− 2γΦ(x)] dx2 (2.401)

to derive the light deflection in the gravitational potential Φ(x). The Robertson
parameter γ can be used to test Einstein’s gravity [419].

2.4. Shapiro Time Delay in Solar System: In general relativity, the Shapiro effect,
or gravitational time delay, is one of the four classic Solar System tests of general
relativity. It says that a radar beam (or light beam) which passes near a massive
object, as it travels from some observer’s location to a target and returns to the
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observer, takes slightly longer to make the round trip (as measured by the observer)
than it would if the object were not present. More generally, the travel time of any
signal moving at the local speed of light can be affected by the gravitational field
in regions of spacetime through which it travels. In general relativity (and in most
other gravitation theories), the local speed of light is a constant of nature, but the
time-delay effect implies that the effective global speed of light is path-dependent.

The gravitational time delay, now known as the Shapiro effect, was first predicted
by Einstein. It is proven by measuring the time delay of radar and radio beams sent
between Earth and Mars. As the beams pass closer and closer to the Sun, a delay in
the transit time is measured. This delay is caused by the gravitational force of the
Sun. The time-delay effect was first noticed in 1964, by Irwin I. Shapiro [364] (see
also [419]). Shapiro proposed an observational test of his prediction: bounce radar
beams off the surface of Venus and Mercury, and measure the round trip travel time.
When the Earth, Sun, and Venus are most favorably aligned, Shapiro showed that
the expected time delay, due to the presence of the Sun, of a radar signal travelling
from the Earth to Venus and back, would be about 200 milliseconds, well within the
limitations of 1960s era technology.
Discuss the Shapiro time delay in the weak field geometry (2.401) and derive the
classic formula for the time delay in its round-trip travel time, given by

∆τS = 2Rs

c

1+ γ
2

ln

[
(r⊕ + n · x⊕)(rE − n · xE)

d2

]
, (2.402)

where xE (x⊕) are the vectors, and rE (r⊕) are the distances from the Sun to the
emitter (Earth), respectively. RS is the Schwarzschild radius of the Sun.

2.5. Gravitational Wave Amplitude for a Binary System: Let us consider two
stars of mass M in a circular orbit at a distance R from their common center-of-
mass. Treat the motion of the stars in their Newtonian approximation, i.e. as Kepler
orbits. Calculate the wave amplitude hTT

ij (t, x) of a gravitational wave emitted by this
circular binary system, with binary period Pb, if it is located at distance d from a wave
detector. Consider in particular a binary neutron star system in the Virgo cluster with
a separation R � 100 km, i.e. for d � 16 Mpc, and compare the amplitude with the
present sensitivity of LIGO.



3 Matter Models for Compact Objects

Besides gravity, the description of various forms of matter is essential for compact
objects. We discuss two matter models, the hydrodynamic model and the Boltzmann
model.

3.1 General Relativistic Hydrodynamics

Many applications for compact objects are based on a hydrodynamical description
of matter: the internal structure of white dwarfs and neutron stars is based on the
hydrostatic approximation, and accretion onto compact objects in general requires
a time-dependent treatment of gas dynamics. We can define a perfect fluid such that
in local comoving coordinates the fluid is isotropic. Assuming that the spacetime is
Minkowskian, the energy–momentum tensor of the fluid is given by

T tt = � , T xx = T yy = T zz = P , (3.1)

where � is the total proper energy density and P the pressure. When each fluid
element has a spatial velocity vi with respect to some fixed lab frame, the expression
of the energy–momentum tensor is obtained via a Lorentz boost

Tµν = (�+ P) uµuν + P ηµν . (3.2)

Here, uµ is the fluid four-velocity, satisfying uµuµ = −1. The equations for conser-
vation of energy and momentum can be written as Tµν,ν = 0 in Minkowski spacetime.
In order to extend this expression to curved spacetime we only need to replace the
Minkowskian metric η by the general Lorentz metric of the spacetime and par-
tial derivatives with covariant ones. Thus, in a general curved spacetime, the stress
energy tensor for a perfect fluid (plasma) is given by

Tµν = (�+ P) uµuν + P gµν . (3.3)

In the strong gravity regime, pressure and stresses are typically so large that we
cannot assume that the fluid is incompressible. In addition, the pressure contributions
to the stress tensor can be of the same order as those from the energy density.
This makes GR plasmas behave very differently from the type of plasmas that
we encounter in daily life, where the stress energy tensors are dominated by their
rest-mass density.
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3.1.1 Relativistic Plasma Equations

The general relativistic hydrodynamic equations consist of the local conservation
laws of the stress–energy tensor Tαβ (the Bianchi identities) and of the matter current
density Jα = �0uα (the continuity equation)

∇αTαβ = 0 (3.4)

∇α Jα = 0 . (3.5)

In distinction to the energy density �, we denote the rest-mass energy density as �0.
The above expression for the stress–energy tensor can be extended to a nonperfect
plasma as follows (see, e.g. Straumann [18])

Tαβ = �uαuβ + (P − ζΘ) hαβ − 2ησαβ + qαuβ + qβuα , (3.6)

where hαβ is the spatial projection tensor hαβ = gαβ + uαuβ . In addition, η and
ζ are the shear and bulk viscosities. The expansion Θ, describing the divergence
or convergence of the fluid worldlines, is defined as Θ = ∇αuα. The symmetric,
trace-free, spatial shear tensor σ is defined by

σαβ = 1

2

((∇�uα) h�β + (∇�uβ) h�α
)− 1

3
Θhαβ . (3.7)

Finally, qα is the heat energy flux vector, which is space-like, uαqα = 0.
In the following, we mainly consider ideal gas dynamics, i.e. we will neglect

nonadiabatic effects, such as viscosity or heat transfer, assuming the stress–energy
tensor to be that of a perfect fluid

Tαβ = �uαuβ + Phαβ . (3.8)

In a local chart, the previous conservation equations read

∂α

[√−gJα
]
= 0 (3.9)

∂α

[√−gTαβ
]
= −√−gΓ β�αT�α . (3.10)

In order to close the system, the equations of motion and the continuity equation
must be supplemented with an equation of state (EoS) relating some fundamental
thermodynamical quantities. In general, the EoS takes the form P = P(�0, ε). Tradi-
tionally, most of the approaches for numerical integrations of the general relativistic
hydrodynamic equations have adopted space-like foliations of the spacetime, within
the 3+1 formulation. Recently, however, covariant forms of these equations, well
suited for advanced numerical methods, have also been developed.

Special Relativistic Hydrodynamics

In the framework of special relativity, the motion of an ideal fluid is governed by
particle number conservation and energy–momentum conservation. In the lab frame
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of reference, these two conservation equations can be written in closed divergence
form (Marti and Müller [271])

∂U
∂t
+ ∂Fi

∂xi
= 0 . (3.11)

The five-dimensional state vector U = (D, Si , E)T , i = 1, 2, 3, consists of the
relativistic density D, the momentum density three-vector S and the total energy
density τ with pressure P. The transformation between the rest frame quantities �,
the specific enthalpy h, pressure P and velocity v are given by

D = W�0 (3.12)

S = �0W2hv (3.13)

τ = �0W2h − P − D , (3.14)

where W = 1/
√

1− v2 is the Lorentz factor and h = 1+e/�0+P/�0 the relativistic
specific enthalpy. The corresponding flux vectors are given by

Fi =
(

Dvi , Sjv
i + Pδi

j, (τ + P)vi
)
. (3.15)

The state of the relativistic plasma is therefore given either in terms of the
five-dimensional state vector U = U(P), or in terms of the primitive variables
P = (�, v1, v2, v3, P)T . While the expression for the state vector U in terms of the
primitive variables P is trivial, the inverse relation involves the calculation of the
Lorentz factor

�0 = D/W (3.16)

v = S/(E + P) (3.17)

P = DWh − E . (3.18)

The Lorentz factor can be expressed in terms of the pressure

1

W2(P)
= 1− S2

(E + P)2
. (3.19)

For given D, S and E, one can derive from the above relations an implicit expression
for P

f(P) = Dh(P, τ)W(P)− E − P = 0 , (3.20)

where τ = 1/� denotes the specific proper volume, which is related to the enthalpy
variation

dh|s = τ dP . (3.21)

This equation must be solved for all grid points in order to recover the pressure from
the values of the state vector U.
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To numerically solve equations (3.11), each spatial dimension is discretized into
cells. The time-dependent evolution can then be expressed in the semidiscrete form

dUi, j,k

dt
= −Fx

i+1/2, j,k − Fx
i−1/2, j,k

∆x

−Fy
i, j+1/2,k − Fy

i, j−1/2,k

∆y

−Fz
i, j,k+1/2 − Fz

i, j,k−1/2

∆z
, (3.22)

where Fx
i+1/2, j,k, etc. are the fluxes at the cell interface. The subscripts i ± 1/2,

j ± 1/2, and k ± 1/2, refer to cell edges. In order to achieve high accuracy in
time, the time integration is done using a higher order Runge–Kutta scheme (Shu
and Osher [369]). Such a scheme combines the first-order Euler steps and in-
volves prediction and correction. Third-order accuracy can be obtained with the
scheme

U(1) = Un +∆t L
(
Un) (3.23)

U(2) = 3

4
Un + 1

4
U(1) + 1

4
∆t L

(
U(1)

)
(3.24)

Un+1 = 1

3
Un + 2

3
U(2) + 2

3
∆t L

(
U(2)

)
. (3.25)

The operator L(U) is the right-hand side of equation (3.22), Un+1 is the final
value of the state vector after advancing one time-step from Un . Fluxes at the
cell edges are calculated by using the technique of Riemann solvers and suitable
cell reconstruction methods (Marti and Müller [271]). Modern computer codes
have to solve these equations using adaptive mesh refinement (AMR) on parallel
computers.

3+1 Split of the Plasma Equations in Curved SpaceTime

The special relativistic hydrodynamic equations can be easily generalized to any
curved spacetime by using the covariant formulation (3.10). In the Valencia for-
mulation of Papadopoulos and Font [325], the spatial velocity components vi of
the four-velocity, ui , as measured by an Eulerian observer at rest in the space-like
hypersurface Σt with normal n

vi = ui

αut
+ β

i

α
(3.26)

together with the rest-frame density and internal energy, �0 and ε, provide a unique
description of the state of the fluid at a given time and are taken as the primitive
variables. They constitute a vector in a five-dimensional space, P = (�0, v

i, ε)T . The
initial value problem for hydrodynamical equations is defined in terms of another
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vector in the same fluid state space, namely the conserved variables, U, individually
denoted U = (D, Si , τ)

T , where

D = −Jµnµ = �0W (3.27)

Sj = −hµ j T
µνnν = �0hW2v j (3.28)

τ = Tµνnνnν + Jµnµ = �0hW2 − P − D . (3.29)

nµ = (−α, 0, 0, 0) is the unitary vector normal to the slice, W = −uµnµ = αut the
Lorentz factor, and hµν = gµν + nµnν denotes the projection operator, u j = Wv j .
h = 1+ ε + P/�0 is the enthalpy.

It is now important that the GR hydrodynamic equations can also be cast into
conservation law form. For this we begin with

(
Tµν

)
;µ = 0 and perform the following

manipulations(
gδνT

µδ
)
;µ = Tµδgδν;µ + gδνT

µδ

;µ

= gδν

[
1√−g

(√−gTµδ
)
,µ
+ Γ δµλTµλ

]
= gδν

[
1√−g

(√−gg�δTµ�
)
,µ
+ Γ δµλTµλ

]
= gδν

[
g�δ,µTµ� + g�δ

1√−g

(√−gTµ�
)
,µ
+ Γ δµλTµλ

]
. (3.30)

From this expression we derive the fundamental relation

1√−g

(√−gTµν
)
,µ
= g�ν,µTµ� − Γ δµλTµλ . (3.31)

The left-hand side is now a true divergence, and on the right-hand side we find the
corresponding source terms. These terms vanish in a Minkowskian spacetime based
on Cartesian coordinates, and this form leads to the expression (3.11).

Since ut = W/α, where W = 1/
√

1− vivi is the Lorentz factor for the three-
velocity v, we can factor out the redshift factor α from the above equations by using
the expression for the determinant,

√−g = α
√
γ , where γij is the metric of the

hypersurface Σt in the 3+1 split of spacetime. With these definitions, the equations
of general relativistic hydrodynamics take the standard conservation law form,

1√−g

[
∂
[√
γU

]
∂t

+ ∂
[√−gFi

]
∂xi

]
= S . (3.32)

The flux vectors Fi and the source terms S (which depend only on the metric, its
derivatives and the undifferentiated stress energy tensor), are given by (i = 1, 2, 3)

Fi =
(

D
(
vi − βi/α

)
, Sj

(
vi − βi/α

)+ Pδi
j, τ

(
vi − βi/α

)+ Pvi

)
(3.33)
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and

S =
(

0, Tµν
[
∂µgν j − Γ δµνgδ j

]
, α

[
T�t∂� lnα− T�σΓ t

�σ

])
. (3.34)

In analogy to special relativity, the flux vector can also be written as

Fi =
(

Dui/W, Sju
i/W + Pδi

j, τu
i/W + Pvi

)
. (3.35)

It is therefore quite convenient to work with the modified three-velocity V i = ui/W
instead of vi . In contrast to special relativity, curved coordinates add a source term
to the divergence equation, apart from the fact that the divergence is now formulated
in a covariant manner. This source term is essentially the result from the Christoffel
symbols in (3.10).

The state of the fluid is uniquely described using either vector of variables, i.e.
either U or P, and each one can be obtained from the other via their definitions and
the use of the normalization condition for the four-velocity. The local characteris-
tic structure of the above system of equations was presented by Papadopoulos and
Font [326], where the formulation proved well suited for the numerical implemen-
tation of high-resolution shock capturing schemes (HRSC schemes).

The interaction between matter and radiation fields, present in different levels of
complexity in all astrophysical systems, is described by the equations of radiation
hydrodynamics. The Newtonian framework is mostly based on the method of flux
limited diffusion. Pons et al. [330] discuss a hyperbolic formulation of the radiative
transfer equations, paying particular attention to the closure relations and to extend
HRSC schemes to those equations. General relativistic formulations of radiative
transfer in curved spacetimes are still underdeveloped.

3.1.2 On Numerics of Hydrodynamics

Any system of equations presented in the previous section can be solved numerically
by replacing the partial derivatives by finite differences on a discrete numerical
grid, and then advancing the solution in time via some time-marching algorithm.
Hence, specification of the state vector U on an initial hypersurface, together with
a suitable choice of EoS, followed by a recovery of the primitive variables, leads to
the computation of the fluxes and source terms. Through this procedure the first time
derivative of the data is obtained, which then leads to the formal propagation of the
solution forward in time, with a time-step constrained by the Courant–Friedrichs–
Lewy (CFL) condition.

The hydrodynamic equations (either in Newtonian physics or in general rel-
ativity) constitute a nonlinear hyperbolic system and, hence, smooth initial data
can transform into discontinuous data (the crossing of characteristics in the case
of shocks) in a finite time during the evolution. As a consequence, classical finite
difference schemes present important deficiencies when dealing with such systems.
Typically, first-order accurate schemes are much too dissipative across discontinu-
ities (excessive smearing) and second-order (or higher) schemes produce spurious
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oscillations near discontinuities, which do not disappear as the grid is refined. To
avoid these effects, standard finite difference schemes have been conveniently mod-
ified in various ways to ensure high-order, oscillation-free accurate representations
of discontinuous solutions.

In all conservative formulations discussed in the literature, the time update of
a given numerical algorithm is applied to the conserved quantities U. After this
update the vector of primitive quantities P must be re-evaluated, as those are needed
in the Riemann solver. The relation between the two sets of variables is, in general,
not in closed form and, hence, the recovery of the primitive variables is done using
a root-finding procedure, typically a Newton–Raphson algorithm, as described in
the special relativistic treatment. This feature, distinctive of the equations of (special
and) general relativistic hydrodynamics – it does not exist in the Newtonian limit –
may lead in some cases to accuracy losses in regions of low density and small
speeds, apart from being computationally inefficient. In particular, for the covariant
formulations, there exists an analytic method to determine the primitive variables,
which is, however, computationally very expensive since it involves many extra
variables and solving a quartic polynomial. Therefore, iterative methods are still
preferred.

The equations of viscous hydrodynamics, the Navier–Stokes–Fourier equations,
have been formulated in relativity in terms of causal dissipative relativistic fluids (see
the Living Reviews article by Marti and Müller [271], and Peitz and Appl [327]).
These extended fluid theories, however, remain unexplored, numerically, in astro-
physical systems. The reason may be the lack of an appropriate formulation well-
suited for numerical studies. Work in this direction was done by Peitz and Appl [327]
who provided a 3+1 coordinate-free representation of different types of dissipative
relativistic fluid theories which possess, in principle, the potentiality of being well
adapted to numerical applications. The inclusion of magnetic fields and the devel-
opment of formulations for the MHD equations will be discussed in the section on
accretion.

Artificial Viscosity

The idea of modifying the hydrodynamic equations by introducing artificial vis-
cosity terms to damp the amplitude of spurious oscillations near discontinuities
was originally proposed by von Neumann and Richtmyer (1950) in the context of
the (classical) Euler equations. The basic idea is to introduce a purely artificial
dissipative mechanism whose form and strength are such that the shock transition
becomes smooth, extending over a small number of intervals ∆x of the space vari-
able.

The main advantage of the artificial viscosity approach is its simplicity, which
results in high computational efficiency. Experience has shown, however, that this
procedure is both problem dependent and inaccurate for ultrarelativistic flows. Fur-
thermore, the artificial viscosity approach has the inherent ambiguity of finding the
appropriate form for Q that introduces the necessary amount of dissipation to reduce
the spurious oscillations and, at the same time, avoids introducing excessive smear-



112 3 Matter Models for Compact Objects

ing in the discontinuities. In many instances both properties are difficult to achieve
simultaneously.

High-Resolution Shock-Capturing (HRSC) Upwind Schemes

In finite difference schemes, convergence properties under grid refinement must be
enforced to ensure that the numerical results are correct (i.e. if a scheme with an
order of accuracy is used, the global error of the numerical solution has to tend to
zero as as the cell width tends to zero). For hyperbolic systems of conservation laws,
schemes written in conservation form are preferred since, according to the Lax–
Wendroff theorem, they guarantee that the convergence, if it exists, is to one of the
so-called weak solutions of the original system of equations. Such weak solutions
are generalized solutions that satisfy the integral form of the conservation system.
They are classical solutions (continuous and differentiable) in regions where they
are continuous and have a finite number of discontinuities.

The Lax–Wendroff theorem cited above does not establish whether the method
converges. To guarantee convergence, some form of stability is required, as Lax first
proposed for linear problems. Along this direction, the notion of total-variation sta-
bility has proven very successful, although powerful results have only been obtained
for scalar conservation laws. The total variation of a solution at time tn , TV(un), is
defined as

TV(un) =
∞∑
j=0

∣∣un
j+1 − un

j

∣∣ . (3.36)

A numerical scheme is said to be TV stable if TV(un) is bounded for all ∆t at any
time for each initial data. In the case of nonlinear, scalar conservation laws it can
be proved that TV stability is a sufficient condition for convergence, as long as the
numerical schemes are written in conservation form and have consistent numerical
flux functions. Current research has focused on the development of high-resolution
numerical schemes in conservation form satisfying the condition of TV stability,
such as the so-called total variation diminishing (TVD) schemes (Harten 1984).

Let us now consider the specific system of hydrodynamic equations as formulated
in (3.32), and let us consider a single computational cell of our discrete spacetime. Let
Ω be a region (simply connected) of a given four-dimensional manifold, bounded
by a closed three-dimensional surface ∂Ω. We further take the three-surface ∂Ω
as the standard-oriented hyperparallelepiped made up of two space-like surfaces
(Σt,Σt+∆t) plus time-like surfaces (Σx,Σx+∆x) that join the two temporal slices
together. By integrating system (3.32) over a domain Ω of a given spacetime, the
variation in time of the state vector U within Ω is given – keeping apart the source
terms – by the fluxes Fi through the boundary ∂Ω. The integral form of system
(3.32) is∫

Ω

1√−g
∂t
[√
γU

]
dΩ +

∫
Ω

1√−g
∂i
[√−gFi] dΩ =

∫
Ω

S dΩ . (3.37)
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Hence the time variation of the mean value of U

Ū = 1

∆V

∫ x1+∆x1

x1

∫ x2+∆x2

x2

∫ x3+∆x3

x3

√
γ U dx1 dx2 dx3 (3.38)

within the spatial volume

∆V =
∫ x1+∆x1

x1

∫ x2+∆x2

x2

∫ x3+∆x3

x3

√
γ dx1 dx2 dx3 (3.39)

can be obtained by applying the Gauss theorem(
Ū ∆V

)
t+∆t

−
(

Ū ∆V
)

t
=

+
(∫

Σx1

√−gF1 dxt dx2 dx3 −
∫
Σx1+∆x1

√−gF1 dxt dx2 dx3
)

+
(∫

Σx2

√−gF2 dt dx1 dx3 −
∫
Σx2+∆x2

√−gF2 dt dx1 dx3
)

+
(∫

Σx3

√−gF3 dt dx1 dx2 −
∫
Σx3+∆x3

√−gF3 dt dx1 dx2
)

+
∫
Ω

S dΩ . (3.40)

In order to update the solution in time, the volume and surface integrals on the right-
hand side have to be evaluated. HRSC schemes rely on the calculation of the fluxes
through the volume boundaries by solving local Riemann problems combined with
suitable cell reconstruction schemes. An exhaustive discussion on Riemann solvers
can be found in the textbook by Toro [396]. The equations in integral form are then
advanced, e.g. with a second-order Runge–Kutta method [369].

Even in curved spacetime we can apply Minkowskian Riemann solvers, since,
according to the equivalence principle, physical laws in in a local inertial frame of
a curved spacetime have the same form as in special relativity. The details of this
construction can be found in Pons et al. [330].

3.2 The Boltzmann Equation in GR

For many applications in the physics of compact objects, the hydrodynamical de-
scription is not appropriate. When photons and neutrinos are involved, we need the
general relativistic version of the Boltzmann equation. In this section, we give a short
outline of the basic elements.

3.2.1 The Geodesics Spray on the Cotangent Bundle

Particles move on geodesics in the manifold – except for short interactions. Their
motion follows from the Lagrangian L on T M4 (see Sect. 2.4.5)
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L(x, ẋ) = 1

2
g(ẋ, ẋ) . (3.41)

With the canonical transformation between the tangent bundle and the cotangent
bundle

T M → T ∗M : (xα, ẋα)→ (xα, pα) , pα ≡ gαβ ẋβ , (3.42)

we arrive at the Hamiltonian

H(x, p) = 1

2
gαβ pα pβ . (3.43)

On the cotangent bundle, the motion is determined in terms of the Hamiltonian
vector field, which is given in natural coordinates

X E = pα
∂

∂xα
− Γ ανλ pν pλ

∂

∂pα
. (3.44)

The integral curves satisfy the canonical equations

dxα

dλ
= pα (3.45)

dpα

dλ
= −Γ αβγ pβ pγ . (3.46)

We now introduce the 7D one-particle phase space by means of the set of all
points in the cotangent bundle

Pm =
{
(x, p) , g(x)(p, p) = −m2} . (3.47)

Its fiber Pm(x) is often called the mass shell. The restriction of X E will be denoted
by Xg. On T ∗M we also use the volume form

Ωg = (−g)
[
dx0 ∧ dx1 ∧ dx2 ∧ dx3

]
∧
[
dp0 ∧ dp1 ∧ dp2 ∧ dp3

]
= (−g) d4x ∧ d4 p . (3.48)

This volume form induces a volume form µm on the phase space Pm , which is
invariant under Xg, i.e.

L Xgµm = 0 . (3.49)

The volume formµm can be constructed as follows. From the Hamiltonian mechanics
we know that

Ωg = −dL ∧ µm , (3.50)

where a natural choice for this volume is given by
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µm = |g|
−p0

d4x d3 p , (3.51)

because

−dL ∧ µm =
[−gαβ pα dpβ + · · · ] ∧ µm

= (−g) d4x ∧ gα0 pα dp0 ∧ d3 p

p0
= Ωg . (3.52)

Hence, µm is the product of two volumes, one defined on the base manifold and the
second one on the mass shell

µm = η ∧Πm . (3.53)

η is the natural volume form on the manifold and Πm the natural volume form on
the mass shell, as discussed in special relativity,

Πm = √−g
d3 p

|p0| . (3.54)

We can now define a six-form on the phase space defined as follows

ωm = iXgµm , (3.55)

which is closed, dωm = 0, since

dωm =
(
d · iXg

)
µm = L Xgµm = 0 , (3.56)

with dµm = 0 and L Xgµm = 0. By using the above decomposition for µm , we
obtain

ωm = (iXgη) ∧Πm + η ∧ iXgΠm . (3.57)

Let Σ now be a time-section of the phase space in the sense that Σ defines
a space-like hypersurface on the phase space. Then the number of particles on this
time section is proportional to its volume

N[Σ] =
∫
Σ

f(x, p) ωm . (3.58)

f(x, p) is called one-particle distribution function on the phase space. This def-
inition corresponds to the covariant generalization of the Newtonian one-particle
distribution

dN(t, x;p) = f(t, x;p) d3x d3 p . (3.59)

dN denotes the number of particles measured in a volume d3x at time t and at the
spatial position x with momenta between p and p+ dp.
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3.2.2 Particle Number Current and Energy–Momentum Tensor

The particle number current is then given by the first moment of the one-particle
distribution function

Nα =
∫

Pm (x)
pα f(x, p)Πm , (3.60)

and the energy–momentum tensor by means of the second moment in momentum
space

Tαβ =
∫

Pm (x)
pα pβ f(x, p)Πm . (3.61)

We can now show that particle number conservation follows from

Nα
;α =

∫
Pm (x)

(
L Xg f

)
Πm . (3.62)

First of all, one finds that

d ( fωm) =
(
L Xg f

)
µm , (3.63)

since

d f ∧ ωm = d f ∧ iXgµm =
(
iXg d f

) ∧ µm =
(
L Xg f

)
µm . (3.64)

Now let us consider a domain D in the 7D phase space Pm with boundary ∂D. Then
we find from the expression for the volume element (3.57), setting iXη = XαΣα,∫

∂D
fωm =

∫
∂D3

Σα

∫
Pm (x)

pα f Πm =
∫
∂D3

ΣαNα =
∫

D3

(∇ · N) η . (3.65)

On the other hand, we can also write directly by applying Stokes’ theorem∫
∂D

fωm =
∫

D
d ( fωm) =

∫
D

(
L Xg f

)
µm =

∫
D3

η

∫
Pm (x)

(L Xg f)Πm . (3.66)

Since D3 is arbitrary, we indeed obtain the expression for the number current con-
servation.

Similarly, one can prove the conservation of the energy–momentum tensor

Tαβ;β =
∫

Pm (x)
pα

(
L Xg f

)
Πm . (3.67)

One has to replace the vector field Nα by a vector field tα = Tαβuβ , where uβ

denotes a geodesic flow at x.
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3.2.3 The Relativistic Boltzmann Equation

When particles are not suffering from collisions, the one-particle distribution is
conserved along a geodesic spray

L Xg f = 0 . (3.68)

This is known as the collisionless Boltzmann equation, or Liouville equation.
The proof is very simple. For this we consider a cylinder C on the 8D cotangent

bundle, which is generated by the geodesic spray. The time-sectionΣ is then mapped
to a time-section Σt by the geodesics, spanned by the time interval [0, t] (Fig. 3.1).
We now consider the volume integral over this cylinder∫

C
d ( fωm) =

∫
C

(
L Xg f

)
µm =

∫
∂C

f ωm . (3.69)

Here, we used the identity (3.63). The integral over the mantle vanishes (particles
are not leaving the side surface which is parallel to the geodesics), and the two
contributions fromΣ andΣt cancel each other due to conservation of particles. This
has the consequence that the particle current is really conserved, Nα

;α = 0.
Including collisions, the Boltzmann equation is symbolically written as

L Xg f = Q[ f ] , (3.70)

where Q[ f ] denotes the collision integral. This involves the microphysics taking
place in the interactions, e.g. in the form of the transition matrix elements for two-
body collisions.

With this form of the general Boltzmann equation, we now get an expression for
the conservation of the energy–momentum

Tαβ;β = Qα , (3.71)

Fig. 3.1. A geodesic spray defines a mapping of
a time-sectionΣ and generates a cylindrical volume
G in the cotangent bundle of spacetime



118 3 Matter Models for Compact Objects

with

Qα =
∫

Pm (x)
pα Q[ f ]Πm . (3.72)

The conservation of the energy–momentum depends on the first moment of the
collision integral which does not vanish in general.

3.2.4 Liouville Operator in 3+1 Split

For applications, it is suitable to transform to Eulerian observers (also called FIDOs,
fiducial observers){

e0 = 1

α

(
∂t − βi ei

)
, ei

}
, g(ea, eb) = ηab . (3.73)

The four-momenta, pa, and distribution function f = f
(
t, x; ν, pA

)
are also given

in this system. This leads to the expression for the Liouville operator (a = 0, 1, 2, 3;
A = 1, 2; I = 0, A; h ≡ 1 ≡ c)

L X f = pa ea( f)− ωI
a(p) pa ∂ f

∂pI
(3.74)

or, for photons with frequency ν

L X f = ν

α
∂t f +

(
pa − ν

α
βa

)
∂a f − ω0

a(p) pa ∂ f

∂ν
− ωA

m(p) pm ∂ f

∂pA
. (3.75)

ωa
b are the connection forms with respect to Eulerian observers.

As we have seen in Sect. 2.8.3, the connection can be decomposed for stationary
spacetimes according to the scheme of the 3+1 split

ω0
i(e0) = ∇i lnα (3.76)

ω0
i(ek) = −Kik , Kik = 1

2α

[
βi|k + βk|i

]
(3.77)

ωi
k(e0) = − 1

α
ωi

k(β)+ Hi
k (3.78)

ωi
k(em) : connection of Σt . (3.79)

With this, we get the decomposition of the Liouville operator (for photons, where
p ≡ ν n is the photon momentum for the Eulerian observer)

L X f = ν

α

∂ f

∂t
+ ν

(
ni − 1

α
βi

)
∂ f

∂xi

−ν
[
(n · ∇) lnα− Kik nink

]
ν
∂ f

∂ν

−ν
[
∇ i lnα− Hi

k nk + ωi
k (n− β/α) nk

] ∂ f

∂ni
. (3.80)
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The first two terms are the standard expressions, except for the change of the fre-
quency by the redshift factor. Gravitational forces, given by ∇ lnα, and the extrinsic
curvature Kik lead to a frequency shift in the distribution function, while gravita-
tional forces, the gravitomagnetic field Hik and the connection of the hypersurface
imply directional changes. In curved spacetime, the Boltzmann equation is a real
differential equation in all seven dimensions.

3.2.5 Transformation into the Local Rest Frame

Since the collision integral for the Boltzmann equation is only known in the local rest
frame (LRFM) of matter, and not in the Eulerian frame, we transform the Liouville
operator into the LRFM by means of a local Lorentz transformation Λ(x)

êa = Λb
aeb . (3.81)

This means for the momenta

p̂a = Λ̄a
b pb . (3.82)

From this we recover the transport equation in the LRFM

Λa
b p̂b ea( f)− ω̂I

a( p̂) p̂a ∂ f

∂ p̂I
= Q̂ , (3.83)

where f = f(x, p̂) is the distribution function in the LRFM. The connection forms
follow from the local transformation of connection forms

ω̂a
b(ês) = Λa

m

[
Λ̄r

b ω
m
r(en)+ d Λ̄a

b(en)
]
Λ̄n

s . (3.84)

The photon momentum p̂ is given in terms of the frequency ν0 and two direction
cosines, or in terms of the unit vector n0 with n0 = n0(µ, χ), in the local rest frame
of matter

p̂ = hν0

c

(
1,n0

)
. (3.85)

Instead of the phase-space distribution, one uses in astronomy the specific intensity

Îν = Îν(x,n0) ∝ ν3 f̂ . (3.86)

For photons, we may express the Lorentz transformation between the LRFM and
Eulerian observers by means of a Doppler factor and aberration

ν = γν0 (1+ n0 · v/c) (3.87)

n = ν0

ν

(
n0 + γ v

c

[
1+ γ

1+ γ
n0 · v

c

])
. (3.88)
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With the definition of the Ricci rotation coefficients Γ̂ a
bc ≡ ω̂a

b(êc), we can define
a three-vector with components (I = 0, 2, 3)

mI ≡ Γ̂ I
ab p̂a p̂b = ν2

0

[
Γ̂ I

00 + (Γ̂ I
0k + Γ̂ I

k0) nk
0 + Γ̂ I

kmnk
0nm

0

]
. (3.89)

Therefore, the photon transport equation assumes finally the form

γ

α
(1+ v · n0) (∂t − β · ∇) Îν + (n0 · e) Îν

−m0 ∂ Îν
∂ν0

− m A ∂ Îν
∂n A

0

= ν2
0 Q̂ . (3.90)

For thermodynamic equilibrium between radiation and matter, the collision operator
Q̂ is given in terms of the Planck function Bν, the absorption opacity κ(abs) and the
scattering operator Qsc by means of

ν2
0 Q̂ = κ(abs)� (Bν − Iν)+ Qsc . (3.91)

Problems

3.1. Special Relativistic Hydrodynamical Equations: Give expressions for the
special relativistic hydrodynamical equations (3.11) in cylindrical coordinates.

3.2. Give expressions for the special relativistic hydrodynamical equations (3.11) in
spherical coordinates.

3.3. Relativistic Blast Waves: Relativistic blast waves are believed to produce af-
terglow emission of gamma-ray bursts. The explosion is driven by a central trigger
that creates a relativistic shell with Lorentz factor Γej ∼ 102–103. This ejecta ex-
pands and drives a forward shock (FS) into the external medium, and a reverse
shock (RS) propagates inside the ejecta. Such a standard explosion picture has
four regions: 1 – external medium; 2 – shocked external medium; 3 – shocked
ejecta; and 4 – unshocked ejecta. Regions 2 and 3 are separated by a contact dis-
continuity.
Consider a relativistic spherically symmetric blast wave. A relativistic ideal gas with
four-velocity uα has stress–energy tensor Tαβ = (e+ p)uαuβ + gαβ p and mass flux
Jα = �uα. Here gαβ = diag(−1, 1, r2, r2 sin2 θ) is Minkowski metric in spherical
coordinates (t, r, θ, φ), � is rest-mass density, e is energy density (including rest
energy), and p is pressure; all these quantities are defined in the rest frame of the
gas.
Show that a relativistic shock is described by three jump conditions that express the
continuity of mass-flux Jα and stress–energy Tαβ in the frame of the shock front
(see e.g. Landau and Lifshitz 1959),
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W2β2 �2 = W1β1 �1 (3.92)

W2
2β2 (e2 + p2) = W2

1β1 �1c2 (3.93)

W2
2β

2
2 (e2 + p2)+ p2 = W2

1β
2
1 �1c2 . (3.94)

Here subscripts 1 and 2 refer to the preshock (cold) and postshock (hot) medium, β1

and β2 are the gas velocities relative to the shock front, and we assumed p1 = 0 and
e1 = �1c2. The jump conditions may be simplified if an equation of state is known
for the postshock gas,

p2 = κ2
(
e2 − �2c2) , (3.95)

where κ2 = 2/3 for a nonrelativistic shock, and κ2 = 1/3 for an ultrarela-
tivistic shock. The shock strength may be described by relative velocity β12 =
(β1 − β2)/(1 − β1β2) or W12 = (1 − β2

12)
−1/2. The postshock gas satisfies

e2/�2c2 = W12, and a convenient approximation for κ2 is

κ2 = 1

3

(
1+ 1

W12

)
. (3.96)

It is exact if the gas is monoenergetic, i.e. particles have equal energies in the gas
frame. Its error for Maxwellian gas is within 5%. Using equation (3.96), you can ex-
press all quantities in terms of β12 (or W12), which remains as the only free parameter
of the shock,

β2 = β12

3
, �2 = 4W12�1 , e2 = 4W2

12 �1c2 , p2 = 4

3
(W2

12 − 1) �1c2. (3.97)

These equations describe shocks of arbitrary strength, relativistic or nonrelativistic.
The blast wave has two shocks, forward and reverse. The above equations with
W12 = Γ describe FS. The RS is described by the same equations when index 1
is replaced by 4 (unshocked ejecta) and index 2 is replaced by 3 (shocked ejecta).
Pressures p f = p2 and pr = p3 are given by

p f = 4

3

(
Γ 2 − 1

)
�1c2 , pr = 4

3

(
W2

43 − 1
)
�4c2 . (3.98)

Assume that the Lorentz factor of unshocked ejecta, Γej, is known in the lab frame.
If the pressure balance p f = pr is assumed, it immediately determines the instanta-
neous Γ ,

Γ = Γej

[
1+ 2Γej

(
�1

�ej

)1/2
]−1/2

. (3.99)

This expression gives a quick estimate of Γ at the initial stage of the explosion,
however, it is incorrect for the later evolution. In particular, energy conservation is
not satisfied and requires a different solution.

Use the equations of motion for a spherical shell to derive the variation of the
integrated mass-density Σ, enthalpy H and pressure P between RS and FS.
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3.4. Relativistic Riemann Problem: Consider the one-dimensional special rela-
tivistic flow of a perfect fluid in the absence of a gravitational field. The Riemann
problem then consists of computing the breakup of a discontinuity, which initially
separates two arbitrary constant states L (left) and R (right) in the fluid. For classical
hydrodynamics the solution can be found, e.g. in [396]. In the case of SRHD, the
Riemann problem was considered by Marti and Müller, see [271], who derived an
exact solution for the case of pure normal flow, generalizing previous results for zero
initial velocities.



4 Relativistic Stellar Structure

In general relativity, a model of an isolated star (or other fluid ball, like boson stars)
generally consists of a fluid-filled interior region, which is technically speaking
a perfect fluid solution of the Einstein field equation, and an exterior region, which is
an asymptotically flat vacuum solution. These two pieces must be carefully matched
across the world sheet of a spherical surface, the surface of zero pressure. The
exterior region of nonrotating compact objects is given in terms of the Schwarzschild
solution. In this chapter we derive the famous Tolman–Oppenheimer–Volkoff (TOV)
equations which give the hydrostatic equilibrium for relativistic stars.

4.1 Spacetime of Relativistic Stars

As a basic example of the above concepts of GR, we consider in this section the
spacetime of nonrotating objects (Earth, Sun, stars, or black holes). Due to the high
symmetries of these objects, all nondiagonal elements in the metric vanish, and, due
to the static requirements for the gravitational fields, the metric elements are mere
functions of the position of a spherically symmetric shell. Static and spherically
symmetric nonrotating stars therefore generate a spacetime of the following form
(for details, see [2, 18])

ds2 = − exp(2Φ(r)) dt2 + exp(2λ(r)) dr2 + r2 (dθ2 + sin2 θ dφ2) . (4.1)

The coordinate r is a measure for the surfaces of the two-spheres, 4πr2, the coordi-
nates θ and φ have the usual meaning of spherical coordinates, and the two functions
Φ(r) and λ(r) are uniquely given by the mass–energy distribution �(r) in the star. As
in the Newtonian stellar structure, we can define the total mass inside the radius r

M(r) = 4π
∫ r

0
�(r ′) r ′2 dr ′ . (4.2)

The only difference is that this mass is given not only in terms of the mass-density,
but in terms of the total mass–energy density � which includes the internal energy
density ε

� ≡ �0
(
1+ ε/�0c2) . (4.3)
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The other difference is that the volume integration is not done with the proper volume
element, dV = 4πr2 exp λ(r) dr, but with a somewhat reduced volume element. We
can therefore define a second mass that is called gravitational mass MG of the
object

MG = 4π
∫ R

0
exp(λ(r)) �(r ′) r ′2 dr ′ . (4.4)

In particular, the rest mass M0 of the object has to be defined with the proper volume
element

M0 = 4π
∫ R

0
exp(λ(r)) �0(r) r2 dr . (4.5)

The entire structure of a compact star is then determined by the four equa-
tions called Tolman–Oppenheimer–Volkoff (TOV) equations (Oppenheimer and
Volkoff [317])

dM(r)

dr
= 4π�(r) r2 (4.6)

dP(r)

dr
= −G M(r)�(r)

r2

(
1+ P(r)

�(r)c2

)
×
(

1+ 4πr3 P(r)

M(r)c2

) (
1− 2G M(r)

c2r

)−1

(4.7)

e−2λ(r) = 1− 2G M(r)

c2r
(4.8)

dΦ(r)

dr
= 1

1− 2G M(r)/c2r

(
G M(r)

c2r2
+ 4πGrP

c4

)
. (4.9)

As in the Newtonian case, the total mass M(r) inside a spherical shell of radius r
also determines the hydrostatic equilibrium, but four corrections occur

– the mass-density�0 has to be replaced in terms of the total mass–energy density�;
– the inertial mass-density is given by �c2+ P (see also equations of motion); this

is the first correction factor on the right-hand side;
– pressure is an active volume correction (second factor);
– the metric of three-space enters in terms of the last factor; this factor is of

particular importance, since it determines the stability properties of the solutions.
The surface of the object always has to be far outside the Schwarzschild surface.

It is important to note that the curvature of three-space is entirely given in terms of the
total mass, while the gravitational potential satisfies its Newtonian analogue, except
for the inertial factor �c2+P. It is then obvious that these structure equations go over
into the Newtonian analog for P � �c2, i.e. roughly speaking for sound velocities
much less than the velocity of light, for low compactness 2G M(r)/c2 � r and for
low pressure-mass 4πr3 P(r)� M(r)c2. The compactness parameter has a particular
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influence on the hydrostatic equilibrium (the last factor in the TOV equation). In this
limit, three-space is flat, i.e. exp(λ) ≡ 1 for all radii, and Φ(r) ≡ 1+Φ(r)/c2 with
the following structure equations, usually derived in the theory of stellar structure,

dM(r)

dr
= 4π�0(r) r2 (4.10)

dP(r)

dr
= −G M(r)�0(r)

r2
(4.11)

dΦ(r)

dr
= G M(r)

r2
. (4.12)

Exterior Solution

As a further consequence we see that for vanishing pressure, i.e. in the exterior
region of a star with r > R, the solution of the TOV equations is given by the
Schwarzschild solution with

exp(−2λ(r)) = 1− 2G M

c2r
(4.13)

exp(2Φ(r)) = 1− 2G M

c2r
. (4.14)

This Schwarzschild mass is now M = 4π
∫ R

0 �(r) r2 dr. The quantity RS = 2G M/c2

is called the Schwarzschild radius and scales with the mass

RS = 2.98 km (M/M�) . (4.15)

4.2 Derivation of the TOV Equations

The TOV equations can be derived in a standard manner by calculating the Christoffel
symbols in Schwarzschild coordinates and from there the Riemann and Ricci tensor.
For highly symmetric spacetimes, there is, however, a method which is more suitable
and physical than the coordinate based method. All physical quantities are expressed
in terms of observer frames, also called tetrads (vierbein). Since this technique is the
basic one, when we are dealing with rotating objects, we use it also here to calculate
the Ricci tensor.

4.2.1 The Curvature of Static Spacetimes

In order to calculate the affine metric connection of this spacetime, we work with the
local orthonormal one-form basis, which is naturally attached to the metric element

Θ0 = expΦ(r) dt , Θ1 = exp λ(r) dr ,

Θ2 = r dθ , Θ3 = r sin θ dφ . (4.16)
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This basis is orthonormal, so that the connection forms satisfy

ωab + ωba = 0 , ωab = ηacω
c
b , a, b = 0, 1, 2, 3 . (4.17)

We first consider the external derivatives

dΘ0 = Φ′ expΦ dr ∧ dt (4.18)

dΘ1 = 0 (4.19)

dΘ2 = dr ∧ dθ (4.20)

dΘ3 = sin θ dr ∧ dφ + r cos θ dθ ∧ dφ . (4.21)

Now we express the right-hand sides in terms of the orthonormal frames and
obtain

dΘ0 = Φ′ exp(−λ)Θ1 ∧Θ0 (4.22)

dΘ1 = 0 (4.23)

dΘ2 = r−1 exp(−λ)Θ1 ∧Θ2 (4.24)

dΘ3 = r−1 [exp(−λ)Θ1 ∧Θ3 + cot θ Θ2 ∧Θ3] . (4.25)

We compare this with the first Cartan structure equation (see Sect. 2.5.4)

dΘa = −ωa
b ∧Θb (4.26)

and can read off therefore the following connection coefficients

ω0
1 = ω1

0 = Φ′ exp(−λ)Θ0 (4.27)

ω0
2 = ω2

0 = ω0
3 = ω3

0 = 0 (4.28)

ω2
1 = −ω1

2 = r−1 exp(−λ)Θ2 (4.29)

ω3
1 = −ω1

3 = r−1 exp(−λ)Θ3 (4.30)

ω3
2 = −ω2

3 = r−1 cot θ Θ3 . (4.31)

The second Cartan structure equation determines the curvature two-form Ωa
b,

which is also an element of the Lie algebra of the Lorentz group. The calculations
are straightforward, as example we consider the forms

Ω0
1 = dω0

1 + ω0
k ∧ ωk

1 = dω0
1 (4.32)

= (Φ′ exp(−λ))′ dr ∧Θ0 +Φ′ exp(−λ) dΘ0 (4.33)

= (Φ′ exp(−λ))′ exp(−λ)Θ1 ∧Θ0 + (Φ′ exp(−λ))2Θ1 ∧Θ0 (4.34)

Ω0
1 = − exp(−2λ) [(Φ′)2 −Φ′λ′ +Φ′′]Θ0 ∧Θ1 (4.35)

Ω0
2 = dω0

2 + ω0
k ∧ ωk

2 = ω0
1 ∧ ω1

2 = − exp(−2λ)
Φ′

r
Θ0 ∧Θ2 (4.36)

In total, all six elements of the curvature two-form are given by
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Ω0
1 = − exp(−2λ) [(Φ′)2 −Φ′λ′ +Φ′′]Θ0 ∧Θ1 (4.37)

Ω0
2 = −

Φ′ exp(−2λ)

r
Θ0 ∧Θ2 (4.38)

Ω0
3 = −

Φ′ exp(−2λ)

r
Θ0 ∧ θ3 (4.39)

Ω1
2 =

λ′ exp(−2λ)

r
Θ1 ∧Θ2 (4.40)

Ω1
3 =

λ′ exp(−2λ)

r
Θ1 ∧Θ3 (4.41)

Ω2
3 =

1− exp(−2λ)

r2
Θ2 ∧Θ3 . (4.42)

From this we can read off the Riemann tensor Ra
bcd , which is antisymmetric in both

pairs of indices

Ωa
b =

1

2
Ra

bcd Θ
c ∧Θd (4.43)

and therefore the Einstein tensor follows from the Ricci tensor Rbc = Ra
bac

Gab = Rab − 1

2
ηab R . (4.44)

This yields the components

G0
0 =

1

r2
− exp(−2λ)

(
1

r2
− 2λ′

r

)
= 1

r2

d

dr
[r(1− exp(−2λ)] (4.45)

G1
1 =

1

r2
− exp(−2λ)

(
1

r2
+ 2Φ′

r

)
(4.46)

G2
2 = G3

3 = − exp(−2λ)

(
(Φ′)2 −Φ′λ′ +Φ′′ + Φ

′ − λ′
r

)
(4.47)

and all other Gab = 0. This is also a consequence of the high symmetry. The
equality of G2

2 and G3
3 is a consequence of the isotropy on the sphere, but the

radial component G1
1 will in general differ from these. As a consequence, Einstein’s

equations provide three equations for the two functions Φ(r) and λ(r). In fact, the
third equation contains the hydrostatic equilibrium, since the equations of motion
are not independent in general relativity.

4.2.2 Matter in the Interior

The matter in the interior of the star is described in terms of the energy–momentum
tensor T ab that assumes the form of a perfect fluid

Tµν = (
�c2 + P

)
uµuν + P gµν , (4.48)
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where gµν are the covariant components of the metric tensor. In the above equation,
uµ is the local fluid four-velocity uµ = dxµ/dτ , where dτ = ds/c. It satisfies the
normalization uµuµ = −1 (time-like vector field). � is the total mass–energy density,
and P the corresponding pressure. Because the star is static, the three-velocity of the
vector field vanishes, and due to the normalization

u0 = 1/
√−g00 = 1/α(r) , (4.49)

or u0 = −α(r) is a measure of the redshift factor. For static stars the source of the
gravitational filed has the form

T a
b = diag

{−�c2, P, P, P
}
. (4.50)

This demonstrates that Einstein’s field equations

Ga
b =

8πG

c4
T a

b (4.51)

can explicitly be written as

G0
0 =

1

r2
− exp(−2λ)

(
1

r2
− 2λ′

r

)
= 8πG

c2
�(r) (4.52)

G1
1 =

1

r2
− exp(−2λ)

(
1

r2
+ 2Φ′

r

)
= −8πG

c4
P(r) (4.53)

G2
2 = G3

3 = − exp(−2λ)

(
(Φ′)2 −Φ′λ′ +Φ′′ + Φ

′ − λ′
r

)
= −8πG

c4
P(r) , (4.54)

where the first two equations provide us two independent equations for the functions
Φ(r) and λ(r)

1

r2
− exp(−2λ)

(
1

r2
− 2λ′

r

)
= 8πG

c2
� (4.55)

1

r2
− exp(−2λ)

(
1

r2
+ 2Φ′

r

)
= −8πG

c4
P . (4.56)

The first equation is equivalent to

(r exp(−2λ))′ = 1− 8πG

c2
�r2 , (4.57)

which can be integrated with the asymptotic flatness condition to yield the three-
space metric

exp(−2λ) = 1− 2G M(r)

c2r
(4.58)
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with the total mass inside radius r given as

M(r) ≡ 4π
∫ r

0
�(r ′) r ′2 dr ′ . (4.59)

By subtracting the second equation from the first one, we obtain

exp(−2λ) (Φ′ + λ′) = 4πG

c2
(�+ P) r . (4.60)

This is equivalent to

Φ′ = 1

1− 2G M(r)/c2r

(
G M(r)

c2r2
+ 4πG

c4
rP

)
. (4.61)

This demonstrates now, how the gravitational force is generalized in GR. In particu-
lar, pressure is a source of the gravitational field, and the Schwarzschild metric acts
as a modification in the denominator of the force law.

We now solve the first equation for λ′ and set c = 1 = G

−2rλ′ = (1− 8πr2�) exp(2λ)− 1 (4.62)

and also solve the second equation for Φ′

2rΦ′ = (1+ 8πr2 P) exp(2λ)− 1 (4.63)

and take the derivative of this last equation and multiply by r

2rΦ′ + 2r2Φ′′ = [
2rλ′

(
1+ 8πr2 P

)+ (
16πr2 P + 8πr3 P′

)]
exp(2λ) (4.64)

We solve this equation for Φ′′ using once again the above two relations

2r2Φ′′ = 1+ (
16πr2 P + 8πr3 P′

)
exp(2λ)

− (
1+ 8πr2 P

) (
1− 8πr2�

)
exp(4λ) . (4.65)

We can also square the above relations for Φ′ to obtain

2r2(Φ′)2 = 1

2

(
1+ 8πr2 P

)2
exp(4λ)− (

1+ 8πr2 P
)

exp(2λ)+ 1

2
. (4.66)

These equations provide relations for Φ′, λ′, Φ′′ and Φ′2 in terms of �, P, P′
and exp(2λ), which can be expressed entirely in terms of the included mass
M(r). Therefore, all the metric functions can be eliminated from the third of
Einstein’s equations by substitution of the above results. In this way, we ob-
tain after some lengthy calculations the equation for the relativistic hydrostatic
equilibrium
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dP

dr
= −G M(r)�(r)

r2

(
1+ P(r)

�(r)c2

)
×
(

1+ 4πr3 P(r)

M(r)c2

) (
1− 2G M(r)

c2r

)−1

.

(4.67)

This equation could also be obtained directly from the equations of motion
Tr

r;r = 0. This equation is, however, a mere consequence of Einstein’s equation and
should not be considered as an independent equation. This demonstrates once again
that Φ(r) is the analogue of the Newtonian potential Φ(r)

P′ = − (
�c2 + P

)
Φ′ . (4.68)

A further consequence of this derivation is a relation for the gravitational force

dΦ

dr
= G M(r)

c2r2

1+ 4πr3 P/M(r)c2

1− 2G M(r)/c2r
. (4.69)

For a given equation of state P = P(�), the TOV equations can easily be
integrated from the origin with initial conditions M(0) = 0 and an arbitrary value
for the central density �c = �(0), until the pressure P(r)will vanish at some radius R.
To each possible equation of state, there is a unique family of stars parametrized
by the central density, i.e. we obtain a sequence of stellar models M = M(�c).

4.2.3 The Exterior Schwarzschild Solution

For radii exceeding the mass distribution, r ≥ R∗, where r = R∗ with P(R∗) = 0
denotes the surface of the star and M = M(R∗) the mass of the star, the solution is
simply given by

exp(−2λ) = 1− 2G M

c2r
(4.70)

Φ′ = G M

r2
(
1− 2G M/c2r

) . (4.71)

The second equation can be integrated with the boundary condition exp[Φ(r)] → 1
for r →∞

exp[2Φ(r)] = 1− 2G M

c2r
, r ≥ R∗ . (4.72)

It can be shown that these solutions are compatible with the third Einstein equation
G2

2 = 0.
This is the famous Schwarzschild solution with its metric

ds2 = −
(

1− 2G M

c2r

)
c2dt2 +

(
1− 2G M

c2r

)−1

dr2 + r2 dΩ2 , (4.73)
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uniquely determined by the mass M of the central object. The quantity

RS = 2G M/c2 = 3 km M/M� (4.74)

is called the Schwarzschild radius. R∗/RS is therefore a measure for the compact-
ness of the star. When r → RS, the metric becomes degenerate, and redshift from
this surface becomes infinite. Objects are no longer stable, when their surface is too
near to the Schwarzschild surface – they will ultimately collapse. For this reason,
neutron stars have a maximally possible mass, Mc � 2 M�. Objects with higher
masses will collapse for ever and form a black hole, where the surface with r = RS

appears as a horizon for observers at infinity (i.e. a surface of infinite redshift).
The Schwarzschild metric will become singular at the radius r = RS, but, as

shown by the expressions for the Riemann tensor, this tensor stays finite there, since,
for example, Φ′ exp(−2λ) = G M/r2. This has the consequence that the Riemann
tensor diverges for r → 0 as, e.g. R0

202 = −G M/r3. This is now a point singularity
which contains all the mass measured by the parameter M. Physically, it is clear
that this is a mathematical singularity which will be removed, hopefully, by some
quantum gravity theory.

4.2.4 Stable Branches for Degenerate Stars

Not all branches of a sequence M = M(�c) are stable. This can be tested by means of
radial oscillations. Degenerate stars with dM/d�c < 0 are found to be unstable and
will finally collapse towards Neutron stars, or black holes [15]. The corresponding
Sturm–Liouville problem for the oscillation modes has been worked out for the first
time by Chandrasekhar in 1964 [115]. As a consequence, we find by solving the
TOV equations for a given EoS a maximum possible mass with a corresponding
central maximal density.

For degenerate EoS two sequences are found – on the one hand the white dwarfs
where the electron pressure is equilibrating gravity, and at higher densities the
neutron stars where the degenerate pressure of neutrons and quarks is responsible
for the equilibrium. A third family of pure quark stars (or strange stars) might exist,
but the observations are not yet conclusive.

4.2.5 Metric for Relativistic Stars

The structure of relativistic stars has attracted much attention since the formulation of
general relativity. Theoretical models of relativistic stars have first been considered
by Tolman [394], and Oppenheimer and Volkoff [317].

The solutions of the TOV equations are numerically found by integrating outward
from the origin, r = 0, towards the surface where pressure vanishes. They are
parameterized by the central density �c, and the adiabatic constant Γ in the EoS, or
by an explicit numerical EoS. A given solution of the TOV equations, or a relativistic
star, is characterized by its mass M, and its radius R. The profiles of the two
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Fig. 4.1. Metric functions of static neutron stars as a function of radius in units of km. The
redshift factor α = exp ν = expΦ steadily increases from the center of the star towards the
asymptotic region. The metric function exp−λ is flat near the center and reaches a minimum
near the surface of the star, where it joins the redshift factor. Figure provided by A. Bauswein
(ZAH, Landessternwarte)

metric functions are shown in Fig. 4.1 for a typical neutron star. The redshift factor
α(r) = exp ν(r) steadily increases from the center of the star towards the asymptotic
region. The metric function exp[−2λ(r)] = 1 − 2G M(r)/c2 is flat near the center
and reaches a minimum near the surface of the star, where it joins the redshift
factor.

4.3 A Variational Principle for the Stellar Structure

It is remarkable that the TOV equations for the stellar structure can be derived from
a variational principle (for details, see Weinberg [20]):

A particular stellar configuration, with uniform entropy per nucleon and chem-
ical composition, will satisfy the TOV equations for equilibrium, if and only if
the quantity M defined by

M =
∫ ∞

0
4π�(r) r2 dr (4.75)
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is stationary with respect to all variations of �(r) that leave unchanged the total
number of baryons, n(r) ≡ �0(r)/mu as the baryon density,

NB =
∫ ∞

0
4πr2 n(r)

(
1− 2G M(r)

c2r

)−1/2

dr . (4.76)

To prove this theorem one uses the Lagrange multiplier method (we follow here the
elegant outline given by Weinberg [20]): M will be stationary with respect to all
variations that leave NB fixed provided there exists a constant λ for which M−λNB

is stationary with respect to all variations. In general, we get

δM − λ δNB =
∫ ∞

0
4πr2δ�(r) dr

−λ
∫ ∞

0
4πr2 dr

(
1− 2G M(r)

c2r

)−1/2

δn(r)

−λ G

c2

∫ ∞

0
4πr

(
1− 2G M(r)

c2r

)−3/2

n(r) δM(r) dr . (4.77)

These variations are supposed not to change the entropy per nucleon, i.e.

0 = δ
(�

n

)
+ P δ

(
1

n

)
(4.78)

or

δn(r) = n(r)

�(r)+ P(r)
δ�(r) . (4.79)

And in addition we have

δM(r) =
∫ r

0
4πr ′2 δ�(r ′) dr ′. (4.80)

If we interchange the r and r ′ integration in the last term of the total variation

δM − λ δNB =
∫ ∞

0
4πr2

[
1− λn(r)

�+ P

(
1− 2G M(r)

c2r

)−1/2

(4.81)

−λG

c2

∫ ∞

r
4πr ′ n(r ′)

(
1− 2G M(r)

c2r

)−3/2

dr ′
]
δ�(r) dr .

Thus δM − λδNB will vanish if and only if

1

λ
= n(r)

�+ P

(
1− 2G M(r)

c2r

)−1/2

+G

c2

∫ ∞

r
4πr ′ n(r ′)

(
1− 2G M(r)

c2r

)−3/2

dr ′. (4.82)
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This will be the case for some multiplier λ if and only if the right-hand side is
independent of r, i.e. only and only if

0 =
[

n′

�+ P
− n(P′ + �′)
(�+ p)2

] (
1− 2G M(r)

c2r

)−1/2

+Gn/c2

�+ P

(
4π�− G M(r)

c2r2

) (
1− 2G M(r)

c2r

)−3/2

−4πGrn

(
1− 2G M(r)

c2r

)−3/2

. (4.83)

The condition for uniform entropy gives

d

dr

(�
n

)
+ P

d

dr

(
1

n

)
= 0 , (4.84)

and therefore

n′(r) = n(r) �′(r)
�(r)+ P(r)

. (4.85)

Therefore δM vanishes for all δ�(r) that give δNB = 0 provided

−r2 P′ = G

c2
(�+ P)

(
M(r)+ 4πr3 P

) (
1− 2G M(r)

c2r

)−1/2

(4.86)

and this is the TOV equation.

Problems

4.1. Perihelion Advance in Schwarzschild: Use the energy equation (8.71) to
derive the following relation for u = L2/G Mr(

du

dφ

)2

+ L2

G2 M2
− 2u + u2 − 2G2 M2

L2
u3 = E2L2

G2 M2
. (4.87)

A circular orbit is then located at u = 1. By differentiation with respect to u we
obtain a second-order equation

d2u

dφ2
− 1+ u = 3G2 M2

L2
u2 . (4.88)

Expand u into a Newtonian solution plus a small perturbation

u = uN + u1 (4.89)
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with the Newtonian solution given by

d2uN

dφ2
− 1+ uN = 0 , (4.90)

and a first-order deviation by

d2u1

dφ2
+ u1 = 3G2 M2

L2
u2

N . (4.91)

The Newtonian solution is the classical expression

uN = 1+ e cosφ , (4.92)

where e is given by

e2 = 1− L2

G Ma
. (4.93)

Derive from the perturbed equation the perihelion advance per orbit

∆φ = 6πG2 M2

L2
= 6πG M

c2
(
1− e2

)
a
. (4.94)

Calculate this value for Mercury per orbit and transform it to its value per century.
Calculate the periastron shift for a star S3 orbiting the central black hole in the
Galactic center [358].

4.2. Motions in Schwarzschild: Derive the Christoffel symbols for the Schwarz-
schild geometry and the equations of motion for test particles in terms of the affine
parameter τ .

4.3. 3+1 Split of Schwarzschild: Schwarzschild spacetime has a vanishing extrinsic
curvature. Use the Poisson equation (2.380) and the Ricci equations (2.388) to derive
the TOV equations.

4.4. Incompressible Stars: Solve the TOV equations for an incompressible star
(constant density �∗ in the interior). Show that the hydrostatic equilibrium leads to
the solution for the pressure

P(r) = �∗
[

R
√

R − 2G M −√R3 − 2G Mr2
√

R3 − 2G Mr2 − 3R
√

R − 2G M

]
, (4.95)

and the solution for the redshift factor

α(r) = 3

2

√
1− 2G M/R − 1

2

√
1− 2G Mr2/R3 (4.96)

for r < R, where R is the radius of the star. Show that static solutions are only
possible for a compactness G M/R < 4/9.

4.5. TOV Equation: Write a simple code to integrate the TOV equation in the
case of a polytropic equation of state P = K�Γ , for given central pressure Pc and
polytropic index Γ .
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A white dwarf is what stars like our Sun become when they have exhausted their
nuclear fuel. Near the end of its nuclear burning stage, such a star expels most of its
outer material (creating a planetary nebula), until only the hot core remains, which
then settles down to become a very hot (T > 100,000 K) young white dwarf. Since
a white dwarf has no way to keep itself hot unless it is accreting matter from a nearby
star (as a cataclysmic variable), it cools down over the course of the next billion years.
Many nearby, young white dwarfs have been detected as sources of soft X-rays (i.e.
lower-energy X-rays); recently, soft X-ray and extreme ultraviolet observations have
become a powerful tool in the study of the composition and structure of the thin
atmosphere of these stars.

A typical white dwarf is half as massive as the Sun, yet only slightly bigger than
the Earth. This makes white dwarfs one of the densest forms of matter, surpassed
only by neutron stars. Once a star is degenerate, gravity cannot compress it any more
because quantum mechanics tells us there is no more available space to be taken
up. A white dwarf survives therefore, not by internal combustion, but by quantum
mechanical principles that prevent its complete collapse. Such degenerate matter has
other unusual properties; for example, the more massive a white dwarf is, the smaller
it is, contrary to what is observed for normal stars. This is because the more mass
a white dwarf has, the more its electrons must squeeze together to maintain enough
outward pressure to support the extra mass. There is a limit on the amount of mass
a white dwarf can have, however. It was found by Subrahmanyan Chandrasekhar to
be 1.4 times the mass of our Sun, and is is call the Chandrasekhar limit after its
discoverer.

With a surface gravity of 100,000 times that of the Earth, the atmosphere
of a white dwarf is very strange. The heavier atoms in its atmosphere sink and
the lighter ones remain at the surface. Some white dwarfs have almost pure hy-
drogen or helium atmospheres, the lightest of elements. Also, the very strong
gravity pulls the atmosphere close around it in a very thin layer. Underneath
the atmosphere of many white dwarfs, we think there is a 50 km thick crust,
the bottom of which is a crystalline lattice of carbon and oxygen atoms. One
might make the comparison between a cool carbon/oxygen white dwarf and a dia-
mond.

Since white dwarf stars glow just from residual heat, the oldest white dwarfs
will be the coldest and thus the faintest. By searching for faint white dwarfs, one
can estimate the length of time the oldest white dwarfs have been cooling. The
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luminosity function of white dwarfs at low luminosities, and especially the po-
sition of its cutoff, provides important information about the age of the Galactic
disk.

5.1 Observations of Isolated White Dwarfs

5.1.1 Sirius B

There are several ways to observe white dwarf stars. The first white dwarf ever to
be discovered was found because it is a companion star to Sirius, a bright star near
the constellation Canis Major. In 1844, astronomer Friedrich Bessel noticed that
Sirius had a slight back and forth motion, as if it were being orbited by an unseen
object. In 1863, this mysterious object was finally resolved by optician Alvan Clark
and it was found to be a white dwarf. This pair is now referred to as Sirius A and
B, B being the white dwarf. The orbital period of this system is about 50 years.
Since white dwarfs are very small and thus very hard to detect, binary systems
are a helpful way to locate them. As with the Sirius system, if a star seems to
have some sort of unexplained motion, we may find that the single star is really
a multiple system. Upon close inspection we may find that it has a white dwarf
companion.

The black-body spectrum of Sirius B peaks at 110 nm, corresponding to a tem-
perature of 27,000 K (Fig. 5.3). From the known absolute magnitude (the distance
of the system is 8.6 lightyears), the radius is calculated as 4200 km, smaller than the
Earth, but as massive as the Sun.

Fig. 5.1. The binary system Sirius A and B. Left: optical image (arrow points to the white
dwarf); right: Chandra image (here the white dwarf is the bright object). Image courtesy:
Chandra Observatory
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Chandra Resolves Sirius B

The Chandra image shows two sources and a spike-like pattern due to the support
structure for the transmission grating (Fig. 5.1). The bright source is Sirius B,
a white dwarf star that has a surface temperature of about 27,000 degrees Kelvin,
which produces very low energy X-rays. The dim source at the position of Sirius
A, a normal star more than twice as massive as the Sun, may be due to ultraviolet
radiation from Sirius A leaking through the filter on the detector.

5.1.2 Field White Dwarfs and Classification

Optical spectra of white dwarfs have been classified according to their dominant
element in the atmosphere

– DA: strong hydrogen lines
– DB: strong He I lines
– DO: strong He II lines
– DC: no strong lines (continuous) spectrum
– DZ: strong metal lines (excluding carbon)
– DQ: strong carbon lines.

Multiple families are shown in decreasing order, e.g. DAB, DQAB.

Fig. 5.2. The orbit of the binary system Sirius A and B. Binary parameters: aA = 6.43 AU,
aB = 13.4 AU, e = 0.592, i = 136.5 deg, MA = 2.14 M�, MB = 1.03 M�, Pb = 50.1 yrs
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Fig. 5.3. HST Balmer line spectrum of Sirius B with the best-fit synthetic spectrum (solid
line) corresponding to Teff = 25, 193 K and log g = 8.556. Figure adapted from Barstow
et al. [59]

Exact distances have been determined for about 20 white dwarfs with the Hip-
parcos satellite (Table 5.1).

Surface Compositions

The surface composition is quite well known from spectroscopic observations:

– 80% of all WDs are DAs.
– Most WDs have pure or nearly pure H or He atmospheres.
– DAs are found from hottest to coolest WDs.
– Non-DAs start with hot stars:
• DOs are found for Teff > 45, 000 K with He II or He I;
• DBs for Teff < 30, 000 K, He I only;
• DCs (featureless) for Teff < 11, 000 K;
• No He-rich WDs between 45,000 and 30,000 K.

Spectroscopic Features

The strong gravity of white dwarfs results in rapid settling of heavier elements, e.g.
hydrogen always rises to the top and can mask other elements. Given a white dwarf
atmosphere modelling is generally considered to be more tractable than for other
stars. If trace elements are seen, as in DZ white dwarfs, then they must be of recent
origin (e.g. accretion from the ISM, comets, etc.).
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Table 5.1. Parallax data for white dwarfs measured by Hipparcos and by ground-based
observations. Practically all WDs are of the DA-type

WD HIP Spectral Hipparcos Ground-based V magnitude
number name type parallax [mas] parallax [mas]

0046+051 vMa 2 3829 DZ 226.95± 5.35 232.5± 1.9 12.371± 0.018
0148+467 GD 279 8709 DA 63.08± 3.79 61.0± 7.0 12.440± 0.030
0227+050 Feige 22 11650 DA 41.15± 4.96 45.0± 5.0 12.799± 0.0014
0232+035 Feige 24 12031 DA 13.44± 3.62 13.1± 2.5 12.411± 0.003
0310–688 LB 3303 14754 DA 98.50± 1.46 84.9± 15.0 11.387± 0.019
0426+588 Stein 2051B 21088 DC 181.36± 3.67 180.6± 0.8 12.440± 0.030
0501+527 D 191–B2B 23692 DA 14.53± 3.09 23.3± 2.2 11.781± 0.0055
0644+375 He 3 32560 DA 64.91± 3.37 66.2± 2.1 12.057± 0.006
0713+584 GD 294 35307 ? −1.89± 2.97 11.980± 0.030
1134+300 GD 140 56602 DA 65.28± 3.61 70.4± 10.9 12.487± 0.019
1142–645 L 145–141 57367 DQ 216.40± 2.11 218.3± 6.7 11.503± 0.017
1314+293 HZ 43 64766 DA 31.26± 8.33 15.5± 3.4 12.914± 0.030
1327–083 Wolf 485 65877 DA 55.50± 3.77 61.8± 2.8 12.313± 0.005
1337+705 G 238–44 66578 DA 40.33± 2.89 30.5± 5.9 12.792± 0.004
1544–377 L 481–60 77358 DA 65.60± 0.77 73.5± 9.4 12.800± 0.030
1620–391 CD–3810980 80300 DA 78.04± 2.40 65.5± 7.6 11.010± 0.011
1647+591 G226–29 82257 DA 91.13± 2.33 81.9± 4.0 12.240± 0.031
1917–077 LDS 678A 95071 DB 89.08± 7.16 99.2± 2.5 12.280± 0.030
2032+248 Wolf 1346 101516 DA 67.65± 2.32 69.4± 2.3 11.528± 0.001
2039–202 L 711–10 102207 DA 47.39± 4.04 42.4± 8.4 12.330± 0.020
2149+021 G 93–48 107968 DA 39.84± 4.47 40.8± 2.5 12.738± 0.008

Fig. 5.4. Classification of white dwarfs

White Dwarf Search

All galaxy surveys will also provide a set of WDs. Kleinman et al. [229] have
published a catalog of spectroscopically identified WDs in the first data release of
the Sloan Digital Sky Survey. The Sloan Digital Sky Survey (SDSS) is a continuing
imaging and spectroscopic survey of some 7–10 thousand square degrees in the
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Fig. 5.5. White dwarf stars found in the SDSS with spectra fitted to atmospheric models. Left:
distribution in effective temperature for DAs (top) and DBs (bottom); right: distribution in
log g for the same types. Figure adapted from Kleinman et al. [229]

north Galactic cap. Though its main focus is extragalactic, there are many Galactic
spin-off projects resulting from the survey. In an area which is 1400 square degrees,
they find 2551 white dwarf stars of various types and an additional 144 objects as
uncertain white dwarf stars. Of all white dwarf stars, 1888 are nonmagnetic DA
types and 171 nonmagnetic DBs. The remaining 492 objects consist of all different
types: DO, DQ, DC, DZ and hybrid stars. The DA and DB spectra are fitted with
a grid of atmospheric models to determine Teff and log g for each object (Fig. 5.5).
This catalog nearly doubles the known sample of spectroscopically identified white
dwarf stars.

Mass Distribution

The typical mass of field white dwarfs is � 0.6 M� (Fig. 5.6). Masses M and radii
R of the 1833 WDs in the SDSS sample were directly determined from the effective
temperature and log g [265]. Given Teff and log g of a star, mass and radius are
computed from the definition of the surface gravity

M = R2

G
10log g (5.1)

and from the mass–radius relation M = M(R, Teff). The resulting mass distribution
(Fig. 5.6) exhibits both the peak of 0.562 M� and the high mass tail.
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Fig. 5.6. Histogram of the mass distribution from the SDSS sample of Kleinman [265]

The peak mass of the SDSS catalog is in excellent agreement with earlier studies,
which used much less numerous samples and various methods of white dwarf mass
determination (for details, see [265]).

5.1.3 White Dwarfs in Globular Clusters

Some very nearby white dwarf stars can be observed directly through telescopes,
though they are extremely faint. M4, shown in Fig. 5.7, is the nearest globular cluster
to the Earth. It contains hundreds of thousands of stars visible with ground-based
telescopes, and is expected to contain about 40,000 white dwarfs. This globular
cluster formed early in the history of the Milky Way, and today is a veritable
stellar retirement community. It is so ancient (about 13 billion years old) that all
of its stars that began with 80% or more of the Sun’s mass have already evolved
off the main sequence to become red giants, and many have turned into white
dwarfs. In the Hubble Space Telescope picture shown in Fig. 5.7, the brightest
of the detected white dwarfs (the faint pin-pricks circled on the right-hand side
of the figure) is no more luminous than a 100-watt light bulb seen at the Moon’s
distance.

5.1.4 Magnetic White Dwarfs

There are over 65 catalogued isolated magnetic white dwarfs, comprising about 2%
of the total WD population (see Wickramasinghe and Ferrario [418], Fig. 5.8). Their
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Fig. 5.7. White dwarfs in the globular cluster M4. The globular cluster M4 is the nearest
globular cluster to the Earth. It contains hundreds of thousands of stars visible with ground-
based telescopes, and is expected to contain about 40,000 white dwarfs [HST image archive]

Fig. 5.8. Normalized histogram of magnetic white
dwarfs

field strengths range from 30 kG to 1000 MG with temperatures in the range of
4000 K to 50,000 K. These magnetic WDs are extremely useful for measuring spin
periods. A significant fraction of magnetic WDs display photometric, spectroscopic
or polarimetric variability.

Remember that the mean field strength on the surface of the Sun is only a few
gauss, but at the bottom of the convective zone magnetic fields of the order of
100 kG are expected. Since magnetic flux is conserved during the contraction phase,
in principle strong fields could occur on white dwarf stars. On average, these white
dwarfs have larger mass, and some rotate rapidly, but others not at all. Magnetism
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Fig. 5.9. Period distribution of magnetic white dwarfs. All stars with periods greater than
10 years are in the last bin

thus influences in a way the time evolution of spinning white dwarfs. The very origin
of these strong fields is, however, still mysterious. A dynamo process would require
rapid rotation – and this is in general not observed.

Traditional measurements of rotation rates for stars – photometric variations
from spots and rotational broadening of otherwise narrow absorption lines – fail
for white dwarfs. White dwarfs are spotless stars. Photometric time series do not
show evidence of rotational modulation by spots. With very high gravities produc-
ing lines that are 10 nm wide, natural broadening mechanisms swamp rotational
broadening – even for velocities close to break-up. The discovery of sharp cores
in the spectral lines of some DA WDs and of nonradial pulsations have produced
a handful of useful WD rotation velocities. Magnetic WDs with magnetic fields
in excess of 100 kG, show evidence for time-variability and periodicites of the
magnetic features, providing in this way a measurement of their rotation veloc-
ities (Fig. 5.9). For more on these fascinating objects, see Wickramasinghe and
Ferrario [418].

5.1.5 Ultracool White Dwarfs as Cosmochronometers

White dwarf cooling theory (see Sect. 5.6) presents many fascinating aspects from
a physical point of view, but, for the present purposes, it is sufficient to study
Fig. 5.10 which illustrates the evolutionary tracks of five representative models of
white dwarfs in the HR diagram. Except for their different mass, these models are
similar in that they all consist of a pure C core, surrounded by a He mantle containing
10−2 of the total mass of the star, and an outermost H layer containing 10−4 of the
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Fig. 5.10. White dwarf tracks in the Hertzsprung–Russell diagram for different masses. The
numbers indicate the age in Gyrs

total mass of the star. These values roughly correspond to the maximum amounts of
H and He that can survive the previous, hot planetary nebula phase.

The detailed evolutionary tracks nearly follow curves of constant radii (straight
lines with a negative slope in this log–log version of the HR diagram), particularly
at low luminosities. Furthermore, these tracks indicate that the more massive white
dwarfs are also those that are the smaller. As we will see, this peculiar mass–radius
relation is a consequence of electron degeneracy supporting the white dwarfs against
gravitational collapse.

While the evolutionary paths of cooling white dwarfs in the HR diagram are
extremely simple, it should be noticed that the cooling time to a given luminosity
say, is not only a function of Teff , but also a strong function of the total mass of the star.
This is shown in Fig. 5.10 by the heavy curves representing isochrones. At relatively
high luminosities, the plot shows that a more massive white dwarf takes longer to
cool to a given Teff than a less massive object. The reason is that the more massive star
has a larger energy reservoir: there are more C ions with energy kT . However, there
is a dramatic reversal of behavior in the cooler phases of the evolution. Because of
their larger masses and smaller radii, more massive white dwarfs have larger internal
densities (for comparable temperatures) and, therefore, develop a crystallized core
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Fig. 5.11. Spectral energy distribution of LHS 1126, along with a 5400 K black-body (dotted
line). White dwarf models with Teff =5400 K, log g = 7.9, and log N(He)/N(H) = 1.5 (lower
solid line) and log N(He)/N(H) = 1 (upper solid line) are also shown. The dashed line shows
a power law with α = 2. Dots are data from the Spitzer Telescope. Figure adapted from Kilic
et al. [226]

earlier, at higher effective temperatures. This is explicitly illustrated in Fig. 5.10,
where the small filled circle on each track indicates the onset of crystallization at
the center of each evolving model. Note that crystallization is a first-order phase
transition and, consequently, is accompanied by the release of latent heat. This extra
source of energy produces a delay in the cooling of a crystallizing white dwarf.

The Sloan Digital Sky Survey (SDSS) has increased the number of known field
cool white dwarfs from tens of objects to thousands. The Spitzer Space Telescope
opened a new window into the Universe by enabling accurate mid-infrared photom-
etry of faint objects (microjansky-level sensitivity). In order to understand the CIA
opacity, and other unrecognized sources of opacity in cool white dwarf atmospheres,
the Spitzer Space Telescope has been used to observe nearby, relatively bright, cool
white dwarfs [226], where mid-infrared photometry for 18 cool white dwarfs includ-
ing LHS 1126 has been presented. Cool white dwarfs have atmospheres dominated
by hydrogen or helium. Both hydrogen and helium are neutral below 5000 K and
the primary opacity source in H-rich cool (Teff ≤ 5500 K) white dwarf atmospheres
is believed to be collision induced absorption (CIA) of molecular hydrogen. H-rich
white dwarfs are predicted to become redder as they cool until the effects of CIA
become significant below 5500 K.

Spitzer observations demonstrate that all H-rich white dwarfs with Teff < 7000
K show slight mid-infrared flux deficits. Having several stars with small deficits
makes these deficits significant. Moreover, LHS 1126 shows significantly depressed
mid-infrared fluxes relative to white dwarf models (Fig. 5.11).
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WDs in Solar Neighborhood

The usefulness of white dwarfs as cosmochronometers had already been firmly
established in 1987 when Winget et al. [421] first demonstrated that the white dwarf
population in the solar neighborhood – a population characteristic of the galactic
disk – could be used to estimate independently the age of the disk. Over the years, the
method has been refined through improvements in the quality of the observational
material available and improvements in the cooling models.

Figure 5.12 illustrates how the age of the local disk can be estimated through
a comparison of the observed and theoretical luminosity functions of local white
dwarfs. On the observational side, Leggett, Ruiz, and Bergeron (1998) and Knox,
Hawkins, and Hambly (1999) published their studies of the luminosity function of
white dwarfs in the solar neighborhood. Compared to older samples, these samples
have provided much improved estimates of effective temperatures, bolometric cor-
rections, and absolute magnitudes. It contains 43 objects and constitutes a complete
proper motion survey. In comparison, the Knox et al. (1999) is also a complete
survey, but it is a colorimetric survey. It contains 58 objects.

Recently, a sample of white dwarfs has been selected from SDSS DR3 imaging
data using their reduced proper motions, based on improved proper motions from

Fig. 5.12. The luminosity function of local white dwarfs derived from the SDSS survey. The
numbers indicate the numbers of stars for each data point. The dashed line at the bright end is
from Liebert et al. [255], based on the analysis from the PG Survey, including DA WDs only
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SDSS plus USNO-B combined data [193]. Numerous SDSS and followup spectra are
used to quantify completeness and contamination of the sample; kinematic models
are used to understand and correct for velocity-dependent selection biases. A lumi-
nosity function is constructed covering the range 7 < Mbol < 16 (Fig. 5.12). This
white dwarf luminosity function now based on 6000 stars is remarkably smooth, and
rises nearly monotonically to Mbol = 15.3. It then drops abruptly, although the small
number of low-luminosity stars in the sample and their unknown atmospheric com-
position prevent quantitative conclusions about this decline. These surveys clearly
suggest the existence of a bump in the luminosity function, peaking around 10−4

solar units in luminosity. Interestingly, this bump, or excess of white dwarfs, is
naturally expected from theory and corresponds to the delays in cooling associated
with the release of latent heat upon crystallization and the effects of convective
coupling.

The simplest explanation for the observed drop-off of the density of white dwarfs
at low luminosities, and the one that has been accepted quite generally, is that the
first white dwarfs that were formed in the disk and that are now in our neighborhood,
are still bright enough to be visible. Most of them, with representative or average
masses have piled up at a luminosity � 10−4 L�, while the more massive of them,
much less numerous, have trickled down through Debye cooling to lower luminosi-
ties during the same time and populate the tail at the faint end of the luminosity
function.

A comparison of the curves in Fig. 5.12 with the observed points, particularly,
the coolest bin, suggests an age of 11 Gyr or less for the local disk. It is important to
realize here that this estimate is related to the assumption of a pure C core composition
in the cooling models used in this illustrative example. A core composition containing
a mixture of C and O, as is actually expected from stellar evolution theory, would
lead to a smaller value than obtained here for the age of the disk. This is because
the specific heat of a gram of oxygen is less than the specific heat of a gram
of carbon under the fluid/solid physical conditions encountered in white dwarf
interiors.

GAIA is an ambitious space mission, adopted within the scientific programme
of the European Space Agency (ESA) in October 2000. Its main purpose is to
measure the positions and proper motions of an extremely large number of objects
with unprecedented accuracy. GAIA will have a great impact on our understand-
ing of the Galactic white dwarf population. The superb astrometric capabilities of
GAIA will provide us with an unprecedented number of white dwarfs with excel-
lent astrometric measurements. In particular, the disk white dwarf population will
be probed up to distances of 400 pc, with typical errors smaller than 10%, both
in proper motion and parallax and with a completeness ranging from nearly 100%
for objects within 100 pc to 30% for objects within 400 pc [397]. Thus, GAIA
will determine with high accuracy the disk white dwarf luminosity function and
its drop-off. This excellent situation will, however, not pertain for the halo white
dwarf population. GAIA will also provide very precise information on the physi-
cal mechanisms (crystallization and phase separation) important during the cooling
process by comparing the theoretical luminosity functions of disk white dwarfs
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Fig. 5.13. Luminosity function of disk white dwarfs for several ages of the disk expected
in GAIA observations, ranging from 8 to 13 Gyr, with an interval of 1 Gyr. The error bars
are the standard deviation of the 40 independent Monte Carlo realizations. Figure adapted
from [397]

with the observations (see Fig. 5.13). In addition, the luminosity function of mas-
sive disk white dwarfs will constrain the star formation history of the Galactic
disk.

White Dwarf Populations in Distant Clusters

To study faint white dwarf populations in distant systems such as open and globular
clusters, one often has to deal with what could be called “minimal” or two-band
photometry that produces a single color–magnitude diagram (CMD). Cooling the-
ory can be used in conjunction with model atmospheres to compute the evolutionary
tracks and plot isochrones in the CMD. However, the photometric scatter in such
CMD’s is generally large for white dwarfs and only qualitative results can be ob-
tained from the direct comparison of isochrones with observational points in the
CMD’s. Clearly, the proper way to exploit the information contained in these dia-
grams is through actual stellar counts and the construction of observed luminosity
functions.

The observational signature of the finite age of the white dwarf population in
a cluster is the maximum in white dwarf density, the expected pile-up at some
luminosity characteristic of the cluster, followed by a drop-off in number density
at lower luminosities. Obviously, the sensitivity of the observations must be large
enough to reveal this pile-up; otherwise, white dwarf cosmochronology can be used
only to provide lower limits to the age of a cluster. Recently, the luminosity function
for WDs in M4 has been derived from HST observations [192].
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5.2 What is Inside a White Dwarf?

To say that white dwarfs are strange is an understatement. An Earth-sized white
dwarf has a density of 1× 109 kg/m3. In comparison, the Earth itself has an average
density of only 5.4 × 103 kg/m3. That means a white dwarf is a million times as
dense.

Because a white dwarf is no longer able to create internal pressure, gravity
unopposedly crushes it down until even the very electrons that make up a white
dwarf’s atoms are mashed together. Under normal circumstances, identical electrons
(those with the same spin) are not allowed to occupy the same energy level. Since
there are only two ways an electron can spin, only two electrons can occupy a single
energy level. This is what is known in physics as the Pauli exclusion principle. And
in a normal gas, this is not a problem; there are not enough electrons floating around
to completely fill up all the energy levels. But in a white dwarf, all of its electrons
are forced close together; soon all the energy levels in its atoms are filled up with
electrons. If all the energy levels are filled, and it is impossible to put more than two
electrons in each level, than our white dwarf has become degenerate. For gravity to
compress the white dwarf, it must force electrons where they cannot go. Once a star
is degenerate, gravity cannot compress it any more because quantum mechanics
tells us there is no more available space to be taken up. Our white dwarf therefore
survives, not by internal combustion, but by quantum mechanical principles that
prevent its complete collapse.

Degenerate matter has other unusual properties; for example, the more massive
a white dwarf is, the smaller it is. This is because the more mass a white dwarf has,
the more its electrons must squeeze together to maintain enough outward pressure
to support the extra mass. There is a limit on the amount of mass a white dwarf can
have, however. It was found by Subrahmanyan Chandrasekhar to be 1.4 times the
mass of our Sun, and is is called the Chandrasekhar limit after its discoverer.

With a surface gravity of 100,000 times that of the Earth, g = G M/R2 � 108

in cgs units, the atmosphere of a white dwarf is very strange. The heavier atoms in
its atmosphere sink and the lighter ones remain at the surface. Some white dwarfs
have almost pure hydrogen or helium atmospheres, the lightest of elements. Also,
the very strong gravity pulls the atmosphere close around it in a very thin layer, that,
if were it on Earth, would be lower than the tops of our skyscrapers. Underneath
the atmosphere, there is a 50 km thick crust, the bottom of which is a crystalline
lattice of carbon and oxygen atoms. One might make the comparison between a cool
carbon/oxygen white dwarf and a diamond (Fig. 5.14).

While spectroscopic measurements of white dwarfs have made significant ad-
vances in our understanding of the composition and structure of white dwarf at-
mospheres, interpreting some of these results relies on theoretical models of the
evolutionary paths the stars follow and, in particular, the theoretical mass–radius
relation. This was first defined by Chandrasekhar in his Nobel prize winning work
on white dwarf structure. However, he and later authors only considered a fully
degenerate configuration. Recent work has realized that the nondegenerate envelope
plays an important role, particularly in the hot white dwarfs which form the EUV
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Fig. 5.14. Internal structure of old C/O white dwarfs. The core of a cool white dwarf consists of
a C/O crystallized lattice (a kind of gigantic diamond), surrounded by a thick crust consisting
of He and H and a small H atmosphere. Image credit: Travis Metcalfe and Ruth Bazinet, CfA

and X-ray emitting samples. Whichever framework is used, the relationship between
the mass and radius of a white dwarf remains a theoretical concept which has hardly
been tested empirically due to the difficulty of making accurate measurements of
mass and radius in such faint objects.

Onset of Degeneracy in Stellar Structure

The electron degeneracy pressure will be important, if the phase space available for
the electrons becomes minimal. For this purpose we estimate the mean momentum
difference between two electrons in a Maxwell gas

∆pe =
√
〈(p1 − p2)2〉 =

√
2p2

1 �
√

6mekBT̄ �
√

12meG M∗µm H

7R
(5.2)

for Γ = 5/3. Here, we used the gravitational potential energy W of a star

W = −
∫ R

0

G M(r)

r
�0 4πr2 dr = −3

∫ R

0
P 4πr2 dr . (5.3)

Together with the equation of state of an ideal gas, P = �0kBT/(µmu), we obtain

W = − 3M∗
µmu

kBT̄ , (5.4)
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where T̄ denotes the mean stellar temperature (defined over the mass). On the other
hand, the gravitational energy is always

W = −6

7

G M2∗
R∗

(5.5)

with the factor 6/7 characteristic for polytropic states with Γ = 5/3. In addition,
the mean interparticle distance is given by

∆qe � n−1/3
e =

(
µemu

�

)1/3

�
(

4µemu R3∗
M∗

)1/3

. (5.6)

From this we can calculate the phase-space volume available for the electrons in
a star of mass M∗ with radius R∗
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∗

)3
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g cm2 s−1
)3

� 180 h3
(

M∗
M�

)1/2 (
R∗
R�

)3/2

> h3 . (5.7)

For a star with M∗ = M�, the phase space of electrons will exceed h3, provided its
radius exceeds some critical value, R∗ ≥ 3× 10−2 R�. For the case

(∆qe∆pe)
3 � h3 (5.8)

the Pauli exclusion principle is important, and therefore degeneracy sets in. This
estimate also shows that the degenerate pressure of electrons is important in Brown
Dwarfs and Jupiter type planets. The equation of state for these low-density objects
is quite complicated.

5.3 Equation of State below the Neutron Drip Density

The pressure and energies in white dwarfs and neutron stars are nonthermal – thermal
effects due to a finite temperature can be treated as a perturbation. One may treat
high-density matter as having zero temperature. The equation of state (EoS) then
reduces to a single parameter function, P(�0) and �(�0), where P is the pressure,
�0 is the rest-mass density and � = �0(1+ ε/�0c2) is the total mass–energy density
which accounts for the internal (possibly) relativistic particle energies as well as the
rest-mass energy.

There exist two main regimes of high density. As long as all nucleons are confined
to nuclei, their contribution to the total pressure is negligible compared to that of the
degenerate electrons. At some threshold density, �n−drip, it becomes favorable for
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the nuclei to disintegrate, i.e. the neutrons drip out of the nuclei and form a nucleon
gas. The standard EoS of Baym, Pethick and Sutherland (BPS [64]) suggests that
�n−drip � 4 × 1011 g cm−3. One therefore distinguishes between the EoS below
neutron drip and above neutron drip density. For white dwarfs we merely need the
EoS below the neutron drip.

In matter below the neutron drip the ions provide a Coulomb lattice of point-like
charges, which is to a good approximation independent of the surrounding electrons.
The EoS of this matter is then governed mainly by the electron gas, and we may
treat these electrons in a first approximation as an ideal fermion gas, where at
extremely low densities Coulomb corrections have to be included. For high densities
corrections enter through the inverse beta-decay just below the neutron drip. The
standard equations for cold, degenerate matter in white dwarfs (helium, carbon,
oxygen, and possibly iron dominated models) have been derived by Chandrasekhar
(1931) and Hamada and Salpeter [190]. Models for equilibrated matter1 have
been derived by Dirac (1930) and Feynman, Metropolis and Teller (1932) for low
densities, � ≤ 104 g cm−3.

The Ideal Fermion Gas

In this approximation, the electrostatic energy associated with the structure of matter
is much smaller than the Fermi energies. Coulomb forces are therefore generally
negligible to a first approximation. We treat the electron component by a cold single
species of gas of noninteracting fermions. At zero temperature, the fermions fill all
the states with momentum p ≤ pF and none of the states with p > pF , where pF is
the Fermi momentum of the particles. The corresponding Fermi energy is

EF =
√
(pFc)2 + (

mc2
)2
, (5.9)

where m is the fermion mass and c the speed of light.
For electrons, the number density ne is directly related to their Fermi momentum,

pF,e, by integrating over all occupied phase space

ne =
∫ pF,e

0
ne(p) d3 p = 2

h3

∫ pF,e

0
4π p2 dp = 8πp3

F,e

3h3
. (5.10)

h = 6.63 × 10−27 erg s is Planck’s constant. The factor 2 arises from the spin de-
generacy of the electrons. The occupation number ne(p) is a dimensionless Lorentz-
invariant function.

The pressure the electrons supply is calculated through the mean momentum
flux of the electron gas (here given for an isotropic phase-space distribution)

1 The equilibrium isotope of matter is the nucleus of highest binding energy per nucleon; at
low densities this isotope is normally 56

26 Fe, but as the density increases, the atomic mass
and the neutron to proton ratio also increase.
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P = 1

3

∫ pF,e

0
ve(p)p ne(p) d3 p = 2

h3

∫ pF,e

0

p2 c2√
p2c2 + (

mc2
)2

4πp2 dp. (5.11)

In this expression, ve(p) ≡ pec2/Ee is the velocity of the electron. For the following
it is useful to introduce the electron Compton wavelengthΛe ≡ h/(2πmec), as well
as the dimensionless Fermi momentum x ≡ pF,e/mec. In terms of these parameters,
the integral can be performed to yield

P = mec2

Λ3
e
Φ(x) , (5.12)

where

Φ(x) = 1

8π2

[
x
√

1+ x2
(
2x2/3− 1

)+ ln
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x +
√

1+ x2
)]
. (5.13)

The mass–energy density is also related to the Fermi momentum

εe =
∫ pF,e

0
Ee(p) ne(p) d3 p

= 2

h3
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where

χ(x) = 1

8π2
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√

1+ x2
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1+ 2x2)− ln

(
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√
1+ x2

)]
. (5.15)

While the degenerate electrons contribute most of the pressure and internal energy of
white dwarf matter, the mass-energy is dominated by the ions, which are completely
nonrelativistic at these densities. Thus, the density of matter can be expressed in
terms of the electron number density

� = �0 = m Bne

Ye
(5.16)

where Ye is the mean number of electrons per nucleon and m B is the mean nucleon
mass

m B =
∑

i mini∑
i Aini

. (5.17)

For carbon C, m B = 1.66057 × 10−24 g (atomic mass unit mu). In the case of
white dwarfs, we have to good approximation Ye = Z/A = 0.5 (Z: atomic number,
A: atomic weight). This is appropriate for fully ionized helium, carbon or oxygen.
Combining the three equations for �0, P and εe provides the basic EoS of electron-
pressure dominated high-density condensed matter. Thereby, the Fermi momentum
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has to be expressed in terms of the density, pF,e ∝ �1/3
0 , or in terms of the dimen-

sionless quantity x, Ye = 0.5,

�0 = 1.95× 106 x3 g cm−3 . (5.18)

Sometimes, the mean molecular weight per electron, µe, is introduced

µe = m B

muYe
� 2 , (5.19)

so that

�0 = µemune = 0.97395× 106 µex3 g cm−3 (5.20)

or

x = 1.0088× 10−2
(
�0

µe

)1/3

. (5.21)

The density is expressed in terms of cgs units.
These expressions show that the electrons become relativistic at densities of

a million grams per cc, x ≥ 1. At higher densities, the phase space of the electrons
is squeezed that much that the electrons must move relativistically. It is therefore
instructive to look at these limits for the EoS, i.e. for x � 1 and x � 1, respectively.
It is easy to derive the corresponding asymptotic expansions, first, for x � 1

Φ(x) = 1

15π2

[
x5 − 5

14
x7 + 5

24
x9 + . . .

]
(5.22)

χ(x) = 1

3π2

[
x3 + 3
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56
x7 + . . .

]
(5.23)

and for the extreme relativistic limit, x � 1,

Φ(x) = 1

12π2

[
x4 − x2 + 3

2
ln(2x)+ . . .

]
(5.24)

χ(x) = 1

4π2
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2
ln(2x)+ . . .

]
. (5.25)

In these two limits, we can write the leading terms in the form of a polytropic
equation of state

P = K �Γ0 (5.26)

with the following values for the constants:

– in the nonrelativistic case, Γ = 5/3 and (in cgs units)

K = 32/3π4/3

5

�
3

mem5/3
u µ

5/3
e

= 1.0036× 1013 Y 5/3
e (5.27)
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– in the extreme relativistic case, Γ = 4/3,

K = 31/3π2/3

4

�c

m4/3
u µ

4/3
e

= 1.2435× 1015 Y 4/3
e . (5.28)

Since the constant K is in cgs units, it provides the pressure in dyne cm−2 for a density
in g cm−3. The composition of matter only enters over Ye. Helium, carbon and
oxygen all have the same equation of state, while that of iron (Ye = 26/56 = 0.43)
is somewhat softer. Fully equilibrated matter (often called catalyzed) has a Ye that
decreases with density, the EoS is therefore softer than matter composed of a single
entity.

This free electron pressure EoS is a good approximation below the neutron
drip. It was employed by Chandrasekhar (1930), for which he received the Nobel
prize in 1983. In later years more exact treatments were considered with two main
corrections – electrostatic effects at low densities and neutronization (i.e. inverse
beta-decay) at higher densities.

Electrostatic Corrections

The ideal EoS for fermions is somewhat modified by electrostatic corrections due to
the fact that the local distribution of charge is very nonuniform. Positive charge is
concentrated in ions which causes the average electron–ion separation to be smaller
than the average distance between the electrons. The electric potential felt by the
electrons is then attractive, and this reduces the pressure for a given density.

These electrostatic corrections to the cold equation of state are mostly important
at relatively low densities. Electrostatic energies are inversely proportional to the
average separation between the particles, 〈r〉 ∝ n−1/3

e . The relative importance
between a degenerate, nonrelativistic electron and an ion of charge Z can be estimated

EC

EF
= Ze2/〈r〉

p2
F,e/2me

∝ n−1/3
e (5.29)

since EF = p2
F,e ∝ n2/3

e is the Fermi kinetic energy of the nonrelativistic electron.
This shows that the relative importance of electrostatic corrections decrease with
density as n−1/3

e . Numerically, this ratio follows more exactly as

EC

EF
= 2

(
1

3π2

)2/3 Z

a0

1

n1/3
e

=
(

ne

Z3 × 6× 1022 cm−3

)−1/3

. (5.30)

Here, a0 = �2/mec2 is the Bohr radius.
For low temperatures, the ions are located in a lattice that maximizes the inter-ion

separation.
In the Wigner–Seitz approximation, this lattice is considered as built up by

spherical cells of size 4πr3
0/3 = 1/nN , where nN is the number density of nuclei.

In this approximation, the gas is imagined to be divided up into neutral spheres of
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radius r0 about each nucleus, which contains the Z electrons closest to the nucleus.
This is a bad approximation in the lab, but is justified for the higher densities in
white dwarfs.

One can estimate the total Coulomb energy of a cell

EC = Ee−e + Ee−i = − 9

10

Z2e2

r0
, (5.31)

where Ee−e represents the energy to assemble a uniform sphere of Z electrons, and
Ee−i the energy to assemble the electron sphere about the nucleus. Since these cells
are neutral, interactions between electrons and nuclei of different cells are ignored.
The electrostatic energy per electron is then

EC

Z
= − 9

10

(
4π

3

)1/3

Z2/3 e2 n1/3
e . (5.32)

In this approximation, the number density of electrons is

ne = Z

4πr3
0/3

. (5.33)

From this we can calculate the pressure

PC = n2
e

d(EC/Z)

dne
= − 3

10

(
4π

3

)1/3

Z2/3 e2 n4/3
e . (5.34)

In the nonrelativistic limit we have for the Chandrasekhar pressure

P0 → �2 (
3π2)2/3 n5/3

e

5me
(5.35)

so that for the total pressure P = P0 + PC

P

P0
= 1− Z2/3

21/3 πa0n1/3
e

. (5.36)

This would predict P = 0 for

ncrit
e = Z2

2π3a3
0

, (5.37)

corresponding to a density, A � 2Z,

�crit
0 � 0.4 Z2 g cm−3 . (5.38)

This corresponds to �0 � 250 g cm−3 for iron, instead of the lab value 7.86 g cm−3.
This discrepancy is due to the fact that this approximation breaks down for low
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densities. In fact, an accurate equation of state at lab densities is very complicated
to derive, because electron shell effects mask the simpler statistical effects. Above
a few times lab densities, however, a statistical approach to the equation of state
works quite well. This approach is sufficient to treat the low mass range of white
dwarfs and even of large planets, in particular also for brown dwarfs.

The simplest statistical treatment of atomic structure is the Thomas–Fermi
method. Here, one assumes that within each Wigner–Seitz cell, the electrons move
in a spherically symmetric potential V(r), which is a solution of the Poisson equa-
tion [15].

Inverse Beta-Decay

Another correction enters at high densities due to the inverse beta-decay

e− + p → n + ν . (5.39)

Protons and neutrons are generally bound in nuclei. This process plays some role in
the neutronization at high densities. Stellar evolution predicts that white dwarfs are
formed in stars where the temperature is never high enough to burn much beyond
carbon and oxygen, so that massive white dwarfs probably consist of carbon and
oxygen.

What happens if the density is increased beyond 8×106 g cm−3? At a density of
1.14×109 g cm−3, the Fermi energy of the electrons is high enough for the threshold
of the inverse beta-decay reaction

56
26Fe+ e− →56

25 Mn+ ν . (5.40)

The odd–even nucleus immediately undergoes a further electron capture

56
25Mn+ e− →56

24 Cr+ ν . (5.41)

Cr is then stable to further electron capture until much higher densities. This phase
transition softens the EoS, the electrons combine with Fe nuclei, and this reduces
the pressure.

In C/O white dwarfs the reaction chain 12
6 C →12

5 B →12
4 Be has a neutronization

threshold of 13.370 MeV, corresponding to a density of 3.9× 1010 g cm−3. Similar
processes occur in Mg/Ne white dwarfs at somewhat lower densities (for more
details, see [15]).

5.4 Structure of White Dwarfs and the Chandrasekhar Mass

Since electrons move relativistically inside massive white dwarfs, relativistic effects
are expected to play some role in the overall structure of white dwarfs. The correction
factors in the TOV equations (Sect. 4.6) are small throughout white dwarfs, so
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that we can use the Newtonian approximation for the calculation of white dwarf
structure

ds2
N = −

(
1− 2

G M∗
c2r

)
c2 dt2 + dr2 + r2 (dθ2 + sin2 θ dφ2) . (5.42)

In this limit, three-space is flat, i.e. exp(λ) ≡ 1 for all radii, andΦ(r) ≡ 1+Φ(r)/c2

with the following structure equations

dM(r)

dr
= 4π�0(r) r2 (5.43)

dP(r)

dr
= −G M(r)�0(r)

r2
(5.44)

dΦ(r)

dr
= G M(r)

r2
. (5.45)

5.4.1 Polytropic Approximation

As we have seen in the discussion of the EoS, there are two limiting cases which can
be dealt with in a polytropic approximation, the nonrelativistic limit for the electrons
and the extreme relativistic limit at high densities, i.e. at densities much above 106 g
cm−3. Equilibrium configurations with a polytropic EoS of the form P = K�Γ0 can
easily be differentiated to yield

1

r2

d

dr

(
r2

�

dP

dr

)
= −4πG� . (5.46)

For the parametrization Γ = 1+ 1/n we now introduce dimensionless variables

� = �c θ
n , r = a ξ (5.47)

with �c = �(0) as the central density and a

a =
√
(n + 1)K�1/n−1

c

4πG
. (5.48)

The hydrostatic equilibrium therefore satisfies the following equation (Lané–Emden
equation)

1

ξ2

d

dξ

(
ξ2 dθ

dξ

)
= −θn . (5.49)

This equation is easily solved on the computer for the initial conditions

θ(0) = 1 , θ ′(0) = 0 . (5.50)
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The radius of a star is located at θ(ξ∗) = 0. This requires for Γ = 5/3, n = 3/2

ξ∗ = 3.6537 , ξ2
∗ |θ ′(ξ∗)| = 2.71406 (5.51)

and for Γ = 4/3, n = 3

ξ∗ = 6.89685 , ξ2
∗ |θ ′(ξ∗)| = 2.01824 . (5.52)

With ξ∗ we can compute the stellar radius R as a function of the central density

R = aξ∗ =
√
(n + 1)K

4πG
�

1−n
2n

c ξ∗ , (5.53)

and with the second quantity the mass M as a function of the central density

M =
∫ R

0
4πr2 � dr = 4πa3 �c

∫ ξ∗

0
ξ2 θn dξ

= −4πa3�c

∫ ξ∗

0

d

dξ

(
ξ2 dθ

dξ

)
dξ

= 4πa3�c ξ
2
∗ |θ ′(ξ∗)|

= 4π

(
(n + 1)K

4πG

)3/2

�
3−n
2n

c ξ2
∗ |θ ′(ξ∗)| . (5.54)

We then eliminate the central density and obtain the mass–radius relation for degen-
erate stars in the polytropic approximation

M(R) = 4πR
3−n
1−n

(
(n + 1)K

4πG

) n
n−1

ξ2
∗ |θ ′(ξ∗)| ξ

3−n
1−n∗ . (5.55)

With the particular values for the constant K the following exact relations are
obtained: for Γ = 5/3

R = 1.12× 104 km

(
�c

106 g cm−3

)−1/6 (
Ye

0.5

)5/6

(5.56)

M = 0.496 M�
(

�c

106 g cm−3

)1/2 (
Ye

0.5

)5/2

(5.57)

M = 0.70 M�
(

R

104 km

)−3 (
Ye

0.5

)5

, (5.58)

and for Γ = 4/3

R = 3.347× 104 km

(
�c

106 g cm−3

)−1/3 (
Ye

0.5

)2/3

(5.59)

M = MCh = 1.457 M�
(

Ye

0.5

)2

. (5.60)

For relativistic electrons, the mass is independent of the central density, and therefore
also independent of the radius. This is the famous Chandrasekhar mass MCh =
1.46 M� for Ye = 0.5. It is however smaller for different chemical compositions.



162 5 White Dwarfs

5.4.2 Beyond the Chandrasekhar Treatment

Numerically, the hydrostatic equilibrium can easily be integrated for an algebraic
form of the equation of state, either for the ideal EoS equation (5.12) (Fig. 5.15),
or for some modified EoS including, e.g. electrostatic corrections (see Hamada and
Salpeter [190]).

In such calculations we can use the central density �c as the key parameter in
order to obtain the mass as a function of density M(�c) and the radius R(�c). The
surface of the object follows for vanishing pressure (or density). In this way we can
construct a mass–radius relation M = M(R) (Fig. 5.16) for white dwarf models.

5.4.3 Comparison with Observations

In previous times, the uncertainties in the observed parameters did not allow us to
distinguish between C/O and Fe white dwarfs, except for Sirius B. The Hipparcos
mission has provided an opportunity of making parallax measurements of hitherto
unsurpassed accuracy. Since several of the brightest white dwarfs are included in the
Hipparcos catalogue (Table 5.1), this data yields distance measurements from which
mass and radius can than then be estimated more reliably than before.

The best direct test of stellar degeneracy is the determination of radii for white
dwarfs in visual binaries. In these cases, white dwarf masses follow from their
orbital parameters, and stellar radii are derived from a knowledge of the effective
temperatures and distances. A knowledge of the mass is lacking for single stars.
However, visual binaries with well determined orbital parameters are rare. The
observational support for stellar degeneracy rests on four objects in Table 5.2: 40 Eri
B, Stein 2051 B, Sirius B and Procyon B.

Prior to Hipparcos, there were only four points in the mass–radius relation
test (Fig. 5.17). General relativity introduced gravitational redshift measurements
as a second method to determine white dwarf masses without using the mass–
radius relation. These gravitational redshift measurements are currently limited by
our understanding hydrogen atmospheres (DA). Since this technique uses the exact
knowledge of the white dwarf’s physical motion to distinguish gravitational veloc-
ities from the Doppler effect, a common approach is to use white dwarfs in wide
binaries or common proper motion (CPM) pairs in which the system velocity can
be accurately determined from the companion. As with surface gravity, gravita-
tional redshift velocity is a function both of mass and radius, requiring either an
independent radius determination or an assumed relation between mass and radius.
Stellar radii of nearby stars can be derived using effective temperatures and distances
(see Table 5.3).

The Hipparcos input catalog contained the visual binaries Sirius, Procyon and
40 Eri B (Provencal et al. [333]). Calculation of the mass employs Kepler’s third
law. The radii follow from stellar fluxes and distances

fλ = 4πHλ
R2

D2
. (5.61)
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Fig. 5.15. White dwarf masses as a function of central density for the ideal Fermi gas and
Salpeter–Hamada model including Coulomb corrections

Fig. 5.16. Mass–radius relations for ideal electron gas (dashed curves) and the electrostatically
corrected form (solid lines) (adapted from Hamada and Salpeter [190]). Radii are given in
units of 0.01R�
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Table 5.2. White dwarfs in wide binary systems – Hipparcos data (Provencal et al. [333]).
The labels G and H refer to ground-based and Hipparcos parallaxes, respectively

Object π (mas) Mass (M�) Radius (R�) P (yr)

Sirius B 375.6± 3.0 (G) 1.03± 0.0015 0.0074± 0.0007 50.09
379.2± 1.6 (H)

Stein 2051B 1812.2± 1.1 (G) 0.48± 0.045 0.0111± 0.0015 > 300
1814.4± 3.7 (H)

40 Eri B 208.4± 2.3 (G) 0.43± 0.02 0.0124± 0.0005 > 300
198.24± 0.84 (H)

Procyon B 286.4± 2.3 (G) 0.602± 0.015 0.01234± 0.00032 40.5
285.9± 0.9 (H)

Table 5.3. Masses, radii and surface temperature of white dwarfs. Data adopted from Provencal
et al. [333, 334]

Star M/M� R/R� T [K]

Standard white dwarfs

Sirius B 1.0034± 0.026 0.00840± 0.00025 24700± 300
G226–29 0.750± 0.030 0.01040± 0.0003 12000± 300
G93–48 0.750± 0.060 0.01410± 0.0020 18300± 300
CD –38 10980 0.740± 0.040 0.01245± 0.0004 24000± 200
L268–92 0.700± 0.120 0.01490± 0.0010 11800± 1000
Stein 2051B 0.660± 0.040 0.0110± 0.0010 7100± 50
Procyon B 0.602± 0.015 0.01234± 0.00032 7740± 50
Wolf 485 A 0.590± 0.040 0.01500± 0.0010 14100± 400
L711–10 0.540± 0.040 0.01320± 0.0010 19900± 400
L481–60 0.530± 0.050 0.01200± 0.0040 11300± 300
40 Eri B 0.501± 0.011 0.01360± 0.0002 16700± 300
G154–B5B 0.460± 0.080 0.01300± 0.0020 14000± 400
Wolf 1346 0.440± 0.010 0.01342± 0.0006 20000± 300
Feige 22 0.410± 0.030 0.01367± 0.0020 19100± 400

Compact dwarfs

GD 140 0.790± 0.020 0.00854± 0.0005 21700± 300
G156–64 0.590± 0.060 0.01100± 0.0010 7160± 200
EG 21 0.580± 0.050 0.01150± 0.0004 16200± 300
EG 50 0.500± 0.020 0.01040± 0.0006 21000± 300
G181–B5B 0.500± 0.050 0.01100± 0.0010 13600± 500
GD 279 0.440± 0.020 0.01290± 0.0008 13500± 200
WD2007–303 0.440± 0.050 0.01280± 0.0010 15200± 700
G238–44 0.420± 0.010 0.01200± 0.0010 20200± 400
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Fig. 5.17. White dwarf masses and radii in solar units derived from Hipparcos data (see Ta-
ble 5.3). 40 Eri B and Procyon B now moved onto the C/O track. Various white dwarfs still
fall onto the iron track – a result which does not follow from standard stellar evolution theory

Gravitational redshift velocity is a function of mass and radius

vg = 63.5
M

M�
0.01 R�

R
km s−1 . (5.62)

The Hipparcos input catalog includes seven CPM pairs, in which the white dwarf
has a gravitational redshift velocity determination.

The mass–radius relation is now more firmly supported by observational grounds
(Fig. 5.17). Sirius B and 40 Eri B fit the theoretical line quite precisely. But many
stars (such as EG 50 and GD 140) all lie significantly below the theoretical line
expected for carbon–oxygen white dwarfs. These objects have radii significantly
smaller than predicted. They might contain an iron-rich core; this is, however, not
expected on grounds of stellar evolution.

The Hipparcos parallaxes discussed above have enabled to significantly improve
the mass and radius determination of some WDs, thus allowing for a direct con-
frontation with the predictions of WD theory. In particular, the suspicion that some
WDs would fall on the zero-temperature, mass–radius relation consistent with iron
cores has been placed on a firm observational ground by these satellite-based mea-
surements. Indeed, some WDs have much smaller radii than expected if their interior
were made of carbon and oxygen, suggesting that, at least, two of the observed WDs
have iron-rich cores. Specifically, the present determinations indicate that GD 140
and EG 50 have radii and masses consistent with zero-temperature, iron WDs. Obvi-
ously, such results are in strong contradiction with the standard predictions of stellar
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Fig. 5.18. The mass–radius relation for WD stars with a carbon core, surrounded by a helium
layer with a thickness of 10−2 M∗. Solid and short dashed lines correspond to the cases of
objects with an outermost pure hydrogen layer of 10−5 M∗ and to models without hydro-
gen layer, respectively. Medium dashed line corresponds to the mass–radius relationship for
homogeneous HS carbon models. Included in this figure are values corresponding to Teff

(in units of 103 K) of 5, 15, 25, 35, 45, 55, 70, 85, 100, 115, 130 and 145. Figure adapted
from [324]

evolutionary calculations, which allow for an iron-rich interior only in the case of
presupernova objects.

Panei et al. [324] presented accurate and detailed mass–radius relations for white
dwarf models with helium, carbon, oxygen, silicon and iron cores, and with and
without a hydrogen envelope, by using a fully updated stellar evolutionary code.
They considered masses from 0.15 M� to 0.5 M� for the case of helium core,
from 0.45 to 1.2 M� for carbon, oxygen, silicon and iron cores. In addition, they
explore the effects of gravitational, chemical and thermal diffusion on low mass
helium white dwarf models with hydrogen and helium envelopes. In Figs. 5.18
and 5.19, the results for carbon and iron interiors are shown. Although the effects
due to finite temperature and the presence of an outer hydrogen envelope are also
noticeable, these are not so large as in the case of the low-mass helium WD models.
For example, for 1.2 M� models, both effects are able to inflate the star only up to
≤ 19%. This is expected, because as mass increases, internal density (and electron
chemical potential µe) also increases. Thus, as thermal effects enter the EoS of the
degenerate gas as a correction ∝ (T/µe)

2, EoS gets closer to the zero temperature
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Fig. 5.19. Same as Fig. 5.18, but for an iron core. Included are the Hipparcos data for 40 Eri
B, EG 50, Procyon B and GD 140. Figure adapted from [324]

behavior, i.e. to the HS structure. As the thickness of the hydrogen layer is ∝ g−1 (g
is the surface gravity), it also tends to zero for very massive models.

In the case of an iron core, for a fixed mass value, the mean density is almost
twice the corresponding to carbon and oxygen cores. Thus, it is not surprising that,
for the range of the effective temperature considered here, thermal effects are less
important than in the standard case. For example, for the 0.45 M� iron model at
Teff ≈ 25,000 K, thermal effects inflate its radius only by ≈ 17%. For the iron core,
models are only considered up to a mass value of 1.0 M�. Higher mass objects are
very near the critical mass limit for such a composition (i.e. the central density is at
about the neutronization threshold). The evolution towards iron core white dwarfs
is, however, still unclear.

5.5 The Relativistic Instability of White Dwarf Stars

Solutions to the TOV equations correspond to stellar configurations that are in
hydrostatic equilibrium. Equilibrium does not assure stability, however. Equilibrium
configurations may correspond either to a maximum or minimum in the total energy
with respect to compression or dilation. In certain ranges of the parameter space
there might be two solutions, one at higher density than the other one.
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In order to test stability, one has to look at perturbations of the equilibrium
solution. Vibrations may either cause their disassembly or their collapse. We now
discuss a necessary condition for stability.

5.5.1 Necessary Condition for Stability

One can prove that in a sequence of solutions to the TOV equation for perfect
fluids a star can pass from stability to instability with respect to any mode of radial
oscillations only at the value of the central density at which the equilibrium mass is
stationary, i.e. whenever

∂M(�c)

∂�c
= 0 . (5.63)

In the following we need some relation for the chemical potential µ. From thermo-
dynamics one knows the expression for the pressure P

P = −∂E

∂V
= −∂(�/�0)

∂(1/�0)
= �2

0
∂

∂�0

(
�

�0

)
= �0µ− � , (5.64)

where µ ≡ d�/d�0 is the chemical potential. From this relationship between µ and
�0 we find

dP

d�0
= �0

dµ

d�0
. (5.65)

The TOV equation can be written as

−
∫ r ′

r
dΦ =

∫ r ′

r

dP

�c2 + P
=

∫ r ′

r

dµ

µ
(5.66)

for r < r ′ < R. This implies

µ(r) exp(Φ(r)) = µ(r ′) exp(Φ(r ′)) = const . (5.67)

This relation shows that the baryon chemical potential at any point in a star, corrected
by the redshift factor α(r), is a constant. In particular, the chemical potential satisfies

µ(r) exp(Φ(r)) = µ∗
√

1− 2G M∗
c2 R∗

, (5.68)

where µ∗ is the value at the surface of the star. From this it follows that

∂M∗c2

∂A
= µ∗

√
1− 2G M∗

c2 R∗
. (5.69)
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This can be written as

µ∗

√
1− 2G M∗

c2 R∗
∂A

∂�c
= ∂M∗c2

∂�c
. (5.70)

This proves the statement that an equilibrium star is stationary at the same central
densities as the mass.

We can apply this necessary condition for stability to polytropes. In this case
M(�c) is an increasing function of density for Γ > 4/3, is stationary for Γ = 4/3,
and is a decreasing function for Γ < 4/3. We find therefore a necessary condition
for stability Γ > 4/3.

5.5.2 The Total Energy in the Post-Newtonian Limit

The total energy content of a Newtonian star is given by its internal energy content
U and the gravitational potential energy W

EN = U +W =
∫ R

0
�0e dV −

∫ R

0

G M(r)

r
dM(r) , (5.71)

where dM = �0 dV is the mass contained in a shell at radius r. For a polytropic
equation of state, P = K�Γ0 , this can easily be calculated, since the internal energy
density then follows from the pressure (via the first thermodynamical law)

�0 e = P

Γ − 1
. (5.72)

The virial theorem tells us then that

W = −3(Γ − 1)U (5.73)

and therefore for the total energy

EN = − 3Γ − 4

3(Γ − 1)
|W | . (5.74)

For Γ = 5/3 this gives U = −W/2 and EN = W/2, a classical result following
from the virial theorem. For a relativistic gas, Γ = 4/3, the total energy vanishes
indicating a critical behavior under this condition. Since the Newtonian energy is
just the lowest approximation for the relativistic energy, one has to go to higher order
terms in order to check stability or instability.

The total energy of a compact star, excluding rest-mass energy, follows from the
total mass M

E = (M − M0) c2 = c2
∫ R

0

[
�

√
1− 2G M(r)

c2r
− �0

]
dV (5.75)
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with the relativistic volume element

dV = 1√
1− G M(r)/c2r

4πr2 dr . (5.76)

Replacing the total energy by� = �0(1+e/c2) and expanding in the small parameters
e and m(r) ≡ G M(r)/c2, we find to second order (in the following c = 1)

EPN =
∫ R

0
�0

[
e− m

r
− e

m

r
− 1

2

(m

r

)2
]

dV . (5.77)

Since dm′ = �0 dV is an invariant, we write a somewhat modified Newtonian part

EN = U +W =
∫ R

0
�0e dV −

∫ R

0

m′

r
dm′ , (5.78)

with dm′ ≡ �0 dV . In this way we find an expansion for the total energy

EPN = EN +∆EG R (5.79)

with

∆EG R =
∫ R

0
�0 dV

[
−e

m

r
+ 1

2

(m

r

)2 + m′

r
− m

r

]
. (5.80)

On the other hand one obtains in first order for the volume

V = 4πr3

3

(
1+ 3

r3

∫ r

0
mr dr

)
(5.81)

i.e.

r ′ − r = 1

r2

∫ r

0
mr dr . (5.82)

Working to first order in the mass we obtain

m′(V ′)− m(V) =
∫ V

0
dV

[
�0 − �

√
1− 2m

r

]
� −

∫ V

0
�0 dV

(
e− m

r

)
. (5.83)

Therefore, we can write

m′

r ′
− m

r
= m′ − m

r ′
− m(r ′ − r)

rr ′
. (5.84)

Thus, the GR correction can be expressed in terms of five integrals

∆EG R = I1 + I2 + I3 + I4 + I5 (5.85)

with the following definitions
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I1 =
∫ M

0
e

m

r
dm (5.86)

I2 = −1

2

∫ M

0

(m

r

)2
dm (5.87)

I3 = −
∫ M

0

dm

r

∫ m

0
e dm (5.88)

I4 =
∫ M

0

dm

r

∫ m

0

m

r
dm (5.89)

I5 = −
∫ M

0

m dm

r4

∫ m

0
rm dm . (5.90)

In the case of a polytropic equation of state these integrals can be reduced to two of
them

I5 = 1

n
I1 (5.91)

I4 = 2I2 − 2

n
I1 − 3

n
I3 (5.92)

I3 = I1 − 2n

n + 1
(I2 + I4) . (5.93)

Combining these together we find

∆EGR = 5+ 2n − n2

n(5− n)
2I1 + n − 1

5− n
3I2 . (5.94)

Using polytropic expansions we get

∆EGR = −0.91829 M7/3 �2/3
c . (5.95)

5.5.3 GR White Dwarf Instability

The post-Newtonian contributions to the total energy discussed above have a severe
consequence for the stability of white dwarfs. This is relevant only for the highest
masses possible, i.e. near the Chandrasekhar mass. For this reason, we can concen-
trate on the treatment of a relativistic Fermi gas, i.e. a polytropic equation of state
with n = 3, Γ = 1 + 1/n. As we have seen we can write the total energy in the
form

E = Eint + Egrav +∆Eint +∆EGR . (5.96)

In the lowest approximation, only the two first terms are present. We evaluate them
for a polytropic equation of state
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Eint =
∫

e dm =
∫

n P

�
dm

= K�1/n
c M

n

|ξ2
1θ
′|

∫ ξ1

0
ξ2θn+1 dξ (5.97)

Egrav = −G
∫

m

r
dm = (4π�c)

1/3 G M5/3

|ξ2
1θ
′|5/3

∫ ξ1

0
ξ3 θ ′ θn dξ . (5.98)

This last integral can be reduced to∫ ξ1

0
ξ3 θ ′ θn dξ = 1

n + 1

∫ ξ1

0
ξ3 d

dξ
θn+1 dξ = − 3

n + 1

∫ ξ1

0
ξ2θn+1 dξ . (5.99)

We have already calculated the last integral in deriving the virial theorem for
a ploytrope

Egrav = − 3

5− n

G M2

R
. (5.100)

One can show that

M

R3
= 4π�c|θ ′|

ξ1
(5.101)

and therefore

Egrav = − 3

5− n
G M5/3 �1/3

c |4πθ
′

ξ1
|1/3 . (5.102)

Comparing the two expressions for the gravitational energy, we obtain∫ ξ1

0
ξ2θn+1 dξ = n + 1

5− n
ξ3

1 |θ ′|2 . (5.103)

Thus we get the lowest order expressions for the total energy

Eint = k1 K�1/n
c M (5.104)

Egrav = −k2G �1/3
c M5/3 (5.105)

with the two constants for n = 3

k1 = n(n + 1)

5− n

|ξ2
1θ
′|

ξ1
= 1.75579 (5.106)

k2 = 3

5− n

|4πξ2
1θ
′|1/3

ξ1
= 0.639001. (5.107)

The term ∆Eint represents the changes of the equation of state from that of
an exact polytrope n = 3, since the electrons are not completely relativistic. The
internal energy per unit mass is
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e = εe − nemec2

�0
, (5.108)

where

�0 = mune

Ye
. (5.109)

Using the expansion for the extreme relativistic limit

e = 3

4

Yemec2

mu

(
x − 4

3
+ 1

x
+ . . .

)
, (5.110)

the term proportional to x is simply 3P/�0 and has already been used to calculate
Eint. The next term is a constant and can be dropped for variational calculations.
Therefore, the dominant term remains

∆Eint = 3

4

Yemec2

mu

∫
1

x
dm . (5.111)

Since x is given as

x =
(

3π2Ye�0Λ
3
e

mu

)1/3

, (5.112)

we can evaluate the integral for a polytrope n = 3 with errors being of higher order

∆Eint = k3
mec3

� (mu/Ye)2/3
M �−1/3

c . (5.113)

The constant is given as

k3 = 3

4

1

(3π2)1/3

1

|ξ2
1θ
′|
∫ ξ1

0
ξ2 θ2 dξ = 0.51972 . (5.114)

The general relativistic correction has been calculated in (5.95)

∆EG R = −k4
G2

c2
M7/3 �2/3

c (5.115)

with

k4 = 0.91829 . (5.116)

Thus the total energy in post-Newtonian order can be summarized as follows

EPN = (AM − BM5/3) �1/3
c + C M �−1/3

c − D M7/3 �2/3
c (5.117)
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with the following constants

A = k1 K , B = k2G , C = k3
mec3

�(mu/Ye)2/3
, D = k4

G2

c2
. (5.118)

Equilibrium is achieved for ∂E/∂�c = 0, i.e. for

0 = 1

3
(AM − BM5/3) �−2/3

c − 1

3
C M �−4/3

c − 2

3
D M7/3 �−1/3

c . (5.119)

To leading orders we can neglect the post-Newtonian corrections and obtain the
Chandrasekhar mass

M∞ =
(

A

B

)3/2

= 1.457

(
Ye

0.5

)2

M� . (5.120)

The onset of instability occurs when ∂2 E/∂�2
c = 0, i.e. when

0 = −2

9

(
AM − BM5/3) �−5/3

c + 4

9
C M �−7/3

c + 2

9
D M7/3 �−4/3

c . (5.121)

We now solve for AM − BM5/3 from the equilibrium condition and substitute this
into the above condition and replace therein M = (A/B)3/2, since all terms are of
the same order of magnitude, to obtain a critical density for instability

�crit
c = CB2

DA2
= 16k3k2

2(
3π2

)2/3
k4k2

1

m2
u

Y 2
e meΛ3

e
, (5.122)

or numerically

�crit
c = 2.65× 1010

(
Ye

0.5

)−2

g cm−3 . (5.123)

This is the critical density for the onset of instability due to general relativity in
a white dwarf. In particular, for Fe we have �crit

c = 3.07 × 1010 g cm−3. This is
however higher than the inverse beta threshold of 1.4× 109 g cm−3. GR effects are
therefore not important for iron white dwarfs, they could however be important for
C/O white dwarfs, where the critical density is somewhat smaller than the neutron-
ization thresholds. In these cases, relativistic effects limit the central density.

5.6 Cooling White Dwarfs

When white dwarfs are formed after the AGB phase, their internal temperature
is fairly high, of the order of 100 Million K. The interior of the white dwarf is
completely degenerate, so that the conductivity is high (i.e. a large mean free path
for the electrons). The core of the white dwarf is therefore practically isothermal
with a temperature Tc. Cooling of the white dwarf occurs only over the surface of the
star which has a temperature T∗. The gaseous layers above the degenerate core act
as a thermal shield, because heat must be transported by means of photon diffusion
through these surface layers.
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5.6.1 Structure of the Surface Layers

The luminosity resulting from photon diffusion across the surface layers is given by

L∗ = −4πr2 c

3κR�0

d

dr

(
aT 4) . (5.124)

κR denotes the Rosseland mean for the opacity of the gaseous material. For high
temperatures, we may use Kramer’s opacity, κ = κ0 �0T 7/2, so that we get for the
temperature gradient

dT

dr
= − 3

4ac

κ�0

T 3

L∗
4πr2

. (5.125)

Dividing this equation by the hydrostatic equilibrium

dP

dr
= −G M(r)�0

r2
(5.126)

we obtain

dP

dT
= 4ac

3

4πG M(r)

κ0 L∗
T 13/2

�0
. (5.127)

In the surface layers we can assume that the mass is essentially constant, and the
density �0 can be eliminated in terms of the equation of state for nondegenerate
matter

P dP = 4ac

3

4πG M∗
κ0 L∗

kB

µmu
T 15/2 dT . (5.128)

This can easily be integrated with the boundary conditions P = 0 and T = 0

�0(r) =
(

2

8.5

4ac

3

4πG M∗
κ0 L∗

µmu

kB

)1/2

T 3.25(r) . (5.129)

With the appropriate value for κ0

κ0 = 4.34× 1024 Z(1+ X)
cm2

g
, (5.130)

we get a solution for the density as a function of the temperature in the surface layers.
This approximation will break down when the thermal pressure equals the de-

generate pressure, i.e. for

�0kBT

µmu
= 1.0× 1013

(
�0

µe

)5/3

. (5.131)

This gives the density for temperatures in units of 106 K as
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�0 = 24 g cm−3 µe T 3/2
6 . (5.132)

With our density–temperature relation we obtain then a luminosity

L∗ = 5.7× 1026 erg s−1 µ

µ2
e

1

Z(1+ X)

M

M�
T 7/2

6 . (5.133)

Thus given the observed luminosity, we can derive the interior temperature of the
white dwarf core. For a typical composition for a He white dwarf, X = 0, Y = 0.9
and Z = 0.1 with M = M�, µe = 2 and µ = 1.4 we find

L∗ = 2× 1027 erg s−1 M

M�
T 7/2

6 . (5.134)

Since observed luminosities are in the range of (10−2–10−5) L�, the core tempera-
tures are at least a few million degrees. A more accurate calculation for the relation
between core temperature and luminosity is shown in Fig. 5.20. Advances have been
obtained in the last years in the question of conductive and radiative opacities for the
envelope, as well as for the detailed description of the thermodynamic properties of
the dense fully ionized interior plasma, which contains the effects of crystallization
(see, e.g. Chabrier et al. 2000). The break in the temperature–luminosity relation

Fig. 5.20. Core temperature vs. luminosity for white dwarfs (adapted from Chabrier
et al. [111])
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occurs due to the onset of convection for low temperatures in the atmosphere. For
luminosities larger than those of the changes in the slope, it has been demonstrated
that the core temperature is completely insensitive to the stratification of the upper
envelope and the details of the atmosphere.

5.6.2 Cooling Curves and Crystallization

In a fully crystallized white dwarf the only contribution to the luminosity comes
from the thermal reservoir of the core and the contraction of the surface layers

L∗(Tc) = −
∫ M

0
CV

dT

dt
dm − compressional work . (5.135)

Most of the thermal heat stems from the specific heat CV of the quantum solid. For
a nondegenerate monatomic gas we would have CV = 3kB/2, and therefore the total
thermal energy contained in the core of a white dwarf would be

U = 3

2
kBT

M∗
NBmu

. (5.136)

This energy store is considerable, U � 1048 ergs for Tc = 107 K. At low tempera-
tures, the ions form however a crystal lattice with CV exceeding somewhat the value
for free ions. At extremely low temperatures, zero-point quantum fluctuations will
determine the behavior of CV as a function of temperature

CV = 3kB D3(xD) , D3(xD) = 3

x3
D

∫ xD

0

x4 exp x dx

(exp x − 1)2
, (5.137)

where xD = TD/T and TD is the Debye temperature of the lattice (Fig. 5.21). For
T< TD, i.e. xD > 1, we can write

D3(xD) = 12

x3
D

∫ xD

0

x3 dx

exp x − 1
= 4π4

5x3
D

. (5.138)

For low temperatures we find the typical phonon behavior for a quantum lattice

CV = 12π4

5
kB

(
T

TD

)3

, (5.139)

The Debye temperature is usually defined in terms of the plasma frequency Ωp of
the ions

Ωp =
√

4πni Z2e2

mi
(5.140)

as the temperature, where the vibrational energy equals the thermal energy,
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Fig. 5.21. Specific heat capacity of diamond as a function of temperature compared to the
Debye and Einstein model. The Debye temperature TD for diamond is 2200 K under lab
conditions

kBTD = �Ωp , (5.141)

or numerically for the interior of white dwarfs

TD = 4× 106 �
1/2
0,6 K . (5.142)

For white dwarfs with masses in the range of 0.6 M� the Debye temperature is in the
range of a few million degrees. Another characteristic temperature is Tg, the point at
which the ion kinetic energy exceeds its vibrational energy. Above this temperature,
the lattice completely dissolves, yielding a dense imperfect gas. The corresponding
temperature is

Tg � 3× 106 �
1/3
0,6 Z5/3 K . (5.143)

For a C/O white dwarf, this is at least a factor 10 higher than the Debye temperature.
Therefore, in the intermediate range, TD < Tc < Tg, the lattice approximation has
to be used (for more details, see [15]).

The integration of (5.135) together with the relation of core temperature vs.
luminosity gives then the luminosity as a function of time (Fig. 5.22).

In general one finds that before crystallization sets in, massive white dwarfs
evolve slowly in temperature because of their greater energy content and their smaller
radiative areas (see mass–radius relation). Since they are hotter and brighter at a given
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Fig. 5.22. Cooling sequences for a 0.6 M� WD with hydrogen atmosphere under various
model assumptions (Chabrier et al. [111]). Crystallization occurs at about 6 Gyrs

core temperature than less massive white dwarfs, and since crystallization occurs
always at the same internal temperature, massive white dwarfs crystallize earlier and
at higher Teff and at higher luminosity. At this stage the crystallized core enters the
Debye-cooling regime (CV ∝ T 3

c ) and cools more quickly (see Fig. 5.23).
In the Hubble Deep Field (HDF), one has found faint blue objects which have

been interpreted as halo white dwarfs (Ibata et al. [210]). This would be consistent
with the interpretation of microlensing events towards the large Magellanic Clouds
as stellar remnants. In addition, very cool (Teff ≤ 4000 K) white dwarfs with
high proper motions have been found in the last years. In Fig. 5.23 the expected
absolute magnitudes are shown as a function of time for various masses and various
assumptions. White dwarfs with He atmospheres cool much faster and are not the
appropriate interpretation for extremely old candidates.

5.6.3 Testing WD Crystallization Theory

The crystallization process leads to one of the biggest sources of uncertainty in the
ages of cool white dwarf stars. When a typical mass white dwarf star with mass
� 0.6 M� cools down to Teff � 6000–8000 K (depending on the core composition),
the high-density core will undergo a phase transition from liquid to solid. As a con-
sequence of this, a latent heat of crystallization will be released, providing a new
source of thermal energy that introduces a delay in the gradual cooling of the star
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Fig. 5.23. Bolometric magnitudes as a function of time for various cooling WDs parametrized
by the mass of the WD. Figure adapted from Chabrier et al. [111]

(Hansen and Liebert [191]). This source of uncertainty can be calibrated by using
observations of pulsating white dwarfs (Metcalfe et al. [282]).

5.7 White Dwarfs in Binary Systems

Cataclysmic variables (CVs) are stellar binary systems that consist of an normal
star and a white dwarf. They are typically small – a typical binary system is roughly
the size of the Earth–Moon system – with an orbital period in the range 1–10 hours.
The companion star, a more or less normal star like our Sun, loses material onto the
white dwarf by accretion.

There are two principal energy sources in a cataclysmic variable: accretion
and nuclear fusion. Since the white dwarf is very dense, the gravitational potential
energy is enormous, and it is converted into X-rays during the accretion process. The
efficiency of this process is typically around 0.03% (i.e. the energy released in X-rays
is about 0.03% of the energy which would be released by the total annihilation of
the same quantity of matter). The fusion of four hydrogen nuclei into a He nucleus
has an efficiency of 0.7%. These are much lower than accretion onto neutron stars
(10%) or black holes, observed in X-ray binary systems, but still high enough to
make CVs much brighter in X-rays than typical stellar coronae.
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Fig. 5.24. Structure of a cataclysmic system

In the fusion-dominated phase, there are currently two different categories of
CVs:

– Classical novae
– Supersoft sources

In the accretion-dominated phase, CVs can be categorized into several different
types:

– Dwarf novae
– Polars (AM Her systems)
– Intermediate Polars (DQ Her systems)

Classical Novae

A classical nova occurs when material accreting onto the surface of a white dwarf
star’s surface begins an unstable thermonuclear fusion reaction. Mass transfer will
occur gradually between novae explosions and it will be accreted onto the white
dwarf’s surface at a low rate, generating only weak X-ray emission. The nova outburst
will increase the apparent brightness of the binary star system by 10 thousand to
a million times (an increase in stellar magnitude of 10 to 15). They are hypothesized
to recur, though with recurrence time-scales of 10,000 years, no known novae
recurrence have been observed.

In the X-ray regime, classical novae have been observed many times. There is no
clear pattern in their light-curves over a period of years or decades. Several sources
have been observed in the period of days to months after the nova explosion to be
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weak X-ray emitters (1033–1034 ergs/s), as compared to an Eddington luminosity
limit of around 1038 ergs/s for a one solar mass white dwarf. One explanation for this
weak emission is shock heating of the circumstellar envelope in the white dwarf’s
environment from new material expelled by the nova explosion. At least two sources
(GQ Mus and V1974 Cyg) have been observed to develop a supersoft source-like
emission on the time-scales of years. On the other hand, of 26 novae which exploded
in the decade prior to the ROSAT All-Sky Survey, only GQ Mus was observed to
have become a supersoft source. All other sources surveyed in the All-Sky Survey
exhibited only upper limits. Novae that are close enough for sensitive observations
are detected in hard X-rays decades after their eruptions; this is presumably due to
on-going accretion onto the white dwarf. Examples of these nearby systems with
hard X-ray emission include Pup 91, QU Vul, and CP Pup.

Supersoft Sources

Supersoft sources (or SSSs) are a recent addition to the family of cataclysmic
variables, first categorized by ROSAT observations although several sources were
observed and recognized by prior missions. SSSs are objects with temperatures of
between 200,000 and 800,000 K and luminosities around 1038 ergs/s. More than
90% of their observed X-ray emission is below 0.5 keV. Currently, it is a subject of
debate exactly what physical object is associated with these high X-ray luminosities
and low temperatures. There are two leading theories. In the first, SSSs consist of
a neutron star or black hole surrounded by a bright and highly extended accretion
disk or cloud, which reprocesses energetic photons produced by the accretion onto
the compact object. In the other theory, SSSs are white dwarfs with classic hydrogen
fusion occurring from material accreting onto their surfaces. The second theory
would make SSSs the progenitor for Type Ia supernovae.

In the low mass X-ray binary (LMXB) model of SSSs, the lower temperature
spectra of these systems with comparison to their standard LMXB cousins is due to
an extended cloud around the neutron star or black hole. This cloud Compton scatters
the original higher temperature X-ray photons and the larger observed black-body
radius (of the order 104 km) is simply the radial size of this cocoon of matter.
The compact object would need to have a weak and small magnetic field structure:
a strong or extended field would disrupt the cloud. Theoretical calculations of the
spectra for spherical accretion onto a nonmagnetized neutron star seem to match
observations to date reasonably well.

In the white dwarf scenario, the observed black-body radii is simply the size of
the white dwarf star itself with nuclear fusion occurring on its surface. If accretion
occurs onto the white dwarf surface at low rates, fusion will be sporadic and violent,
resulting in classical novae type explosions. If accretion is at a high rate, the white
dwarf will acquire a red-giant-like atmosphere. Continuous nuclear fusion on the
dwarf star surface would be possible only for a narrow range of accretion rates of
the order of 10−7 solar masses per year. For relatively massive white dwarfs (0.7–
1.2 solar masses), the luminosities of nuclear fusion and temperature would match
the ROSAT observations. This raises the distinct possibility that such objects could
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eventually exceed the Chandrasekhar limit, making them the progenitors for Type
Ia supernovae.

Dwarf Novae

Dwarf novae outbursts are intrinsically much less luminous events than classical
novae outbursts. Their peak absolute magnitudes are at least 100 times weaker.
Dwarf novae are known to recur, with some recurring on times as short as a few
weeks. Dwarf novae also have short durations, lasting a few days. Dwarf novae also
can exhibit a variety of unusual behaviors. SU UMa type sources occasionally exhibit
extremely long outbursts known as super-outbursts. Z Cam stars will occasionally
get stuck in a standstill during which their brightness is both below outburst stage
and well above quiescent levels. VY Scl stars, also known as antidwarf novae, will
spend most of their time in an outburst state, with occasional dips into quiescence
that last for a few days. Finally, there are nova-like objects which behave much like
novae long after their eruptions, but which have never exhibited novae outbursts.
They are also distinct from dwarf novae outbursts in that they have permanently high
rates of mass transfer.

The principal source of electromagnetic radiation in a dwarf nova system is the
accretion disk. The companion star to the white dwarf is a low mass red dwarf star
filling its Roche lobe with matter streaming onto the accretion disk through the inner
Lagrange point. The gas stream from the L1 point impacts the accretion disk and
creates a hot spot (Fig. 5.24). Matter gradually transports through the accretion disk
onto the surface of the white dwarf, generating temperatures which make the disk
much hotter and brighter than either star. The dwarf nova outburst and other related
phenomenon are believed to be caused by variations in the accretion rates through the
disk. Material reaching the white dwarf surface through the disk must pass through
a violent transition region, called the boundary layer: it is here that the X-rays in
dwarf novae originate. This is shown dramatically by the recent observations of
X-ray eclipses in HT Cas; the eclipse duration is the same as that of the white dwarf
as determined by optical observations. The sharpness of the transitions into and out
of the eclipse proves that the X-ray emitting region has a size comparable to that of
the white dwarf.

Polars (AM Her Systems)

In a polar system such as the prototype AM Her, matter will overflow the Roche
lobe of the companion star. However, the white dwarf possesses a strong magnetic
field, which prevents the formation of an accretion disk. Instead, the overflowing
material is directed by the magnetic field structure until it impacts on the surface
of the white dwarf at its magnetic pole. Until impact, the material essentially free
falls, thus reaching substantial velocities which are seen in the optical spectra. The
collision generates a shock wave which is the source of hard (energetic) X-rays.
Hard X-rays emitted in the direction of the white dwarf from the shock wave above
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its surface heat the local area around the pole sufficiently for the pole to become
a source of intense soft (less energetic) X-rays. Since soft X-rays are coming only
from the pole, rotation of the white dwarf can occult the X-ray source on its surface.
Polars are generally much stronger sources of soft X-rays than hard X-rays. Most
likely, this is due to uneven matter streaming. Clumps in the accretion flows would
most likely cause energy to also be liberated deep within the atmosphere of the white
dwarf, resulting in more soft X-ray emission. The strong magnetic field will also
lock the orientation of the white dwarf relative to the companion, so that orbital and
rotational periods are identical.

X-ray emission from polar systems is entirely due to the accretion column and its
impact, so in quiescent times when matter is not accreting onto the system, the entire
system is much dimmer. Spectral lines measured at these times show the Zeeman
effect which measures the magnetic field strength in the megagauss range.

Intermediate Polars (DQ Her systems)

AM Her type systems are distinct from all other CVs in that they completely lack an
accretion disk. However, in systems which have less strong magnetic fields, or wider
separations between the companion and white dwarf, an accretion disk can form.
As material migrates inwards in the disk, it may eventually encounter a magnetic
field strong enough to control the flow of material, at which point matter would
instead stream from the inner edge of the disk along magnetic field lines onto the
pole of the white dwarf (Fig. 5.25). Such a system would therefore be expected
to be a source of hard X-rays from the shock at the magnetic poles. CVs which
possess both an accretion disk and magnetic fields which disrupt the inner edge of
the disk are known as intermediate polars. Intermediate polars, either due to weaker
magnetic fields or wider star separations, will not necessarily have orbital and spin
rates locked. Observed systems have longer orbital periods than polars, which given
that the systems have comparable masses verifies their wider separation. Whether
such systems also have weaker magnetic fields is an area of active research.

Fig. 5.25. Structure of a magnetic intermediate polar cataclysmic system. Material migrates
inwards in the disk, it may eventually encounter a magnetic field strong enough to control the
flow of material onto the white dwarf surface
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Problems

5.1. Newtonian Limit: Explain why

– GR effects are important for neutron stars, but not for white dwarfs;
– inverse beta-decay becomes energetically favorable for densities higher than in

white dwarfs.

5.2. Lané–Emden Equation: Integrate numerically the Lané–Emden equation for
various indices n and determine the boundary values ξ∗ and ξ2∗ |θ ′(ξ∗)| as a function
of n.

5.3. Computer Code: Develop a computer code to solve the stellar structure equa-
tions for white dwarfs, in particular for the analytic EoS of degenerate matter. Extend
this code to involve the integration of a hydrogen envelope [324].

5.4. White Dwarfs from SDSS: Study the spectroscopic white dwarf and hot sub-
dwarf sample from the SDSS first data release, DR1 [227]. They find 2551 white
dwarf stars of various types, 240 hot subdwarf stars, and an additional 144 objects
identified as uncertain white dwarf stars. Of the white dwarf stars, 1888 are non-
magnetic DA types and 171, nonmagnetic DBs. The remaining (492) objects consist
of all different types of white dwarf stars: DO, DQ, DC, DH, DZ, hybrid stars like
DAB, etc., and those with nondegenerate companions.

5.5. Accretion onto White Dwarfs: Use standard accretion disk theory (see
Sect. 10.3) to estimate the surface temperature of accretion disks around white
dwarfs, for typical accretion rates of Ṁ � 10−9 M� yr−1. Determine the luminosity
as a function of the accretion rate.

5.6. Magnetic Accretion: What is the minimal magnetization of a white dwarf to
prevent the accretion disk to reach to the surface of a white dwarf? Use for this
estimate a dipolar magnetosphere with surface field strength B∗.



6 Neutron Stars

Neutron stars are about 20 km in diameter and have a mass of about 1.4 times that
of our Sun. This means that a neutron star is so dense that on Earth, one teaspoonful
would weigh a billion tons. Because of its small size and high density, a neutron star
possesses a surface gravitational field about 2×1011 times that of Earth. Neutron stars
can also carry magnetic fields a million times stronger than the strongest magnetic
fields produced on Earth.

Neutron stars are one of the possible end states for a massive star. They result from
massive stars which have mass greater than 6–8 times that of our Sun. After these stars
have finished burning their nuclear fuel, they undergo a supernova explosion. This
explosion blows off the outer layers of a star into a beautiful supernova remnant. The
central region of the star collapses under gravity. It collapses so much that protons
and electrons combine to form neutrons.

Massive stars at the end of their lives are believed to consist of a white dwarf-like
iron core of mass (1.2–1.4)M�, having low entropy (s ≤ kB), and surrounded by
layers of less processed material from nuclear shell burning. The effective Chan-
drasekhar mass is dictated by the lepton number YL believed to be around 0.41–0.43.
As mass is added to the core by shell Si-burning, the core becomes unstable and
collapses.

During the collapse, the lepton content decreases due to net electron capture on
nuclei and free protons. But when the core density approaches 1012 g cm−3, the neu-
trinos can no longer escape from the core on the dynamical time-scale. After neutri-
nos become trapped, the lepton number is frozen at a value of about 0.38–0.40, and the
entropy also remains fixed. The core continues to collapse until the rapidly increasing
pressure reverses the collapse at a bounce density of a few times nuclear density.

This bounce results in a shock which is largely dissipated by the energy required
to dissociate massive nuclei in the still infalling matter of the original iron core.
The larger the lepton number YL of the core, the larger its mass and the smaller
this shell. The final lepton number is then controlled by weak interactions, and is
strongly dependent upon the number of protons, x p. So the properties of nuclear
matter determine largely the outcome of the collapse, in particular the resulting
mass of the newly formed neutron star. Many questions are still open in this field.
Today, several accurate mass determinations for neutron stars are available, and they
all lie in the narrow range of (1.25–1.44) M�.

Neutron stars may appear in supernova remnants, as isolated objects, or in binary
systems. One neutron star has even been found to have planets. When a neutron star
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is in a binary system, astronomers are able to measure its mass. From a number of
such binaries seen with radio or X-ray telescopes, the neutron star mass has been
found to be close to have masses of about 1.4 times the mass of the Sun. For binary
systems containing an unknown object, this information helps distinguish whether
the object is a neutron star or a black hole, since black holes are more massive than
neutron stars.

Pulsars are rotating neutron stars. And pulsars pulse because they rotate. Pulsars
were first discovered in late 1967 by graduate student Jocelyn Bell Burnett as radio
sources that blink on and off at a constant frequency. Now we observe the brightest
ones at almost every wavelength of light. Pulsars are spinning neutron stars that
have jets of particles moving almost at the speed of light streaming out above their
magnetic poles. These jets produce very powerful beams of light. For a similar
reason that “true north” and “magnetic north” are different on Earth, the magnetic
and rotational axes of a pulsar are also misaligned. Therefore, the beams of light
from the jets sweep around as the pulsar rotates, just as the spotlight in a lighthouse
does.

A very different type of pulsar is seen by X-ray telescopes in some X-ray binaries.
In this case, a neutron star and a normal star form the binary system. The strong
gravitational force from the neutron star pulls material from the normal star. The
material is funnelled onto the neutron star at its magnetic poles. In this process,
called accretion, the material becomes so hot that it produces X-rays. The pulses
of X-rays are seen when the hot spots on the spinning neutron star rotate through
our line-of-sight from Earth. These pulsars are sometimes called accretion-powered
pulsars to distinguish them from the spin-powered radio pulsars.

6.1 The Structure of a Neutron Star

The cross-section of a neutron star can roughly be divided into four distinct regions
(see Fig. 6.1):

– The atmosphere which is only a few cm thick.
– The outer crust which consists of a lattice of atomic nuclei and Fermi liquid of

relativistic degenerate electrons. This is essentially white dwarf matter.
– The outer crust envelops the inner crust, which extends from the neutron drip

density to a transition density �tr � 1.7× 1014 g cm−3.
– Beyond the transition density one enters the core, where all atomic nuclei have

been dissolved into their constituents, neutrons and protons. Due to the high
Fermi pressure, the core might also contain hyperons, more massive baryon
resonances, and possibly a gas of free up, down and strange quarks. Finally, π-
and K-meson condensates may be found there too.

The equation of state for the outer and inner crust is well-known and described by
the model of BPS [64] and Negele and Vautherin [310].

Today, neutron stars come in various flavors depending on the composition of the
core. In this respect, we speak now of traditional neutron stars (or hadronic stars),
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Fig. 6.1. Cross-section through the interior of a neutron star. The neutron star is surrounded
by a thin atmosphere and an outer crust consisting of heavy nuclei and electrons. The inner
crust consists of nuclei, neutrons and electrons, which at nuclear density make a transition to
a neutron fluid. The composition of the central core is still unclear, but certainly consists in
the outer part only of neutrons, protons, electrons and muons

where the core mainly consists of neutrons, protons and electrons. At high densities,
however, also heavier baryons are excited, the neutron star now becomes a hyperon
star. Since these baryons are so densely packed, a quark bag could be formed,
and quarks are probably in a color-superconducting state. Finally, Bose condensates
of pions and K mesons might occur. All these different internal structures lead
to different mass–radii relations. For given mass, the traditional neutron star has
the biggest radius, while neutron stars including quark cores are found to be more
compact. Strange stars have the smallest radii.

6.2 Equations of State beyond Neutron Drip

The equation of state of dense matter plays an important role in the supernova
phenomenon and in the structure and evolution of neutron stars. Matter in the
collapsing core of massive stars at the end of its life is compressed from white



190 6 Neutron Stars

dwarf-like densities of about 106 g cm−3 to two or three times the nuclear saturation
density, about 3 × 1014 g cm−3 (Lattimer and Prakash [249]). Nuclear saturation
corresponds to a baryon density ns � 0.16 baryons fm−3. The central densities of
neutron stars may even range up to (3–10) ns. At densities around ns and below, matter
may be regarded as a mixture of neutrons, protons, electrons, positrons, neutrinos
and antineutrinos, and photons. At higher densities, additional constituents may be
present, such as muons, hyperons, kaons, pions and quarks. Up to now, there is no
consensus on the composition of ultradense matter.

The main problem is to establish the state of the nucleons, which may be either
bound in nuclei or be essentially free in continuum states. Neither temperature, nor
densities are large enough to excite degrees of freedom, such as hyperons, mesons
or quarks. Electrons are rather weakly interacting and may be treated as an ideal
Fermi gas. At these high densities, the electrons are relativistic. As we have seen,
at higher densities, the neutron chemical potential increases to the extent that the
density of nucleons outside nuclei become large. These nucleons will modify the
nuclear surface, decreasing the surface tension. At finite temperatures, even nuclear
excited states become populated, and these states must be included by treating
nuclei as warm drops of nuclear matter. At low temperatures, nucleons in nuclei are
degenerate and the Fermi liquid theory is probably adequate for their description.

The fact that at subnuclear densities the spacing between nuclei may be of the
same order of magnitude as the nuclear size itself will lead to substantial modifica-
tions. At zero temperature, the Wigner–Seitz description may be adequate for many
applications. In this sense, one has to bridge the low-density and low-temperature
regime, in which the nuclei can be described in terms of simple mass formula, with
high densities and/or high temperatures in which the matter is a uniform bulk fluid.
For this purpose, the compressible liquid droplet model for nuclei is useful, where
the drop maintains thermal, mechanical and chemical equilibrium with its surround-
ings. Such a model was originally designed for finite temperature by Lattimer and
Swesty [248].

6.2.1 From Neutron Drip to Saturation

If nuclear forces alone determined the equilibrium nuclear structure, nucleons would
accumulate into nuclei of unlimited size. However, the Coulomb repulsive forces
become so strong that these nuclei would undergo fission. We can therefore write
the energy density of a mixture consisting of nuclei, free electrons and free neutrons
in the form for the compressible liquid drop model

ε = ε(A, Z, nN , nn, ne) = nN(WN +WL)+ ε(ne)+ εn(nn)[1− VN nN ] . (6.1)

In the compressible liquid drop model of nuclear matter, the energy of a nucleus is
given by, x the proton fraction,

WN = A
[
(1− x)mnc2 + xm pc2 +W(n, x)

]
+WC +WS . (6.2)
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WC is the Coulomb energy and WS the surface energy, while W(n, x) denotes the
bulk energy per nucleon depending on nucleon number density n. The quantity
nN denotes the number density of nuclei, while nn is the number density of free
neutrons. ε(ne) is the electron energy. The quantity VN is the volume of a nucleus, so
that VN nN is the fraction of volume occupied by nuclei, and 1− VN nN the fraction
occupied by the neutron gas. The baryon density is then given by

n = AnN + nn[1− VN nN ] (6.3)

and the electron density by

ne = ZnN . (6.4)

Nuclear matter represents saturated systems. The reason for this is in the short
range of nuclear force, its strong repulsion at short distances and the Pauli principle.
Saturation means that, as more nucleons are added to nuclei, the density of the central
region remains constant. The nuclear radius therefore just scales as R = rn A1/3 with
rn as a constant. The energy density is therefore also constant. Accordingly, we can
write the volume energy of a nucleus as the energy density of symmetric matter at
normal density εn times the volume. This must be modified by the empirical fact
that nuclei with neutron number N close to proton number Z are more tightly bound
than their neighbors, altered by the increasing importance of the Coulomb repulsion
at higher Z. The repulsion shifts the energy minimum of nuclei with increasing A to
those with a greater neutron fraction (A − Z)/Z = N/Z.

In addition to these volume contributions, there will be a surface energy, which
is also repulsive. This contribution arises because nucleons at the surface interact
with fewer neighbors and so feel less attraction than those in the interior. This
surface energy will be proportional to the surface area. Finally, there will also be
a repulsive Coulomb energy because of the protons. As a consequence, the total
mass of a nucleus can be written approximately as

M(A, Z) = A

[
4π

3
r3

nεn + asym

(
N − Z

A

)2]
+ 4πr2

n A2/3εsurf + 3

5

e2 Z2

rn A1/3
.

(6.5)

This formula is sometimes referred to as the semi-empirical mass formula, or as the
droplet model of nuclear masses. In actual practice, there are many more effects
with unknown coefficients; these are incorporated in the best fit of parameters
of a more general formula (Möller et al. [300]). As a result, the binding energy
B/A � M(A, Z)/A − mu is a series in various powers of 1/A. With increasing A,
just the volume term survives (which is constant). In this way, one discovers the
binding energy per nucleon of infinite, symmetric nuclear matter and the symmetry
coefficient

B/A = −16.3 MeV , asym = 32.5 MeV . (6.6)
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The radius parameter rn = 1.16 fm is obtained by an analysis of electron–
nucleus scattering in terms of density distributions. The equilibrium value of the
nucleon number density is related to rn by

nn =
(

4π

3
r3

n

)−1

= 0.153 fm−3 . (6.7)

In terms of an equation of state ε(n), the binding energy per nucleon is related to
the equilibrium values of the saturation energy εn and the baryon number density
n by

B

A
=

( ε
n

)
n
− m (6.8)

where m =938.93 MeV = 4.7582 fm−1 is the average of the neutron and proton
masses. Thus, we get the energy density at saturation

εn = 141 MeV fm−3 . (6.9)

The compression modulus K defined by

K =
[

P2 d2

dP2

(
ε(P)

n(P)

)]
n

= 9

[
n2 d2

dn2

(
ε(n)

n

)]
n

(6.10)

contains additional information on nuclear matter at saturation. The larger the value
of K , the more steeply the equation of state will increase with density. The compres-
sion modulus likely lies in the range of 200 to 300 MeV, with recent evidence from
a large body of data suggesting a value of K = 234 MeV.

The EoS by Baym, Pethick and Sutherland [64] improved Salpeter’s calculation
by using a somewhat improved mass formula and by also including the lattice energy
(Fig. 6.2)

ε = nN M(A, Z)+ ε′(ne)+ εn(nn)+ εlattice (6.11)

with

εlattice = −1.444 Z2e2n4/3
e . (6.12)

From the energy density ε = ε(n) one can derive the pressure

P = P(n) = n2 ∂

∂n

( ε
n

)
. (6.13)

A refined treatment was then given by Baym, Bethe and Pethick (BBP 1971 [65])
including results from detailed many-body calculations. These calculations end when
nucleon–nucleon interaction become important, i.e. around nuclear densities.



6.2 Equations of State beyond Neutron Drip 193

Fig. 6.2. Equation of state for cold nuclear matter [136]. Up to the neutron drip density,
relativistic electrons are the main source for the pressure, P ∝ �4/3, with some minor
modifications. Beyond this density, the nonrelativistic neutrons overtake the pressure. In this
region, strong forces are attractive, so that the effective pressure is somewhat below the
pressure of the neutrons. Beyond the nuclear saturation density of 2× 1014 g cm−3, nuclear
forces become strongly repulsive

Empirical Bulk Energy of Nucleon Matter

Empirically, the energy per particle of nuclear matter reaches a minimum of about
−16 MeV at a density ns = 0.16 fm−3. Therefore close to this density its density
dependence is roughly parabolic. The nucleon–nucleon interaction is optimized for
symmetric matter (equal number of protons and neutrons, x = 1/2), so a parabolic
dependence on the proton fraction x can be assumed. For analytical purposes, the
nucleon free energy per baryon W(n, x) can be approximated in MeV as
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W(n, x) � − 16+ Sv(n)(1− 2x)2

+ Ks

18

(
n

ns
− 1

)2

− K ′
s

27

(
n

ns
− 1

)3

+ F(T) . (6.14)

Here F(T) includes finite temperature effects. Sv is the volume symmetry coefficient,
numerically Sv � 30 MeV, and Ks denotes the compressibility at nuclear density,
Ks = (200–300) MeV, with its most probable value Ks = 234 MeV. The experi-
mental determination of these parameters comes from comparisons of total masses
and energies of giant resonances of lab nuclei.

Nucleon–nucleon interactions can be included in the EoS by constructing a sim-
ple model for the nuclear potential that reproduces the general features of normal
nuclear matter. The von-Weizäcker mass formula (6.5) for nuclides gives an equi-
librium number density n0 of 0.16 fm−3 for normal symmetric nuclear matter (i.e.
N = Z). For this value of n0, the Fermi momentum p0

F = 263 MeV/c is small
enough compared with mN = 939 MeV/c2 so that a nonrelativistic treatment is
sufficient. At this density, the average binding energy per nucleon BE = −16 MeV
and the compressibility is between 200 and 300 MeV.

For this discussion, we introduce an empirical interaction for symmetric matter
(nn = n p) of the following form

ε(n)

n
= mN + 〈E0〉u2/3 + A

2
u + B

1+ σ uσ , u = n/n0 . (6.15)

The quantities A and B, and the parameter σ are fit parameters. 〈E0〉 is the average
kinetic energy per nucleon of symmetric matter in the ground state

〈E0〉 = 3

5

p2
0

2mN
= 3

5

1

2mN

(
3π2
�

3n0

2

)2/3

. (6.16)

From the three constraints, d(ε/n)/dn = 0, the binding energy BE and the com-
pressibility condition evaluated at nuclear density u = 1, we get three relations

2

3
〈E0〉 + A

2
+ Bσ

1+ σ = 0 (6.17)

〈E0〉 + A

2
+ B

1+ σ = BE (6.18)

10

9
〈E0〉 + A + Bσ = K0

9
. (6.19)

These equations can be solved to yield

σ = K0 + 2〈E0〉
3〈E0〉 − 9 BE

(6.20)

B = 1+ σ
σ − 1

(
1

3
〈E0〉 − BE

)
(6.21)

A = BE − 5

3
〈E0〉 − B . (6.22)
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For K0 = 400 MeV, one obtains the values with 〈E0〉 = 22.1 MeV

A = −122.2 MeV , B = 65.39 MeV , σ = 2.112 . (6.23)

The corresponding pressure follows from the expression (6.13).
In neutron stars, we however find nonsymmetric nuclear matter. We represent

the neutron and proton densities in terms of a parameter α defined as follows

nn = 1+ α
2

n , n p = 1− α
2

n . (6.24)

This parameter means

α = nn − n p

n
= N − Z

A
. (6.25)

An alternative notation is

x = n p

n
= 1− α

2
. (6.26)

For the kinetic energy one gets

εKE(n, α) = 3

5

p2
F,n

2mN
nn + 3

5

p2
F,p

2mN
n p = n〈EF〉 1

2

[
(1+ α)5/3 + (1− α)5/3

]
,

(6.27)

where

〈EF〉 = 3

5

�
2

2mN

(
3π2n

2

)2/3

(6.28)

is the mean kinetic energy of symmetric nuclear matter at density n. For nonsym-
metric matter, the excess kinetic energy is

∆εKE(n, α) = εKE(n, α)− εKE(n, 0)

= n〈EF〉
{

1

2

[
(1+ α)5/3 + (1− α)5/3

]
− 1

}
= n〈EF〉

{
22/3

[
(1− x)5/3 + x5/3

]
− 1

}
. (6.29)

For pure neutron matter, α = 1, we find

∆εKE(n, 1) = n〈EF〉
(
22/3 − 1

)
. (6.30)

This gives the following Taylor expansion

∆εKE(n, α) = n〈EF〉 5

9
α2

(
1+ α

2

27
+ · · ·

)
. (6.31)
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For most considerations it is sufficient to keep terms to order α2. This gives a bulk
symmetry energy of � 20 MeV, and we may try an ansatz of the form

E(n, α)

A
= E(n, 0)

A
+ α2 S(n) . (6.32)

The isospin-symmetry breaking is proportional to α2, which roughly reflects the
pairwise nature of the nucleon interaction. From the above, we may therefore assume
the following form for S(u)

S(u) = (22/3 − 1)〈EF〉
[
u2/3 − F(u)

]
+ S0 F(u) . (6.33)

Here, S0 = 30 MeV is the bulk asymmetry energy which describes the energy
difference between pure neutron matter and normal symmetric nuclear matter at
ground-state density n0. The function F(u) must satisfy F(1) = 1 (so that S(u =
1) = S0) and F(0) = 0 (so that S(u = 0) = 0). Besides these constraints, the function
F(u) is not strongly constrained from experiments. We can make the simple ansatz
F(u) = u. From this we obtain the following energy density for neutron matter

εemp

n
= mn +〈EF〉 u2/3 + A

2
u + B

1+ σ uσ

+(22/3 − 1)〈EF〉
(
u2/3 − u

)+ S0 u . (6.34)

With the above parameters for symmetric nuclear matter, this gives the energy density
parametrized in terms of the nuclear density u = n/n0

εemp

n
=

(
939.6+ 35.1 u2/3 − 42.1 u + 21.0 u2.112

)
MeV . (6.35)

The corresponding EoS is then also given by the expression (6.13) in parametrized
form.

The empirical EoS is shown in Fig. 6.3. At densities below nuclear density,
attractive forces soften the EoS, at densities higher than nuclear density, repulsive
forces stiffen the EoS. This empirical model is certainly not justified for densities
higher than 2–3 times the nuclear density. At high densities, the repulsive forces are
probably too strong. At high densities, the sound speed(

c2
S

c2

)
= dP

dε
= dP/dn

dε/dn
(6.36)

will violate causality, which requires c2
S ≤ c2.

Skyrme-Type Interaction

For comparison, we also show the properties of nuclear matter by applying the
Hartree–Fock method on a phenomenological nucleon–nucleon interaction, which
is parametrized in a Skyrme-type interaction
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V(x, y) = δ3(x − y)

(
1

6
t3 n − t0

)
, (6.37)

where t0 describes the attractive two-particle nuclear interaction, and t3n the repul-
sive, density dependent many-body interaction which is dominant at high densities.
For a homogeneous system, the total energy is given by

EHF = 3

5

p2
p

2mn
Np + 3

5

p2
n

2mn
Nn + 1

2

(
1

6
t3n − t0

)
N2

p/2+ 2Np Nn + N2
n/2

V
.

(6.38)

Similar to the above, the phenomenological parameters t0 and t3 are determined from
the binding energy at nuclear density

t0 = 1024.1 MeV fm3 , t3 = 14600.8 MeV fm6 . (6.39)

This gives for pure neutron matter

EHF = 3

5

p2
n

2mn
Nn + 1

4

(
1

6
t3n − t0

)
n . (6.40)

Fig. 6.3. EoS of nonsymmetric nuclear matter, energy density and pressure are given in
units of MeV fm−3. The dashed curve shows the free fermion gas for neutrons. The solid
line corresponds to the empirical EoS. The dots denote the nucleon density in units of the
saturated density n0, with values of 1.0, 1.5, 2.0, 2.5, . . . , 5 n0. The upper hatched solid line
corresponds to the asymptotic free quark gas, P = ε/3. The Skyrme model is represented by
the lower hatched solid line
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For the total energy density we then obtain

ε(n) = mnn + 3

10mn
(3π2
�

3)2/3 n5/3 − t0
4

n2 + t3
24

n3 (6.41)

and the corresponding expression for the pressure

P(n) = 2

10mn
(3π2
�

3)2/3 n5/3 − t0
4

n2 + t3
12

n3 . (6.42)

The resulting EoS is plotted in Fig. 6.3. It is only slightly shifted with respect to the
above empirical relation, but also violates causality at high densities.

The Crust and Nuclear Pasta

The EoS of the outer crust is rather well established. As soon as one leaves the
region of experimentally known nuclei, the EoS of cold catalyzed matter becomes
uncertain. This uncertainty rises at densities higher than the neutron drip density.
The properties of nuclei are affected by the ambient neutron gas which contributes
more and more to the total pressure. Therefore, the problem of correct modelling
of the EoS of pure neutron gas at subnuclear densities becomes important. The real
EoS of cold catalyzed matter stems from the real nucleon Hamiltonian, which is
expected to describe nucleon interactions at � < 2�0. In practice, in order to make
the solution of the many-body problem feasible, the task is reduced to finding an
effective nucleon Hamiltonian.

The properties of the inner crust EoS are illustrated in Fig. 6.2, using the results
obtained by Douchin and Haensel [136] for the SLy model of effective nuclear
hamiltonian; it will be hereafter referred to as the SLy4 EoS. Notice that the sound
velocity is vs = √dP/d�. A significant softening (decrease of vs) occurs just after
the neutron drip point. At densities greater than the neutron drip one, the SLy4
EoS stiffens gradually (vs increases) with growing density, due to the increasing
contribution of dripped neutrons to the pressure. There is a discontinuous increase
(jump) of sound velocity at the crust–core interface.

In the SLy4 EoS, the crust–core transition takes place as a very weak first-order
phase transition, with the relative density jump of the order of a percent [136]. For
this model, the spherical nuclei persist to the crust bottom. In contrary, for the FPS
EoS, the crust–core transition takes place through a sequence of phase transitions
with the changes of nuclear shapes (from spheres to spaghetti and lasagne, and
finally to bubbles [259]). All in all, while the presence of the exotic nuclear shapes is
expected to have dramatic effect on the transport phenomena and elastic properties
of nuclear matter, their effect on the EoS is negligible.

At densities of about 0.05 fm−3 in the inner crust, nucleons are arranged in
a variety of complex shapes, called nuclear pasta. Baryonic matter is organized
as a result of short-range nuclear attraction and long-range Coulomb repulsion.
Competition among these interactions plays a fundamental role in the organization
of matter and results in a so-called Coulomb frustration. Frustration develops from
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the inability of a system to simultaneously satisfy all of its elementary interactions.
For example, the Ising antiferromagnet on a triangular lattice is frustrated, because
not all of the nearest neighbor spins can be antiparallel to each other. At subnuclear
densities of about 1014 g cm−3, Coulomb frustration is expected to promote the
development of complex shapes. These shapes follow from the competition between
surface tension and Coulomb energies. Surface tension would favor spherical shapes,
Coulomb interactions often favor nonspherical configurations. Therefore, a variety
of complex structures – such as spheres, cylinders, plates, etc. – have been predicted.
The many phases of nuclear matter displaying this variety of shapes are now known as
nuclear pasta. The properties of this matter is of relevance to the structure of the inner
crust of neutron stars and to the dynamics of core-collapse supernovae. The ground-
state shapes of nuclear pasta have been calculated by various authors [273,413,414].

6.2.2 Nuclear EoS for Dense Neutron Matter

Modern models for the equation of state for the star’s core fall into two categories:
nonrelativistic variational approximation and relativistic field theoretic approaches.
The first approach leads in general to acausal behavior at high densities, due to its
basis on the nonrelativistic Schrödinger equation. The most realistic EoS based on
nonrelativistic potentials are given in the following Table 6.1 (only neutrons, protons,
electrons and muons, but no meson condensate and no hyperons).

At � � �0, core matter is a liquid composed mostly of neutrons with a few
percent admixture of the equal number of protons and electrons. If the Fermi energy

Table 6.1. Equations of state of the liquid core of neutron star based on nonrelativistic
modelling

EoS Composition and model Reference

BPAL12 n peµ, effective nucleon energy functional Bombaci et al.
1995 [82]

BGN1H1 n pΣΛΞeµ, effective baryon energy functional Balberg et al. [47]
BBB1 n peµ, Brueckner theory, Argonne NN plus

Urbana NNN potentials Baldo et al. [52]
FPS n peµ, effective nucleon energy functional Pandharipande and

Ravenhall [323]
BGN2H1 n pΣΛΞeµ, effective baryon energy functional Balberg et al. [47]
BBB2 n peµ, Brueckner theory, Paris NN plus Urbana

NNN potentials Baldo et al. [52]
SLy n peµ, effective nucleon energy functional Douchin and

Haensel [136]
BGN1 n peµ, effective baryon energy functional Balberg et al. [47]
APR n peµ, variational theory, Nijmegen NN plus

Urbana NNN potentials Akmal et al. [26]
BGN2 n peµ, effective nucleon energy functional Balberg et al. [47]
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Fig. 6.4. Nuclear EoS FPS (thick dotted line) and SLy (solid hatched line) compared to the
empirical and simple Skyrme models (with dots denoting the number density in units of
nuclear density as in Fig. 6.3). The straight lines correspond to the stiffest EoS P = � and
the asymptotically free quark gas P = �/3

of electrons exceeds the muon rest energy (105.7 MeV), muons replace a fraction of
electrons to minimize the energy of the system. Such a system in beta equilibrium is
usually called n peµmatter. This is the simplest model of matter in neutron star cores:
except for the presence of muons, which are insignificant for the EoS, the matter
constituents – neutrons, protons and electrons – are the same as in familiar terrestrial
matter. Still, even for this simplest composition, the uncertainties in the EoS are
quite large, especially at densities significantly higher than �0. This results from the
approximations and deficiencies of the many-body theory of dense nucleon matter,
and from the lack of knowledge of strong interactions in superdense matter. These
uncertainties are illustrated in Fig. 6.5. The brief characteristics of these models
and the references to the original papers are given in Table 6.1. The BPAL12 and
BGN2 EoSs should be considered as the soft and stiff extremes of the theoretical
models. Notice that the stiffest BGN2 EoS is superluminal (sound velocity vs > c)
at the highest densities relevant for neutron stars, which reflects the inadequacy of
the nonrelativistic approach at such a high density.

Configurations of hydrostatic equilibrium of nonrotating neutron stars will be
calculated by solving the Tolman–Oppenheimer–Volkoff (TOV) for various EoS
for nuclear matter (FPS, SLy, and APR). These models of matter at supranuclear
densities are the most elaborate ones, and are based on experimental nuclear physics
and relatively precise many-body calculations of dense neutron matter. They do not
include possible dense matter constituents, for which strong interactions are poorly
known (hyperons), or which are hypothetical (pion and kaon condensates, or quark
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Fig. 6.5. Selected models for EoS of nonrelativistic nuclear matter in the core of a neutron
star. BGN1 and BGN2 here have labels BalbN1 and BalbN2. Large dots correspond to
maximum density in stable neutron stars. Asterisks correspond to the density above which
EoS is superluminal (vs > c). Left panel: EoSs of the n peµ matter. Right panel: effect of
hyperons is shown by comparing the EoS without hyperons (i.e. for the n peµ matter) and
EoSs in which hyperons Λ, Σ, Ξ are included (+H1 and +H2 correspond to the BGN1H1
and BGN1H2 models of Table 6.1). Figure adapted from [187]

matter). The TOV equations are integrated from the center of the configuration, with
boundary condition at r = 0: P(0) = Pc, m(0) = 0. The stellar surface at r = R is
then determined by the pressure condition P(R) = 0. The total gravitational mass
M is then given by M = m(R), and the total number of baryons by N = n(R).

Mass, Central Density, and Radius of Neutron Stars

Classical neutron stars based on EoS of FPS and SLy4 have rather shallow density
profiles (Fig. 6.6 and Fig. 6.7). The core extends to about 10 km, before the density
steeply falls off.

In Fig. 6.8 we show the dependence of gravitational mass on the central density,
�c, for �c > 3 × 1014 g cm−3, and compare it with that obtained for the softer
EoS FPS [15]. Actually, on the lower-density side the curve exhibits a minimum at
Mmin � 0.09 M�, not shown in the figure. The value of Mmin depends rather weakly
on the EoS. On the higher-density side, M(�c) has a maximum. The existence of
this maximum (for any EoS) is an important consequence of general relativity.
Configurations with bigger central densities cannot exist in hydrostatic equilibrium
and collapse into black holes. For SLy4, we get Mmax � 2.05 M�, to be compared
with Mmax = 1.80 M� for a softer FPS EoS.
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Fig. 6.6. Density profiles for classical neutron stars within the APR EoS. The various shells
are clearly visible in the profile. Figure provided by A. Bauswein [63]

Fig. 6.7. Density profiles for classical neutron stars (for EoS FPS and SLy4, and different
masses as indicated in the legend). Figure based on data provided by A. Bauswein [63]
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Fig. 6.8. Mass as a function of central density for classical EoS (FPS and SLy4). The hatched
region corresponds to the mean mass found for neutron stars from binary pulsars. Figure
based on data provided by A. Bauswein [63]

The central density of the maximum allowable mass configuration is the
maximum one which can be reached within static neutron stars. Models with
�c > �c(Mmax) have dM/d�c < 0. They are therefore unstable with respect to
small radial perturbations and collapse into black holes. The maximum central den-
sity for static stable neutron stars is, for the nuclear EoS, 2.9 × 1015 g cm−3. The
corresponding maximum value of baryon density is nmax = 1.21 fm−3 � 7.6ns, to
be compared with what is obtained for the FPS EoS.

A comparison with the APR98 EoS is also of interest, the mass curve obtained
for the nuclear EoS is quite close to the APR98 one, especially for 1.4 M�. It should
be mentioned that, for the APR EoS, neutron star models contain a central core with
vsound > c, which is unphysical. Such a problem does not arise for the nuclear EoS
discussed here, for which vsound < c within all stable neutron star models.

Radius vs. Gravitational Mass

The radius–mass relation, obtained for EoS FPS and SLy4 for static, cold neutron
stars, is shown in Fig. 6.9, where for the sake of comparison we also show the
R(M) curve for the FPS EoS. For masses between 1.0 M� and 2.0 M�, the neutron
star radius decreases rather weakly with increasing mass, from 12 km to 10 km. For
neutron star masses, measured for some binary radio pulsars (shaded band), the radius
would be slightly below 12 km. The insensitivity of R to M for 1 ≤ M ≤ 2.0 M� is
typical of the realistic EoS without a strong softening at high density.

In this figure, we also plot the radii as a function of mass for some measured
surface redshift z = 1/

√
1− 2G M/Rc2 − 1. The redshift measured by Cottam et

al. [126] would require in fact a too high mass for the neutron star in EXO 0748–
676. This is already an indication that neutron stars with masses above 1.3 solar
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Fig. 6.9. Radii as a function of mass for classical EoS (FPS vs. SLy4). Neutron stars with
masses above 1.35 M� have radii smaller than the innermost stable orbit (ISCO). Figure
based on data provided by A. Bauswein (LSW Heidelberg)

masses are probably not classical neutron stars. They require a softer EoS to satisfy
all these requirements, unless the mass in LMXBs is indeed higher than observed
for millisecond neutron stars. This is, however, implausible, since LMXBs are the
progenitors of recycled millisecond pulsars.

For a static neutron star, general relativity predicts that the circular Keplerian
orbits (for test particles) with r > 3RS are stable, and those with r < 3RS are
unstable, where the gravitational radius RS = 2G M/c2 = 2.95 M/M� km. The
radius of the marginally stable orbit, which separates these two classes of orbits,
is therefore rms = 3RS = 12.4 (M/1.4 M�) km. As we see in Fig. 6.9, for M >

1.35 M� we find rms > R for classical neutron stars, and therefore for such neutron
stars the innermost stable circular orbit (ISCO) is separated from the stellar surface by
a gap. A similar situation also holds for the FPS EoS. Note that the existence of a gap
between the ISCO and neutron star surface might be important for the interpretation
of the spectra of the kilohertz quasiperiodic oscillations (QPOs) observed in the
X-ray radiation of some low-mass X-ray binaries (see Sect. 6.6).

Surface Redshift

The surface redshift of photons emitted from neutron star photosphere is given by
zsurf = 1/

√
1− RS/R− 1. At given M, the SLy value of this value is systematically

lower than for softer FPS EoS (Fig. 6.10). However, the maximum surface redshift
for the SLy EoS, 0.59, is some 10% higher than for the FPS EoS, 0.53. The larger
value of the maximum mass for stiffer SLy EoS plays a decisive role in determining
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Fig. 6.10. Surface redshift as a function of the mass for classical EoS (FPS and SLy4). The
hatched lines denote the mean mass measured by binary pulsars and the redshift for EXO
0748–676. Figure based on data provided by A. Bauswein (LSW Heidelberg)

the spacetime curvature close to neutron star with maximum allowable mass. In the
range of measured values of masses of binary pulsars we get zsurf � 0.22–0.26,
slightly higher than for the FPS EoS. For M < 2.0 M�, the curve for our EoS is
quite similar to the APR98 one.

Binding Energy

The binding energy of a neutron star, Ebind, is defined as the mass defect with respect
to a dispersed configuration of matter consisting of the same number of baryons,
multiplied by c2. A dispersed configuration is characterized by negligible pressure
and negligible gravitational interactions. Equivalently, one may define Ebind as a net
work, needed to transform a neutron star into a dispersed configuration of matter.
We use the standard definition of Ebind, i.e. with respect to a dispersed configuration
of a pressureless cloud of 56Fe dust, with mass per nucleon mFe = 1.6587× 10−24

g. Therefore,

Ebind = (NmFe − M)c2 . (6.43)

With such a definition, Ebind represents a good approximation of the binding energy
of neutron stars with respect to the configuration of a presupernova core from which
the neutron star was formed, via gravitational collapse, as a by-product of the type
II supernova explosion. At given M, it is somewhat smaller than for a softer FPS
EoS. However, the maximum value of Ebind, reached for Mmax, is significantly larger
for the SLy EoS than for a softer FPS one. Binding of the neutron star is due to
gravitational forces and it rises rapidly with M.
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Fig. 6.11. Moment of inertia as a function of mass for classical EoS (FPS and SLy4), nor-
malized to I0 = 1.0× 1045 cgs units. Figure based on data provided by A. Bauswein (LSW
Heidelberg)

Moment of Inertia

Most observed neutron stars are rotating. However, even for the very rapid millisec-
ond pulsar PSR 1937+21, with rotation period P = 1.558 ms, rotation implies only
small changes of stellar structure for neutron stars with M > 1.0 M�. Therefore, for
the description of effects of rotation for observed neutron stars one can use a slow
rotation approximation, in which effects of rotation (assumed to be rigid) are treated
using a lowest order perturbative scheme (see Sect. 7.4). In this approach, one calcu-
lates, in the linear approximation in the angular frequency as measured by a distant
observer, Ω, the total angular momentum of a neutron star, J ∝ Ω. Then, one gets
the moment of inertia for slow, rigid rotation as I = J/Ω. Notice that within the
slow rotation approximation, I is independent of Ω and can be calculated from the
structure of a nonrotating configuration of a neutron star. The values of I are plotted,
vs. M, in Fig. 6.11. At given M, the value of I for the nuclear EoS is significantly
higher than for softer FPS EoS. The difference rises rapidly with increasing M.

6.2.3 Relativistic Mean Field Theory above Saturation

At nuclear densities and beyond, the nuclei overlap so that the entire central core of
a neutron star forms a kind of giant nucleus. The free neutrons dominate the equation
of state. In hadronic matter at densities of several times that of normal nuclear
matter, the nucleon Fermi energy will be sufficiently large that it is energetically
more favorable to some nucleons to transform to heavier baryon species through the
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Table 6.2. Baryon octet and mesonic states relevant for neutron star matter

Particle m (MeV) Spin Isospin B Q S

N 939 1/2 1/2 1 0,1 0
Λ 1115 1/2 0 1 0 –1
Σ 1190 1/2 1 1 –1,0,1 –1
Ξ 1315 1/2 1/2 1 –1,0 –2

σ 800 0 0 0 0 0
ω 782 1 0 0 0 0
� 770 1 1 0 –1,0,1 0

π 139 0 1 0 –1,0,1 0
K+ 494 0 1/2 0 1 1
K0 494 0 1/2 0 0 1
K̄0 494 0 1/2 0 0 –1
K− 494 0 1/2 0 –1 –1

electroweak interaction. In this way, the conserved baryon number is shared among
a greater number of species of lower Fermi energies.

Nucleons have a radius of about 0.8 fm (compare with the charge radius de-
termined by scattering experiments on protons). If such nucleons would be packed
into a cubic lattice to the point of touching, the density would be 0.24 fm−3, or 1.5
times nuclear density. These nucleons are surrounded by a cloud of mesons with an
extension of about double size of the charge radius, i.e. about 2 fm. At a few times
nuclear density, these mesonic clouds overlap and they have to be included in the
interaction between the nucleons. These mesons are built by the vector particles �
and ω, and the scalar particle σ . In this description, hadronic matter can be consid-
ered as a kind of fluid consisting of various types of hadrons, leptons and mesons.
At higher densities, even the hard cores of the nucleons can overlap so that hadronic
matter undergoes a phase transition to the quark–gluon plasma. The exact value for
the density of this transition is still unknown.

The most important baryons in neutron stars are the octet baryons which are
the lowest mass baryons of spin 1/2. They comprise the nucleons and some of
the hyperons. The most important mesons are the scalar σ , the spin-one vector ω
and the spin and isospin vector–isovector �. In a mean-field approximation, the
above mesons mediate the interaction among baryons. The pion and kaon are of
possible interest as condensates. Since baryons and mesons are not themselves the
fundamental particles they were once thought to be, at higher densities the quark
constituents come into play, and QCD is the appropriate theory to deal with. The
hadron–quark transition density in low-temperature matter is, however, still under
debate, values are between 2 and 8 times the nuclear density.

A treatment in terms of a relativistic field theory has some merits (see the
discussion in Glendenning [5]). First of all, it is automatically causal, whereas
the EoS computed on the basis of Schrödinger’s equation is not compelled to be.
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Secondly, the coupling constants of relativistic field theory can easily be related to
the bulk properties of nuclear matter. And finally, at high densities, the asymptotic
freedom of quark matter is naturally built in.

To describe the complex baryonic composition of neutron star matter, the La-
grangian of hadronic matter has to be sufficiently general (in this section we use the
signature convention (+ − −−) of high-energy physics and also the natural units
� = 1 = c, for conversion use �c = 197.33 MeV fm)

L =
∑

B

Ψ̄B[iγµ∂µ − m B + gσBσ − gωBγ
µωµ − 1

2
g�Bγ

µ�µ · τ]ΨB

+1

2
∂µσ∂µσ − 1

2
m2
σσ

2 − κmσ

3
(gσσ)

3 − λ
4
(gσσ)

4

−1

4
ΩµνΩ

µν + 1

2
m2
ωω

µωµ + ζ
4

g4
ω(ω

µωµ)
2

−1

4
Rµν · Rµν + 1

2
m2
� �µ · �µ + ξ

4
g4
� (�

µ · �µ)2

+
∑

L=e,µ

Ψ̄L(iγ
µ∂µ − mL)ΨL . (6.44)

The baryon spinors are denoted byΨB with the adjoint Ψ̄B = Ψ+γ 0, γµ are the Dirac
matrices and τ the Pauli matrices1. In this model for hadronic matter, the baryons
interact via the exchange of σ , ω and �mesons, including also hyperons (Müller and
Serot [5,305,410]). The first line gives the sum of the baryon Lagrangians and their
interactions with the scalar, vector and vector–isovector mesons. The sum is taken
over all the charge states of the baryon octet (p, n, Λ, Σ+, Σ0, Σ−, Ξ−, Ξ0). The
second line contains the Lagrangian of the scalar meson including self-interaction.
Their interactions with the baryons give rise to the attraction. The third line describes
the vector meson which is responsible for the repulsive force between baryons, given
by the massive vector field ωµ with its field tensor

Ωµν = ∂µων − ∂νωµ . (6.45)

The fourth line gives the Lagrangian for the isovector particle which couples to
the isospin of the baryons and is responsible for the isospin symmetry energy,
�µ = (�1

µ, �
2
µ, �

3
µ). Its field tensor is given by

Ra
µν = ∂µ�a

ν − ∂ν�a
µ − g� ε

abc�b
µ�

c
ν . (6.46)

The last line contains the Lagrangian for the leptons (electrons and muons) which
are required for the charge neutrality of neutron star matter. The masses have the
dimension 1/fm, the vector fields also and Ψ̄Ψ has the dimension of a particle
density2.

1 Pauli matrices: τ1 =
(

0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
.

2 1/fm4 = 197.33 MeV/fm3 = 3.5178× 1014 g cm−3 = 3.1616× 1035 dyne/cm2.
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One can regard this Lagrangian as an effective one in which the quantum effects
of the vacuum fluctuations have already been included. For this reason, there are
a number of parameters which describe the effective coupling.

With this effective Lagrangian one can calculate the density effects in nuclear
matter. Generally, one uses the mean field approach. In uniform nuclear matter,
the ground-state expectation value of the spatial components of the ω meson will
vanish. We only have 〈ω0〉 as expectation value, which is usually denoted by ω.
Similarly, for the � meson field, only the time-like neutral component 〈�3

0〉 does not
vanish. Also, the expectation value of the σ field is denoted by σ �= 0, in general.
A nonvanishing expectation value in σ leads to a reduction of the nucleon mass m B,
m∗ = m B − gσσ .

This Lagrangian density is a function of fields Φ(x) and their derivatives ∂µΦ,
L = L[Φ(x), ∂µΦ(x)]. The relativistic action is therefore dimensionless

S =
∫ t1

t0

d4x L[Φ(x), ∂µΦ(x)] . (6.47)

The variation of this action produces then the Euler–Lagrange equations

∂L

∂Φ(x)
− ∂µ ∂L

∂(∂µΦ(x))
= 0 . (6.48)

Since the Lagrangian depends on several fields, there is one such equation for
each field. In distinction to the Schrödinger equation, this formalism guarantees the
covariance, and therefore the Lorentz invariance of the theory.

In particular, the invariance of this action against translational symmetry

x′µ = xµ + εµ (6.49)

leads to conservation of the energy–momentum tensor

Tµν ≡ ∂L

∂(∂µΦ(x))
∂νΦ − ηµν L (6.50)

implied by the field equations

∂µTµν = 0 , ν = 0, 1, 2, 3 . (6.51)

The expectation values of the energy–momentum tensor provide then the energy
density and the pressure of the system.

The σ–ω Model

In order to illustrate the procedure for calculating the EoS we consider first a much
simpler model. The interaction by means of scalar particles and vector particles (so-
calledσ–ωmodel) goes back to Johnson and Teller (1955), Duerr (1956) and Walecka
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(1974). This model is based on four particles, two nucleons, Ψ = (Ψp, Ψn), a scalar
meson (for the Yukawa potential) and the omega vector meson for the repulsive force
(self-interaction is neglected)

L = Ψ̄ [iγµ(∂µ + igωωµ)− (mN − gσσ)]Ψ
+1

2
∂µσ∂µσ − 1

2
m2
σσ

2 − 1

4
ωµνω

µν + 1

2
m2
ωω

µωµ . (6.52)

The Euler–Lagrange equations for the mesons are

(�+ m2
σ )σ(x) = gσ Ψ̄Ψ(x) (6.53)

and for the vector meson

(�+ m2
ω)ωµ(x)− ∂µ∂νων(x) = gω Ψ̄ γµΨ . (6.54)

In the mean field approximation, the values of the mesonic fields are given in terms
of their expectation values with the result

m2
σ 〈σ〉 = gσ 〈Ψ̄Ψ 〉 (6.55)

m2
ω〈ωµ〉 = gω 〈Ψ̄ γµΨ 〉 . (6.56)

The nucleon fields themselves are momentum eigenstates,Ψ(x) = Ψ(k) exp(−ik·x).
The Dirac equation leads then to the equation

[γµ(kµ − gωω
µ)− (m − gσ 〈σ〉)]Ψ(k) = 0 . (6.57)

With the definition of Kµ ≡ kµ − gω〈ωµ〉, this leads to the eigenvalue equation

(KµKµ − m∗2) Ψ(K) = 0 . (6.58)

Here we introduced the effective mass m∗ ≡ m− gσ 〈σ〉. From this we can calculate
the four-vector k = (k0,k) by

e(k) ≡ k0 = K 0 + gω〈ω0〉 . (6.59)

Hence the nucleon eigenvalues of the three-momentum k for particles and antipar-
ticles are

e(k) = E(k)+ gω〈ω0〉 (6.60)

ē(k) = E(k)− gω〈ω0〉 , (6.61)

with

E(k) = K0 =
√
(k− gωω0)2 + (m − gσσ)2 . (6.62)

We have found now the Dirac momentum eigenvalues in terms of the meson fields.
But these meson fields are also given in terms of the Dirac charges, this poses
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therefore a self-consistent problem. Let us denote the expectation value of an operator
in the single-particle state as follows (Ψ̄ΓΨ)k. Then the expectation value of this
operator in the ground state of the many-nucleon system is given by

〈Ψ̄ΓΨ 〉 =
∑∫

d3k

(2π)3
(Ψ̄ΓΨ)kΘ(µ− e(k)) . (6.63)

The sum is understood as summation over all spin and isospin states of the occupied
momentum states. Θ(x) is the step-function, and we denote the Fermi energy by
µ (also called the chemical potential). The ground-state expectation values are
momentum integrals over all filled states with eigenvalues e(k) below the chemical
potential. The fermion surface is described by the relation e(k) = µ.

There is a tricky method to calculate the expectation values (Glendenning [5]).
The Hamiltonian corresponding to the Dirac equation is

HD = γ0

[
γ · k+ gωγ

µωµ + m∗
]
. (6.64)

The expectation value in a single state is therefore

(Ψ+HDΨ)k = K0(k) = E(k)+ gωω0 . (6.65)

Now we take a derivative of the left-hand side with respect to any variable ζ in the
Hamiltonian

∂

∂ζ
(Ψ+HDΨ)k =

(
Ψ+

∂HD

∂ζ
Ψ

)
k

(6.66)

Since Ψ(k) is an eigenfunction, it does not depend on ζ . As an example we take the
derivative with respect to ω0 which yields the normalization

(Ψ+Ψ)k = 1 (6.67)

and therefore, we find for the baryon density

nB = 〈Ψ+Ψ 〉 = 4
∫ kF

0

d3k

(2π)3
Θ(µ− e(k)) = 2k3

F

3π2
. (6.68)

This relates the Fermi momentum to the baryon density. In the same manner one can
take the derivative with respect to ki and can calculate other expectation values

(Ψ̄ γ iΨ)k = ∂

∂ki
E(k) (6.69)

and hence

〈Ψ̄ γ iΨ 〉 = 4
∫ kF

0

d3k

(2π)3
∂E(k)
∂ki

Θ(µ− e(k)) = 0 . (6.70)



212 6 Neutron Stars

For the source term of the sigma meson we also need the scalar density Ψ̄Ψ . Its
expectation value follows from the derivative with respect to m

(Ψ̄Ψ)k = ∂E

∂m
(6.71)

The result is now

ns = 〈Ψ̄Ψ 〉 = 2

π2

∫ kF

0
k2 dk

m − gσ 〈σ〉√
k2 + (m − gσ 〈σ〉)2

. (6.72)

Combining these results, we find the implicit equations for the expectation values
σ and ωµ (in the following we identify the fields with their expectation values,
σ ≡ 〈σ〉)

gσσ =
(

gσ
mσ

)2 2

π2

∫ kF

0
k2 dk

m − gσσ√
k2 + (m − gσσ)2

(6.73)

gωω0 =
(

gω
mω

)2

nB (6.74)

ωi = 0 . (6.75)

The first equation is a transcendental equation for σ . In fact one can show that the
low-density and high-density limits can be approximated by means of

gσσ � m

(
gσk

πmσ

)2 [
1+

(
gσk

πmσ

)2]−1

. (6.76)

Therefore, the effective mass m∗ = m−gσσ has the vacuum value m at low densities
and it tends to zero at high densities.

To compute the equation of state in this model we use the expressions for the
energy–momentum tensor whose expectation value in the rest frame of matter is
diagonal

〈Tµν〉 = diag(�, P, P, P) . (6.77)

These expectation values can be expressed in terms of the Lagrangian

� = −〈L〉 + 〈Ψ̄ γ0k0Ψ 〉 (6.78)

P = 〈L〉 + 1

3
〈Ψ̄ γi kiΨ 〉 . (6.79)

The expectation values of the mesonic fields are independent of spacetime. The
expectation value for the Lagrangian is simply given by

〈L〉 = −1

2
m2
σσ

2 − 1

2
m2
ωω

2
0 . (6.80)
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From the above results we also get

〈Ψ̄ γ0k0Ψ 〉 = 2

π2

∫ kF

0
k2 dk e(k)

= 2

π2

∫ kF

0
k2 dk

[
gωω0 +

√
k2 + (m − gσσ)2

]
= m2

ωω
2
0 +

2

π2

∫ kF

0
k2 dk

√
k2 + (m − gσσ)2 . (6.81)

Similarly, we have

(Ψ̄ γΨ)k = ∂E(k)
∂k

(6.82)

and therefore

〈Ψ̄ γ · kΨ 〉 = 2

π2

∫ kF

0

k4√
k2 + (m − gσσ)2

dk . (6.83)

This yields for the pressure

P = −1

2
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m2
ωω

2
0 +
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and for the energy density

� = 1

2
m2
σσ

2 + 1

2
m2
ωω

2
0 +

2

π2

∫ kF

0
k2 dk

√
k2 + (m − gσσ)2 . (6.85)

The first terms are contributions from the mesonic fields and the integrals give the
contributions from the filled up nucleon states. For σ = 0 = ω0, we recover the
standard expressions for a free fermion gas (see, e.g. the expressions for the free
electron gas in the last section). The expression for the pressure shows explicitly that
scalar mesons produce a softening in the pressure (negative contribution), while
the vector meson contributes a hardening (positive contribution). In this way we
obtain the equation of state as �(n) and P(n). n can be numerically eliminated in
order to obtain P(�). Because ns ∝ k3, the vector terms dominate at high density
with P → � from below. As a consequence, the speed of sound

√
dP/d�→ 1 from

below, i.e. this theory is causal. In addition, the coupling parameters in this theory
are then related to the observational parameters of nuclear matter.

The Isospin Current

The isospin of the baryons produces an additional interaction. The above theory has
to be extended to incorporate an isospin restoring interaction, an effect which is



214 6 Neutron Stars

visible in the mass formula. We need to introduce a meson that has as its source the
three-component of the isospin. For this purpose one can use the rho meson which
appears as an isospin triplet field with the isospin current

Iν = �µ × �νµ . (6.86)

The isospin current of the nucleon fields is then

Iµ = 1

2
Ψ̄ γµτΨ (6.87)

with the isospin charge

I0
3 =

1

2
Ψ̄ γ 0τ3Ψ = 1

2
(Ψ+p Ψp − Ψ+n Ψn) = 1

2
(n p − nn) . (6.88)

This charge density is the source for the mean mesonic field

g�〈�0
3〉 =

(
g�
m�

)2 1

2
(n p − nn) (6.89)

〈�k
3〉 = 0 . (6.90)

So the asymmetry is now responsible for a nonvanishing rho field.

A Complete Hadronic Model

When the self-interaction in the scalar field is included, everything goes a bit more
complicated. But the integrals can still be done numerically (see Glendenning [5]). In
the solutions of the full Euler–Lagrange equations the mesonic fields are replaced by
their mean values in static uniform matter, and the nucleon currents are expressed in
terms of their ground-state expectation values generated in the presence of the mean
meson fields. This procedure is called the mean field approximation of nuclear
field theory. The coupling constants are related to the parameters of nuclear matter
at saturation (Table 6.3). In this sense, the equation for the fermion field of each
species can be given in the momentum space[

γµ
(

kµ − gωBωµ − 1

2
g�Bτ3�3,µ

)
− (m B − gσBσ)

]
ΨB(k) = 0 . (6.91)

The eigenvalues of particle and antiparticle are similarly given

eB(k) = gωBω0 + g�B�03 I3B +
√

k2 + (m B − gσBσ)2 (6.92)

ēB(k) = −gωBω0 − g�B�03 Ī3B +
√

k2 + (m B − gσBσ)2 . (6.93)

I3B is the isospin three-component of each baryon. Here we have used that only
the three-component of the isospin field survives in the mean-field approximation.
Similarly, the meson field equations are
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Table 6.3. The five coupling constants that yield the correct binding energy B/A = −16.3
MeV, the saturation density ns = 0.153 fm−3 and the symmetry energy aasym = 32.5 MeV
as a function of the compressibility and the effective mass m∗ (Glendenning [5])

K m∗/m (gσ/mσ )2 (gω/mω)2 (g�/m�)2 κ λ

MeV fm2 fm2 fm2 ×100 ×100

200 0.70 12.684 7.148 4.410 0.5610 –0.6986
200 0.75 11.299 5.696 4.656 0.8784 –1.0098
200 0.80 9.926 4.233 4.876 1.4602 –1.2412
250 0.70 12.230 7.148 4.410 0.4312 –0.4103
250 0.75 10.727 5.696 4.656 0.6275 –0.3409
250 0.80 9.134 4.233 4.876 0.8804 0.6917
300 0.70 11.785 7.148 4.410 0.2948 –0.1071
300 0.75 10.177 5.696 4.656 0.3601 0.3722
300 0.80 8.403 4.233 4.876 0.2480 2.7997

ω0 =
∑

B

gωB

m2
ω

nB (6.94)

�03 =
∑

B

g�B

m2
�

I3BnB (6.95)

m2
σσ = −κmσgσ (gσσ)

2 − λgσ (gσσ)
3

+
∑

B

2JB + 1

2π2
gσB

∫ kB

0

m B − gσBσ√
k2 + (m B − gσBσ)2

k2 dk . (6.96)

The energy density and the pressure now follow in the same manner as in the σ–ω
model from the expectation value of the energy–momentum tensor

� = 1

2
m2
σσ

2 + 1

2
m2
ωω

2
0 +

1

2
m2
��

2
03 +

1

3
κmσ (gσσ)

3 + 1

4
λ(gσσ)

4

+
∑

B

2JB + 1

2π2

∫ kB

0

√
k2 + (m B − gσBσ)2 k2 dk (6.97)

P = −1

2
m2
σσ

2 + 1

2
m2
ωω

2
0 +

1

2
m2
��

2
03 −

1

3
κmσ (gσσ)

3 − 1

4
λ(gσσ)

4

+1

3

∑
B

2JB + 1

2π2

∫ kB

0

k4 dk√
k2 + (m B − gσBσ)2

. (6.98)

The nonlinearities in the sigma field, given by the coupling constants κ and λ, and
the nonvanishing expectation value of the rho meson also contribute to the equation
of state. Here, we have neglected the self-interaction terms for the vector fields. The
number density of each species follows from

nB = 2JB + 1

6π2
bBk3

B (6.99)
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Fig. 6.12. EoS for pure
neutron matter (n), neu-
trons in equilibrium with
protons and electrons
(n+p), and in equilibrium
with hyperons (n+p+H).
Here K = 240 MeV and
m∗ = 0.78 m. Figure
adapted from [5]

for spin JB and the baryon charge bB. The total density is then n = ∑
B nB. The

above two equations determine the equation of state in parametrized form. The
solutions of these nonlinear relations result in the Fig. 6.12 for various values of the
compressibility and the effective mass for the most probable EoS).

In any theory having a vector meson interaction one finds for large baryon density
the asymptotic behavior P → �. As in the σ–ω model, this can explicitly be shown
for the complete hadronic model. The pressure approaches the energy density from
below, as required by causality arguments – the speed of sound is always less than
the speed of light in such theories. In fact, the correct behavior will be even softer,
since at high densities hadronic matter makes a transition to quark matter, where
P → �/3 in the high-density limit.

The low-density limit of this theory is of no interest (i.e. below saturation density).
In this limit, the ground state of hadronic matter is no longer a uniform gas of
nucleons. As discussed above, it is more favorable for nucleons to clump together
in the form of nuclei and to form a lattice of nuclei filled up with free neutrons and
relativistic electrons. By lowering the baryon density, the system undergoes a phase
transition.

6.2.4 Analytical Fits to EoS

For numerical purposes, it is sometimes useful to have suitable analytical fits to
EoS. Haensel and Potkhin [188] have recently given such a scheme. A particular
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EoS is usually presented in the form of a table containing a grid of calculated matter
constituents divided by c2, � = ε/c2, baryon number density n and pressure P. The
EoS {�i, ni , Pi}, i = 1, . . . , N , is then interpolated between the tabulated forms to
get a one-parameter form P = P(n) and � = �(n). Depending on the interpolation
schemes, different results for the mass–radius relation are in general obtained. Since
the first law of thermodynamics requires

P = nc2 d

dn

(�
n

)
(6.100)

we may invert this relation to get

�

n
= �∗

n∗
+

∫ n

n∗

P(n′)
n′c2

dn′ , (6.101)

where n∗ is the value of n at the neutron star surface. This is set equal to the density of
56Fe at zero pressure and zero temperature, the corresponding value�∗ = 7.6 g cm−3.
In the outermost neutron star layers, we fix the mass per nucleon, m0 = 1.66×10−24

g, so that n∗ = �∗/m0 = 4.73494× 1024 cm−3.
As we have seen, there are three qualitatively different interior regions in a neu-

tron star, separated by phase transition points: the outer crust (consisting of nuclei and
electrons), the inner crust (consisting of electrons, nuclei and dripped neutrons), and
the core which contains neutrons, electrons and protons, µ− mesons, and possibly π
and K condensates, some hyperons, or even quark matter. Haensel and Potekhin [188]
rely their fit on the tabulated EoS FPS (or SLy) below � > 5 × 1010 g cm−3. At
extremely low densities, the EoS would depend on temperature, this can however be
neglected for fitting. They propose the following fit with ξ = log(�[g cm−3]) and
ζ = log(P[dyn cm−2])

ζ = a0 + a2ξ + a3ξ
3

1+ a4ξ
F0[a5(ξ − a6)]

+(a7 + a8ξ) F0[a9(a10 − ξ)]
+(a11 + a12ξ) F0[a13(a14 − ξ)]
+(a15 + a16ξ) F0[a17(a18 − ξ)] . (6.102)

The parameters ai are given in Table 6.4. The typical fit error is 1%–2%. The function
F0 is the Fermi function

F0(x) = 1

exp(x)+ 1
. (6.103)

The comparison of the fit and the data is presented in Fig. 6.13. The typical fit
error of � is about 1% at η > 10−7 (corresponding to ξ > 3), and the max-
imum error < 4% occurs near the neutron drip and crust–core phase transi-
tions.

It is also instructive to treat � and P as a function of baryon number density n.
For this one can use the following fit
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Table 6.4. Analytic nuclear EoS [188]

i ai,FPS ai,SL y i ai,FPS ai,SL y

1 6.22 6.22 10 11.8421 11.4950
2 6.121 6.121 11 –22.003 –22.775
3 0.006004 0.005925 12 1.5552 1.5707
4 0.16345 16.326 13 9.3 4.3
5 6.50 6.48 14 14.19 14.08
6 11.8440 11.4971 15 23.37 27.80
7 17.24 19.105 16 –1.508 –1.653
8 1.065 0.8938 17 1.79 1.50
9 6.54 6.54 18 15.13 14.67

Fig. 6.13. Analytic fits to neutron star EoS for nonrotating configurations. In the outer crust, the
EoS is modified by finite temperature effects. Figure adapted from Haensel and Potekhin [188]

�

nm0
= 1+ p1n p2 + p3n p4

(1+ p5n)2
F0[−p6(log n + p7)]

+ n

8× 10−6 + 2.1n0.585
F0[p6(log n + p7)] . (6.104)

n is given in units of baryons fm−3.
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In Fig. 6.14 we plot the energy density as a function of n. For n < 0.1 fm−3, �
is proportional to n. Only in the core, the total energy density exceeds considerably
the rest-mass energy density. In the outer crust, the value of Γ depends quite weakly
on density. At 108 ≤ � ≤ 3 × 1011 g cm−3, this value would be Γ ≈ 4/3 if A, Z
values were fixed, because in this case P is mainly determined by the pressure of
ultrarelativistic electron gas which behaves as ∝ (Z�/A)4/3. For example, Γ ≈ 4/3
within each shell with constant A and Z. However, the compressible liquid drop
model used by [136] effectively smoothes the discontinuities caused by transitions
from one to another (A, Z) species with increasing density, which leads to an effective
continuous increase of the A/Z ratio and corresponding decrease of Γ , seen in
Fig. 6.14.

A dramatic drop in Γ occurs at neutron drip threshold, which corresponds to
strong softening of the EoS. The analytical expression somewhat smoothes this drop.
The behavior of Γ in the inner crust results from an interplay of several factors,
with stiffening due to interaction between dripped neutrons, a softening effect of
the coexistence of neutron gas and nuclear matter, and the softening Coulomb
contribution.

At the crust–core interface, matter strongly stiffens, and Γ jumps from ≈ 1.7
to ≈ 2.2, which results from disappearance of nuclei. The analytical approximation
also smoothes this jump, though reflects the stiffening. This approximation is also
smooth across a small discontinuous drop of Γ at � ≈ 2 × 1014 g cm−3, where
muons start to replace a part of ultrarelativistic electrons. However, the electrons and
muons give only minor contribution to the pressure (and therefore behavior of Γ ) in
the core, because the main contribution comes from interactions between nucleons.

6.3 Neutron Star Models

Now having such equations of state at hand for high densities, we can study the
corresponding solutions of the TOV equations. These solutions are called neutron
stars, though the interior does not entirely consist of neutron matter. Neutron stars are
bound by gravity, not by nuclear forces. Gravity is the binding force for large objects.
This binding energy per nucleon due to gravity is of the order of 160 MeV/A com-
pared to the binding energy of nuclear matter at its saturation density � 16 MeV/A.
In addition, gravity compresses the matter of neutron stars to densities above the
nuclear density. At these high densities, the nucleons feel only the repulsive force.

6.3.1 Hadronic Models

Chemical Composition of Neutron Stars

Neutron stars are born hot, at temperatures in the range of 20 MeV. Neutrinos
and photons produced in the interior diffuse however to the surface, leave the star,
lowering thereby its energy content. In the hot state, also hyperons and mesons are
produced by weak interactions. The temperature falls however in a short time below
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Fig. 6.14. Dependence of
� and Γ as a function of
n for the analytic neutron
star EoS [188]. Upper
panel: Dependence of �
as a function of n for the
analytic neutron star EoS
(rarefied data (symbols)
and the fit (lines)), with the
relative difference between
the data and fit. Lower
panel: Adiabatic index Γ
for SLy and FPS EoSs.
Solid line: analytical ap-
proximation (SLy); dotted
line: precise values (SLy);
dot-dashed line: analytical
approximation (FPS). Fig-
ures adapted from Haensel
and Potekhin [188]
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Fig. 6.15. The weak
flavor changing reaction
at the quark level

109 K. In the hot phase, the fermions are not degenerate so that strong interactions
might occur

N + N → N +Λ+ K . (6.105)

Some of these particles decay over various channels

K 0 → 2γ (6.106)

K− → µ− + ν̄ (6.107)

µ− + K+ → µ− + µ+ + ν→ 2γ + ν . (6.108)

As the temperature falls, these reactions are no longer possible. However, the growth
of strangeness still continues through direct weak flavor changing reactions such as
shown in Fig. 6.15

n + N + µ− → N +Σ− + 2γ + ν . (6.109)

A particle type is only populated, if its chemical potential exceeds its lowest
energy state in the medium. In lowest approximation, this would be its vacuum
mass. The masses of the particles are however affected by their interactions with
other particles in the medium, this in general lowers the mass of the particle. From
this we expect that superdense matter will be populated by many baryonic species,
possibly even with quarks.

There could also exist a condensate of charged negative mesons. In particular,
K− condensates have been discussed in the literature as a possible high-density phase
of nuclear matter. Being a boson, all kaons could populate the same momentum state.
The condensation by π− may be another possibility.

These particles can then no longer decay, since Pauli blocking occurs. For tem-
peratures below 109 K, the star is cold and has reached its ground state. Because
neutrinos are lost from the star, their chemical potential vanishes, µν = 0 for all
flavors. As a consequence, the strangeness quantum number is not conserved in the
star. There are therefore only two conserved charges with their associated chemical
potentials – the baryon number and electric charge.

As a consequence, neutron stars are not made of pure neutrons, as originally pro-
posed. Some neutrons will beta-decay until equilibrium between neutrons, protons
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and electrons is reached. This is expressed by the relationship µp = µn −µe. Since
the chemical potentials grow with increasing density, other thresholds are reached,
and additional particle species are populated (Fig. 6.16). In a Fermi gas model, the
thresholds are simply the masses of the particles. For example, the Λ hyperon will
be in equilibrium in the star when the neutron chemical potential attains the value of
the lambda mass (mΛ = 1113 MeV). In this respect, the isospin symmetry energy
arising from the coupling of the baryons isospin to the neutral rho meson is very
important. It favors conversion of neutrons to baryons of opposite isospin. For this
reason, one has to work with the complicated Lagrangian of field theory discussed
in the previous section.

The particle composition is shown in Fig. 6.16. At densities below saturation, the
charge-neutral matter is almost pure neutrons with a small admixture of protons and
electrons. With increasing density, the electron Fermi energy increases to the muon
mass, and the muons will be populated. Hyperon thresholds are reached at about
three times nuclear density. At higher density, these hyperons build an important
population in neutron star matter.

The above neutron star models show that the appearance of hyperons is connected
with the increasing density in neutron star interiors. Bednarek and Manka [67] have
recently discussed an equation of state of neutron star matter including strange
baryons. The effects of the strength of hyperon–hyperon interactions on the equations
of state have been analyzed. These calculations indicate that the change of the

Fig. 6.16. Population of various particles in hadronic stars as a function of baryon density.
Nuclear density corresponds to 0.153 fm−3. Figure adapted from Glendenning [5]
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hyperon–hyperon coupling constants affects the chemical composition of a neutron
star. The corresponding numerical hyperon star models exclude a large population
of strange baryons in the stellar interior.

Masses and Radii for Hadronic Stars

As with white dwarfs we can now build sequences of solutions of neutron stars by
integrating the TOV equations with the central density as parameter. The central
density of stable neutron stars lies between about half and 10 times nuclear energy
density (2.5 × 1014 g cm−3). In Fig. 6.12 we compare the equation of state for
pure neutron matter and stable neutron matter including hyperons (H). With the
addition of a new baryon species, the EoS is softened, since the Fermi pressure of
neutrons and protons near the top of their Fermi seas is relieved by allowing them to
hyperonize to unoccupied low-momentum states. For these EoS, the TOV equations
can be integrated to yield the masses and radii as function of the central density (Fig.
6.17).

Due to the softening by hyperons, neutron stars containing hyperons are more
compact and reach a lower upper mass limit. Remember that stability is lost when
the slope in M(�c) becomes negative. Below the minimum mass of neutron stars
and for all lower central densities down to the white dwarf maximum mass, the
fundamental vibrational mode is unstable. If a stable neutron star below the mass
limit were to accrete matter so as to move beyond the mass limit, the unstable
fundamental vibrational mode would destroy it, and the object would collapse to
form a black hole. This upper mass limit is around 1.5 M� for neutron stars based

Fig. 6.17. Neutron star radii as a function mass for pure neutron matter vs. hyperon matter
(dots). The upper mass limit is lowered by hyperonization
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on hyperonization. For that reason it has been argued that the observed masses
M � 1.4 M� are in fact near the upper mass limit.

In Fig. 6.17, the mass–radius relation is shown for hadronic stars. It is a re-
markable fact that the radius stays roughly constant in the intermediate mass range
0.5 ≤ M ≤ 1.3 M� with typical values of R � 13.5 km.

6.3.2 Quark Matter Cores

If a neutron star gets dense enough, the quarks inside the neutrons and protons are
liberated and a cold quark liquid forms. This form of matter has remarkable similari-
ties to the state of electrons in a metal. This phenomenon can lead to superconductive
states, for quark matter this phase is called color-superconductivity.

Phase Diagrams

In principle, we should be able to calculate the behavior of high-density matter. We
have a theory for strong interaction, the QCD, but it is difficult to work with this
theory in the low density limit.

Along the horizontal axis of Fig. 6.18, the temperature is zero, and density rises
from the onset of nuclear matter through a transition to quark matter. Compact
stars are found in this region. Along the vertical axis, the temperature rises. At
low temperature, we find the hadronic gas, in which the quarks are confined into

Fig. 6.18. Phase diagram for two light quarks and a strange quark. At sufficiently high densities
cold quark matter is in the CFL phase, in which quarks of all three colors and flavors form
Cooper pairs. RHIC and SIS are the names of heavy-ion collider experiments, which probe
QCD at high temperature. While heavy-ion collider experiments can only probe the phase
transition at high temperature, the cores of neutron stars are sensitive to the low temperature
region, where the 2SC and CFL phase are probably the most important ones



6.3 Neutron Star Models 225

neutrons and protons. At higher temperatures, this phase makes a transition to the
quark–gluon plasma (QGP), in which quarks and gluons are unconfined. This is the
region explored by high-energy heavy-ion colliders RHIC at Brookhaven, LHC at
CERN and SIS at GSI (Darmstadt).

The low-temperature region is where quark matter will occur in neutron stars.
One expects that some of the quarks will pair up, forming Cooper pairs, similar to
electrons in metals. Cooperic pairing is a generic phenomenon of fermions: electrons
and quarks are both fermions, with some attractive interaction between them.

A Few Words on Superconductivity

The understanding of superconductivity was advanced in 1957 by three American
physicists John Bardeen, Leon Cooper, and John Schrieffer, through their theories
of superconductivity, known as the BCS theory. The BCS theory explains supercon-
ductivity at temperatures close to absolute zero. Cooper realized that atomic lattice
vibrations were directly responsible for unifying the entire current. They forced the
electrons to pair up into teams that could pass all of the obstacles which caused
resistance in the conductor. These teams of electrons are known as Cooper pairs.
Cooper and his colleagues knew that electrons which normally repel one another
must feel an overwhelming attraction in superconductors. The answer to this prob-
lem was found to be in phonons, packets of sound waves present in the lattice as it
vibrates.

According to the theory, as one negatively charged electron passes by positively
charged ions in the lattice of the superconductor, the lattice distorts. This in turn
causes phonons to be emitted which forms a trough of positive charges around the
electron. Before the electron passes by and before the lattice springs back to its
normal position, a second electron is drawn into the trough. It is through this process
that two electrons, which should repel one another, link up. The forces exerted by the
phonons overcome the electrons’ natural repulsion. The electron pairs are coherent
with one another as they pass through the conductor in unison. The electrons are
screened by the phonons and are separated by some distance. When one of the
electrons that make up a Cooper pair and passes close to an ion in the crystal lattice,
the attraction between the negative electron and the positive ion cause a vibration to
pass from ion to ion until the other electron of the pair absorbs the vibration. The net
effect is that the electron has emitted a phonon and the other electron has absorbed
the phonon. It is this exchange that keeps the Cooper pairs together. It is important to
understand, however, that the pairs are constantly breaking and reforming. Because
electrons are indistinguishable particles, it is easier to think of them as permanently
paired.

Fermions are particles that obey the Pauli exclusion principle, which says that
no two fermions can be in the same state. So as you add more and more fermions to
a finite-sized box, you have to put them in higher and higher momentum states. For
noninteracting fermions at zero temperature you would just end up with a “Fermi
sea” of filled states: all states with energy less than the Fermi energy EF = µ are
filled, and all states above EF are empty. But if there is an attractive interaction
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between the fermions, then things are very different. There is a state of lower free
energy than a simple Fermi surface. That state is called the “BCS” state, named
after Bardeen, Cooper, and Schrieffer, who first identified it, and it arises from
a complicated quantum-coherent superposition of Cooper pairs of particles (and
holes).

In the case of electrons, their dominant interaction is electrostatic repulsion, and
it is only the presence of a background lattice of positively charged ions that allows
additional attractive phonon-mediated interactions to exist. The resultant Cooper
pairing is rather fragile, and easily disrupted by thermal fluctuations, hence metals
only become superconducting at very low temperatures. The condensate of Cooper
pairs of electrons is charged, and as a result the photon, which couples to electric
charge, becomes massive. Superconducting metals therefore contain neither electric
nor magnetic fields. A perfect conductor cannot contain electric fields (the charges
would rearrange themselves to cancel it), but the special thing about a superconductor
is that it expels magnetic fields (known as the Meissner effect).

Color Superconductivity of Quarks

For quarks things are very different. The dominant interaction between quarks is the
strong interaction, described by QCD, which is very attractive in some channels (after
all, QCD binds quarks together to form baryons). This leads us to expect that quarks
will form Cooper pairs very readily and that quark matter will generically acquire
a condensate of Cooper pairs. Since pairs of quarks cannot be color-neutral, the
resulting condensate will break the local color symmetry, making the gluons massive.
We call this “color superconductivity.” Note that the quark pairs play the same role
here as the Higgs particle does in the standard model: the color-superconducting
phase can be thought of as the Higgs phase of QCD.

Color Superconducting Phases

Color-superconducting quark matter can come in a rich multiplicity of different
possible phases, based on different pairing patterns of the quarks. This is possible,
because quarks come in three different colors, and at the density of a compact star
core we expect three different flavors: up, down, and strange. Recent work has
concentrated on calculating which type of pairing is favored at which density. This
is a complicated problem, in which one must take into account the requirement that
bulk matter be neutral with respect to both electric and color charge, as well as
equilibration under the weak interaction processes that can turn one quark flavor
into another, and finally the strange quark mass. The results so far, starting at the
highest densities and working down, are roughly this:

– Highest densities: color-flavor-locked (CFL) quark pairing, in which all three
flavors participate symmetrically. CFL quark matter has many special properties,
including the fact that chiral symmetry is broken by a new mechanism: the quark
pairs themselves, instead of the more conventional chiral condensate 〈q̄q〉. There
may be kaon condensation.
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– Very high densities: Gapless CFL, in which holes start to open up in the CFL
pairing pattern, leaving some quarks unpaired.

– Middle high densities: unknown. Many possibilities have been suggested, includ-
ing crystalline pairing, two-flavor pairing (2SC), single-flavor pairing, color-spin
locking, etc.

We know what phase is favored in the limit of infinite density (CFL phase), but
the nature of the pairing in quark matter at realistic neutron-star densities is still
a vigorously debated question.

Unpaired Quarks at High Densities

At densities of about twice nuclear density hyperons appear in neutron star matter.
This is called the hadronic phase (HP) of neutron star matter. At densities much
above the nuclear density this hadronic phase is allowed to undergo a phase transition
to the deconfined quark matter phase (QP). Quark matter consists of u, d and s
quarks, as well as electrons in weak equilibrium

d → u + e− + ν̄e (6.110)

s → u + e− + ν̄e (6.111)

s + u ↔ d + u . (6.112)

Quark matter is therefore described in terms of four chemical potentials µu , µd , µs

and µe which must satisfy the relations

µs = µd = µu + µe . (6.113)

The chemical potential of neutrinos vanishes, since neutrinos can escape from the
interior of the star. This relation reduces therefore the number of chemical potentials
to two independent ones. It is appropriate to choose the pair (µn, µe) with

µn ≡ µu + 2µd = 3µu + 2µe , (6.114)

or

µu = 1

3
(µn − 2µe) (6.115)

and

µs = µd = 1

3
(µn + µe) . (6.116)

In a pure quark phase one has to require the charge-neutrality of the quark phase

�Q P
c = 2

3
nu − 1

3
nd − 1

3
ns − ne = 0 . (6.117)
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This fixes the chemical potential of the electrons in terms of the chemical potential
µn . The EoS is then parametrized by only one chemical potential, say µn .

To calculate the EoS of the QP the effective mass bag model is applied [355],
which is based on the MIT bag model for hadrons [119]. The Lagrangian of quan-
tum chromodynamics (QCD) can be solved only numerically on a lattice and only
under conditions which are not relevant to the cold matter of neutron stars. One can
gain however some insights using a model of quark confinement in terms of the
MIT bag model which was invented to understand the hadronic masses in terms of
their quark constituents. The true vacuum of QCD is assumed to have the property
that free quarks are excluded. Within the hadronic volume, however, the vacuum
must be expelled, and this costs energy. This energy is called the bag constant
and is denoted by B. The presence of quarks in a volume V leads therefore to
an energy BV . In addition there is also kinetic energy associated with the pres-
ence of quarks in a volume. For hadrons it is assumed that the quarks can move
freely in a spherical volume. For quark matter, energy associated with boundaries
is unimportant compared to the energy content of the interior: we can assume that
the quarks are just fermions. Therefore, the energy density and pressure of quark
matter will consist of the kinetic motion of the quarks and the contribution of
the confining bag. The optimum value of the bag constant B that can account for
hadronic masses is B1/4 = 145 MeV. This might however change for quark mat-
ter so that we consider B as a free constant of the model. In fact, B must exceed
a certain minimum value in order that the energy per baryon number fits the value
of iron.

In the MIT bag model, the quarks assume an effective mass by means of their
interaction with a gluon background (one-loop approximation)

m∗
q(µq) = mq

2
+

√
m2

q

4
+ g2µ2

q

6π2
, (6.118)

with the quark mass mq of flavor q and the strong coupling constant g. Similarly
to what we have found in the mean field theory of nucleon matter, baryon number
density n, energy density � and pressure P are given by the expressions

n = 1

3

∑
q

Nq

2π2

∫ ∞

0
k2 dk

[
n(k, µq)− n(k,−µq)

]
(6.119)

ε =
∑

q

Nq

2π2

∫ ∞

0
Eq k2 dk

[
n(k, µq)+ n(k,−µq)

]+ B (6.120)

P = 1

3

∑
q

Nq

2π2

∫ ∞

0
k
∂Eq(k)

∂k
k2 dk

[
n(k, µq)+ n(k,−µq)

]− B (6.121)

where

Eq(k) =
√

m2
q + k2 (6.122)
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is the quark kinetic energy, and

n(k, µq) = 1

exp[(Eq(k)− µq)/kBT ] + 1
(6.123)

is the Fermi distribution for temperature T . The sum extends over all quark flavors
with degree of freedom Nq = 2 × 3 for two spin states and three color states. The
factor 1/3 occurs in the density, since there are three quarks per baryon. The bag
constant shifts the energy by a positive amount per unit volume in the deconfined
state relative to the true vacuum, but it shifts the pressure by a negative amount,
since a vacuum energy represents a negative pressure.

These expressions can be evaluated in the zero-temperature limit, since the
distribution functions become step functions with kq as the Fermi momentum of
flavor q. One has just to remember the integral for the calculation of the pres-
sure ∫ kq

0

k4 dk√
m2 + k2

(6.124)

= 1

4

⎡⎣k3
q

√
k2

q + m2 − 3

2
m2k2

q

√
m2 + k2

q +
3

2
m4 ln

⎛⎝
√

k2
q + m2 + kq

m

⎞⎠⎤⎦ .
With this one finds

n =
∑

q

k3
q

3π2
= 1

3
(nu + nd + ns) (6.125)

ε = B +
∑

q

3

4π2

[
µqkq

(
µ2

q −
1

2
m2

q

)
− 1

2
m4

q ln

(
µq + kq

mq

)]
+ εe (6.126)

P = −B + 1

3

∑
q

3

4π2

[
µqkq

(
µ2

q −
5

2
m2

q

)
+ 3

2
m4

q ln

(
µq + kq

mq

)]
+ Pe .

(6.127)

The Fermi momentum is defined in terms of the chemical potential

µq =
√

m2
q + k2

q (6.128)

with masses mu = 5 MeV, md = 7 MeV and ms = 150 MeV. The other three quarks
have masses exceeding 1.5 GeV, so they are not contributing for neutron star matter.
For u and d quarks we can simply write

nq =
µ3

q

π2(�c)3
(6.129)
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and for strange quarks

ns = µ2
s − m2

s c4

π2(�c)3

√
µ2

s − m2
s c4 . (6.130)

Since the electrons are highly relativistic, their contribution is simply

εe = µ4
e

4π2(�c)3
, Pe = µ4

e

12π2(�c)3
. (6.131)

For vanishing quark masses, all three flavors have the same density, nu = nd = ns

and ne = 0. With increasing mass of the strange quark, the number density of strange
quarks decreases with respect to the other two flavors, but the electron density in-
creases in order to compensate the charge neutrality. In leading order, the pressure
can simply be approximated by

PQ � N f Nc

12π2
µ4 − Beff . (6.132)

The energy density follows from this by

εQ = µ ∂PQ

∂µ
− PQ = N f Nc

4π2
µ4 + Beff . (6.133)

For massless quarks we obtain therefore a very simple equation of state

PQ = 1

3
(εQ − 4B) . (6.134)

This relation is only slightly changed for nonvanishing strange quark mass. It can
also be improved by adding lowest order corrections due to interaction, in leading
order one obtains

PQ,1st = −αs N f (N2
c − 1)

16π3
µ4 + O(α2

s ) , (6.135)

where αs = g2/4π is the value of the running coupling constant of strong interaction
defined at the scale of the quark chemical potential. This correction can be included
into the pressure equation by defining a parameter c [31]

PQ � N f Nc

12π2
µ4(1− c)− Beff . (6.136)

The chemical potential of the electrons is very small in pure quark matter,
µe � 22 MeV. In these expressions, B is considered to be a free parame-
ter ranging from B1/4 = 165 MeV (B = 96 MeV fm−3) to B1/4 � 200
MeV (B � 208 MeV fm−3). The lower bound is given if one requires that the
deconfinement phase transition does not occur at densities below nuclear den-
sity.

In the following we give a short outline of the properties of Cooper paired quark
matter (for more details, see, e.g. the lecture notes by Shovkovy [368]).
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6.3.3 Grand Canonical Potential for Quark Matter

Unpaired Quarks

For systems with changing particle numbers the grand canonical potentialΩ(V, T, µ)
is the most suitable quantity, thermodynamically given by

Ω(V, T, µ) = E(V, T, µ)− S(V, T, µ)T − N(V, T, µ)µ . (6.137)

In statistical mechanics,Ω for Bose or Fermi systems is given by the grand partition
sum

Ω(V, T ;µ) = ±kBT
∑

i

ln

[
1∓ exp

(
µ−√

m2 + p2

kBT

)]
. (6.138)

For particles filling a phase-space volume d3q d3 p, the sum has to be replaced in
terms of the volume integration∑

i

→ g

(2π�)3

∫
d3q d3 p (6.139)

with the replacement of the energy levels εi → ε = √
m2 + p2 and the number

of degrees of freedom g. For homogeneous Fermi systems, we obtain therefore the
following expression

Ω(V, T, µ) = − gV

2π2�3
kBT

∫ ∞

0
dp p2 ln

[
1∓ exp

(
µ−√

m2 + p2

kBT

)]
.

(6.140)

From this we get the expression for the pressure

P(T, µ) = −∂Ω
∂V

, (6.141)

or for homogeneous Fermi systems

Ω(V, T, µ) = −P(T, µ)V . (6.142)

The internal energy density ε follows from

ε(T, µ) = E

V
= Ω + S T + N µ

V
= −P + ∂P

∂T
|µ T + ∂P

∂µ
|T µ , (6.143)

i.e.

ε(T, µ) = −P(T, µ)+ s(T, µ) T + n(T, µ)µ . (6.144)

Here, the particle density is given by

n(T, µ) = − 1

V

∂Ω

∂µ
|T,V . (6.145)

For homogeneous system, it is therefore useful to replace Ω→ Ω/V .
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Low-Temperature Limit

For a system consisting of three quark flavors we may write

Ω(T, µ) = −
∑

f

g f kBT

2π2�3

∫ ∞

0
dp p2 ln

⎡⎣1+ exp

⎛⎝µ f −
√

m2
f + p2

kBT

⎞⎠⎤⎦+ Beff .

(6.146)

For T → 0, we can expand the logarithm and find, g f = 2× 3 for quarks,

Ω(T, µ) = −
∑

f

3

π2(�c)3

∫ εF

0
dp p2

[
µ f −

√
m2

f + p2

]
+ Beff . (6.147)

For unpaired quarks, we can write therefore in the cold limit

Ω(µu, µd, µs) = − 3

π2(�c)3
∑

f=u,d,s

∫ √
µ2

f−m2
f

0
dp p2

[
µ f −

√
m2

f + p2

]
+ Beff ,

(6.148)

where µu = µ−2µe/3 and µd = µs = µ+µe/3 are the individual quark chemical
potentials, µ are the baryon and µe the electron chemical potential, respectively.
The masses of the up and down quarks can be neglected, since mu � md � µ. The
strange quark mass is however not negligible with respect to µ. For neutron stars, it
is possible to have ms < µ, so that we can expand in ms/µ.

In neutral unpaired quark matter, the electron chemical potential is determined
by the condition of charge neutrality, i.e.

µe = m2
s

4µ
− m4

s

48µ3
+ O(m6

s/µ
5) . (6.149)

Substituting this into the expression for the potential we obtain

Ωunp(µ) = − 3

4π2
(1− c)µ4 + 3µ2m2

s

4π2
+ (12 ln(ms/2µ)− 7)

m4
s

32π2

+ 5m6
s

576π2µ2
+ Beff + O(m8

s/µ
4) . (6.150)

Here we have introduced the parameter c which corrects for higher orders in the
quark running coupling constant. This expansion is in fact rapidly convergent in
ms/µ, even when ms = 300 MeV and µ = 350 MeV.

Color-Flavor-Locked (CFL) Quark Matter

In the CFL phase, the pairing locks the Fermi momenta of all the quarks to a single
value. This costs free energy, which is offset by the pairing contribution
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Ω∆ = − 3

π2
∆2µ2 + O(∆4) . (6.151)

The calculation of ∆ yields values in the range of 10–100 MeV for µ in the range
of 300–600 MeV (Rischke [343]). When color and electric neutrality is imposed,
we do not find any electrons in the CFL phase, since there are equal numbers of up,
down and strange quarks, i.e. µe = 0. In this sense, we obtain

ΩCFL = Ωunp + 3m4
s − 48∆2µ2

16π2
. (6.152)

This shows that all such models can be accommodated into an expansion of the
form

ΩCFL(µ) = − 3

4π2
(1− c)µ4 + 3a2

4π2
µ2 + Beff , (6.153)

with the coefficient

a2 = m2
s − 4∆2 . (6.154)

In leading order, pressure is given by

P = 3µ4

4π2
(1− c)− Beff , (6.155)

the energy density by

ε = 3(1− c)
3µ4

4π2
+ Beff (6.156)

and therefore the EoS by

P = 1

3
(ε − 4Beff) (6.157)

completely independent of the correction given by c. The EoS of quark matter has
a threshold in energy density given by 4Beff (see Fig. 6.20).

Gapless CFL Phases

The blue up and down quarks do not participate in Cooper pairing in the 2SC phase.
They give rise to gapless quasiparticles in the low energy spectrum of the theory.
The presence of the ungapped blue quarks could result in a large neutrino emissivity
due to beta-processes, db → ub + e− + ν̄e and ub + e− → db + νe. The other four
quarks (red and green) are gapped.

The pressure of the cold dense quark matter is dominated by the Pauli exclu-
sion pressure. The partial contribution of each quark is µ4/12π2 (see above). The
contribution due to diquark pairing is given by (µ∆/2π)2 per each gapped quark
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Fig. 6.19. Phase diagram for neutral quark matter within the field-theoretical Nambu–Jona–
Lasinio model [348], see also [349,350]. The thin solid lines mark second-order phase bound-
aries between two phases that differ by one or more diquark condensates. The dashed lines
mark the (dis-)appearance of gapless modes in different phases. First-order phase boundaries
are denoted by heavy lines. Figure adapted from [348]

quasiparticle. In the 2SC phase, there are six (two flavors and three colors) quarks in
total, and four of them give rise to quasiparticles with gap∆ in their energy spectra.
Thus the pressure is approximately given by

P2SC � Nc N f

12π2
µ4 + 4

(
µ∆

2π

)2

− Beff = µ4

2π2
+ µ

2∆2

π2
− Beff . (6.158)

From this, we can derive the corresponding energy density

ε2SC � 3µ4

2π2
+ µ

2∆2

π2

(
1+ 2µ

∆

∂∆

∂µ

)
+ Beff . (6.159)

These two expressions give the parametric representation of the EoS of dense quark
matter in the 2SC phase in lowest order of approximation.

CFL Paired Color-Superconducting Quark Phases

At high densities, strange quarks will also contribute. The constituent strange quark
mass in vacuum QCD is estimated to be of order 500 MeV. Its current mass is
however only� 100 MeV. For dense matter with say µ � 500 MeV, the value of the
strange quark mass should be in the range of 100 to 500 MeV. It is then plausible
that strange quarks also participate in Cooper pairing. This can be discussed in the
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limit, where all three quarks are massless. In this case, the quark model possesses
a global SU(3)L×SU(3)R chiral symmetry and the global U(1)B symmetry related to
baryon number conservation. This is in addition to the SU(3)c color gauge symmetry
of QCD.

The favored pairing pattern at high densities, where the strange quark Fermi
momentum is close to the up and down Fermi momenta, is color-flavor-locking
(CFL). This has now been confirmed by various calculations (NJL models and
gluon-mediated models, Fig. 6.19). The CFL spin-0 condensate corresponds to the
following ground-state expectation value

〈qαi qβj 〉 ∝ Cγ5

(
(κ + 1)δαi δ

β

j + (κ − 1)δαj δ
β

i

)
. (6.160)

Color indices α, β and flavor indices i, j run from 1,2,3. Dirac indices are suppressed
and C is the Dirac conjugation matrix. The parameter κ is small, but not zero. The
Kronecker deltas connect color indices with flavor ones, so that the condensate
is not invariant against color rotations, nor under flavor rotations, but only under
simultaneous color and flavor rotations. The feature of the CFL phase are then:

– The color gauge group SU(3)C is broken. All eight gluons become massive.
– All the quark modes are gapped. The nine quasiquarks fall into 8 ⊗ 1 of the

unbroken global SU(3). There are therefore two gap parameters, one for the
singlet state and one for the octet state.

– Electromagnetism survives unbroken (photon + one gluon).
– Two global symmetries are broken: the chiral symmetry and baryon number.

In a real star, we must require electromagnetic and color neutrality.
In contrast to the 2SC phase, there are no gapless quark quasiparticles. There-

fore, at small temperatures, kBT < ∆, the quasiparticles determine all transport
properties in quark matter. Unlike the 2SC phase, the CFL phase is superfluid, it
is however not an electromagnetic superconductor (electromagnetism is unbroken).
The Pauli pressure is built up by nine quarks (three flavors and three colors) with
one quasiparticle gap ∆1 and eight quasiparticles with gap ∆2

PCFL � Nc N f

12π2
µ4 +

(
µ∆1

2π

)2

+ 8

(
µ∆2

2π

)2

− Beff

� 3µ4

4π2
+ 3

µ2∆2

π2
− Beff , (6.161)

where we used the approximate relation between the singlet and octet gaps, ∆1 =
2∆2 = 2∆. From this, one can derive the corresponding energy density

εCFL � 9µ4

4π2
+ 3

µ2∆2

π2

(
1+ 2µ

∆

∂∆

∂µ

)
+ Beff . (6.162)

As we have shown above, a different derivation for the EoS of quark matter
can be based on the grand canonical potential Ω for fermionic systems. We have
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Fig. 6.20. EoS for outer and inner core with the quark–hadron phase transition for a stiff
nuclear EoS (SLy4). Top: A continuous transition is obtained for ms = 2∆ and a low bag
constant of B = 80 MeV fm−3 with a transition density of � 3.3 nuclear density. The upper
solid line corresponds to the EoS P = �, the lower dotted line to P = �/3 for asymptotically
free quarks. Bottom: Maxwell construction for the phase transition with the two nuclear EoS
APR and SLy4. SLy4 enables quark cores at lower density than APR
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shown that quark matter in the CFL phase is always given by (see also Alford
et al. [31, 32])

ΩCFL(µ) = − 3

4π2
(1− c)µ4 + 3a2

4π2
µ2 + Beff , (6.163)

with

a2 = m2
s − 4∆2 . (6.164)

All pure nuclear EoS (not including hyperons) are by far too stiff beyond three
times nuclear density (Fig. 6.20). The above pressure (6.161) nicely extends the
nuclear EoS SLy4 beyond about 3.3 times nuclear density for ms = 2∆ (a2 = 0)
and a relatively low bag constant B = 80 MeV fm−3. Instead of approaching the
stiff EoS P = � of strongly repulsing nuclear matter, quark matter always satisfies
the limit P = �/3 at high densities. This soft EoS for quark matter will considerably
lower the maximum mass of neutron stars.

Neutron Star Models Including Quark Cores

In neutron stars, one expects a transition from the hadronic phase to a 2SC (or
CFL) phase not at densities below twice nuclear saturation density. Neutron star
models including a possible quark matter phase can be calculated by solving the
TOV equation and using BPS EoS at low densities with some modification given by
APR98, or SLy4, and a phase transition to a quark matter phase occurring around
twice nuclear density. According to the above discussion, we may parametrize the
pressure of the quark phase in the following form [31, 32]

PQ = 3

4π2
µ4(1− c)− 3

4π2
m2

sµ
2 + 3

π2
∆2µ2 − B . (6.165)

For quark matter consisting of three flavors of noninteracting quarks, c = 0. How-
ever, once QCD corrections are taken into account, we expect c �= 0. Since QCD
corrections are not negligible, they can be subsumed into the parameter c with its
most probable value c � 0.3. Corrections of order µ2 in the pressure are due to the
nonvanishing strange quark mass ms and the gap parameter. Inspection of Fig. 6.20
shows that the c = 0.3 quark matter EoS is very similar to the nuclear EoS over the
pressure range 10 to 200 MeV/fm3.

The corresponding mass–radius relations are shown in Fig. 6.21 for two values
of the gap parameter∆ and fixed bag constant and strange quark mass. The solution
is given for a bag constant B1/4 = 180 MeV (B = 137 MeV fm−3) and a strange
quark mass ms = 200 MeV [31, 32]. The core of these neutron star models is made
of quark matter and at some radius there is a transition to nuclear matter, which is
the favored phase at low densities. The transition pressure is sensitive to∆. Neutron
stars including quark cores are always more compact than pure hadronic models.
Secondly, the maximum mass will not exceed 1.7 solar masses, depending on the
value of the correction parameter c (Fig. 6.22).
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Fig. 6.21. Schematic mass–radius relationship for neutron star models including a quark core
compared with pure nuclear matter models. In heavier neutron stars, a quark transition is
expected to occur for central densities higher than about three times nuclear densities. The
observed redshift of 0.35 [126] would require by far too high masses for normal hadronic
stars. A quark core would bring down the mass into the range of observed neutron star masses

Fig. 6.22. Maximum mass for quark matter stars, as a function of the two parameters ms and
∆, and c. Figure adapted from Alford et al. [31]
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Gravitational Redshift of Neutron Stars

The large collecting area of XMM–Newton has provided, for the first time, detailed
spectral information for many of these weak X-ray sources (Fig. 6.23). The EPIC
camera can make very fast timing studies of X-ray pulsars, and with its excellent
sensitivity, is able to search over much greater distances for such object. Its spatial
resolution has also been necessary to separate X-ray pulsars from their surrounding
supernova remnants (SNRs).

The fundamental properties of neutron stars provide a direct test of the equa-
tion of state of cold nuclear matter, a relationship between pressure and density
that is determined by the physics of the strong interactions between the particles
that constitute the star. The most straightforward method of determining these prop-
erties is by measuring the gravitational redshift of spectral lines produced in the
neutron star photosphere. The equation of state implies a mass–radius relation,
while a measurement of the gravitational redshift at the surface of a neutron star
provides a direct constraint on the mass-to-radius ratio. Cottam et al. [126] have
reported the discovery of significant absorption lines in the spectra of 28 bursts of
the low-mass X-ray binary EXO 0748–676. Cottam et al. [126] identify the most
significant features with the Fe XXVI and XXV n = 2–3 and O VIII n = 1–2 tran-
sitions, all with a redshift of z = 0.35, identical within small uncertainties for the
respective transitions (Fig. 6.23). For an astrophysically plausible range of masses
(M approximately 1.3–1.5 solar masses), this redshift is not consistent with stan-
dard models of neutron stars composed of normal nuclear matter (hadronic neutron
stars), while it could hint to a possibly more compact inner core made of quark
matter, as shown in Fig. 6.21. The observed redshift would indicate that this neu-
tron star has a fairly high mass, between 1.6 and 1.8 solar masses, or it is quite
compact for a standard mass of 1.4 solar masses. This could be the first evidence
for the presence of color-superconducting quark matter inside a massive neutron
star.

Previous attempts to measure a neutron star’s redshift focused on a star
with an enormous magnetic field. Strong fields, however, induce their own red-
shift. Since the fields from neutron stars are not precisely known, the magnetic
component of the stars’ redshift cannot be clearly separated from the gravita-
tional component. In contrast, the object studied by Cottam’s team has such
a weak magnetic field that its redshift results entirely from gravitational ef-
fects.

Mixed Phases

Quark matter need however not be homogeneous. In a certain region, hadronic matter
might exist together with the quark phase, both phases may be in equilibrium with
each other. This condition is familiar in the case of water when solid and liquid
phases are in equilibrium with each other. Such a phase is called mixed phase.
This phase transition occurs at constant pressure. So quark matter might exist in
neutron stars in two forms – the core of the star may be composed of pure quark
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Fig. 6.23. The observed XXM–Newton X-ray spectrum of EXO 0748–676. EXO 0748–676 is
a low-mass binary system (LMXB), which shows the famous type X-ray bursts (thermonuclear
flashes on neutron star surfaces). Figure adapted from [126]
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matter surrounded by a shell of mixed phase in which quark and hadronic matter
coexist. Only the lightest stars will contain no quark core and be real hadronic
stars.

The essential point for the existence of such a mixed state is that the total
charge neutrality can be achieved by a positively charged amount of hadronic mat-
ter and negatively charged amount of quark matter. Then we have to deal with
two independent chemical potentials, (µn, µe). Such a system is usually called
a two-component system. The Gibbs condition for mechanical and chemical equi-
librium at zero temperature between both phases is just given by the pressure con-
dition

PHP(µn, µe) = PQ P(µn, µe) . (6.166)

With this one could calculate the chemical potentials of the mixed phase (MP), where
PHP = PQ P [355].

6.3.4 Strange Quark Stars

Usually it is assumed that the ground state of hadronic matter is the state in which
quarks are confined in individual hadrons. Witten has however proposed that the true
ground state of strong interaction is the deconfined state of quark matter consisting
of equal numbers of up, down and strange quarks (strange matter hypothesis). From
a first point of view this might be incorrect, since what we observe is hadronic matter.
But one cannot exclude that the observable Universe is also populated by strange
matter objects (sometimes called strangelets). However, soon after this proposal it
has been shown that, even if strange matter is the absolute ground state, almost all
strange matter would have evaporated in the high-temperature era of the Universe
into ordinary hadrons.

Fig. 6.24. Mass–radius relation for strange quark stars compared to neutron stars
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Since the EoS for strange matter is essentially just

P = 1

3
(�c2 − 4B) , (6.167)

the pressure vanishes for �c2 → 4B. For B = (145 MeV)4, the density �0 = 4×1014

g cm−3 is just above nuclear density. In a bound state, the Fermi pressure of the
quarks is balanced by the bag pressure. Therefore, for low masses, the mass scales
as M ∝ R3 (strangelets). For these objects we can calculate the central gravitational
pressure

Pc = 2πG

3
�0 R2 . (6.168)

When this gravitational pressure exceeds the bag pressure, 4B/3, gravity will be
important. This roughly occurs for R � 5 km and masses M � 0.1 M�. For higher
masses, one has to use the TOV equation together with the above EoS (see Fig.
6.24). Strange stars can also achieve a maximum mass of about (1.5–2.0) M�,
depending on the bag constant, but with radii smaller than the radii of standard
neutron stars.

6.3.5 The Structure of Massive Neutron Stars

Neutron stars with masses below 1.2 solar masses have central densities not exceed-
ing three times nuclear density. In these stars, the core merely consists of neutrons,
protons, electrons and muons. In neutron stars with masses higher than this critical
mass, the core has certainly a more complex structure and probably exists of an outer
core and an inner one.

The structure of these stars can be summarized as follows (Fig. 6.25):

– In the outer crust, matter consists of ions (atomic nuclei) and electrons. The
electrons are strongly degenerate, almost ideal Fermi gas, which is relativistic at
densities above 106 g cm−3. The ions form a strongly coupled Coulomb system,
which is solid in most of the crust, but liquid at the lowest densities. The electron
Fermi energy grows with increasing density and, as a consequence, nuclei tend
to become richer in neutrons. The thickness of the outer crust is a few hundred
meters.

– At the base of the outer crust, neutrons begin to drip out of nuclei, thereby
producing a neutron gas between the nuclei. This occurs at a density of 4×1011 g
cm−3. In this inner crust, matter consists of electrons, free neutrons and neutron-
rich atomic nuclei. The fraction of free neutrons increases with increasing density,
and at the bottom of the crust, at a density of about half nuclear saturation density,
where nuclei occupy a significant fraction of space, nuclei are probably far from
spherical. At this density nuclei disappear, and matter then becomes a uniform
fluid of neutrons, protons and electrons. The thickness of this inner crust is
typically about one kilometer. The EoS throughout the crust is sufficiently well
understood for the purpose of building neutron star models.
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Fig. 6.25. Structure of neutron stars with masses M > 1.2 M� including a quark matter core

– Below the inner crust lies the outer core. At densities around nuclear density,
matter consists of neutrons with a small admixture of protons, electrons and
muons. All constituents are strongly degenerate. The neutrons and protons, which
interact via nuclear forces, constitute a strongly nonideal liquid. The EoS is
still not yet known with sufficient accuracy in the range above twice nuclear
density.

– When the density reaches three times nuclear density, the individual bags of
the nucleons overlap and the nuclear liquid makes a phase transformation to
a quark bag. The exact value of the transition density is still uncertain, but most
probably is in the range of two to four times nuclear density. Quark matter builds
the inner core at least in stars more massive than about one solar mass. Quark
matter at low temperature constitutes a color-superconducting fluid, where the
quarks appear in Cooper pairs and the gluons become massive. Quark matter
is however not a normal superconductor, since the photon remains massless. In
distinction to nuclear matter, quark matter is asymptotically free, i.e. the EoS at
high densities tends towards a free relativistic gas, P → �/3. As a consequence,
neutron stars including quark cores are much more compact and their maximum
mass is probably limited by 1.9 M�. The exact value depends on the interaction
of the gluons with the quarks.
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We can now ask what significance mass and radius measurements would have
for the question of presence of quark matter in compact stars:

– An observed mass M > 2 M� would probably be inconsistent with the presence
of quark matter in the core of the neutron star. By the inclusion of QCD cor-
rections in terms of the parameter c, the maximum mass of originally 1.5 solar
masses can be increased to about 1.9 solar masses for neutron stars including
quark matter cores.

– Stars including a quark matter core are in general more compact than mean field
models or pure nuclear cores (based on APR98 or SLy4 EoS). These stars have
typically radii of only about 10 km at 1.4 solar masses.

– Could one conclude that color-superconducting matter is inside compact objects?
This is a complicated question, since the actual value of the bag constant is
a crucial parameter. Field theoretic models such as the NJL model (Fig. 6.19)
predict the existence of the color-superconducting phases, but the details of the
phase transitions are still uncertain.

6.4 Neutron Stars in Close Binary Systems

The masses of isolated neutron stars cannot be derived from observations. We
have to find neutron stars in close binary orbits. The best candidates are then
radio pulsars in closed orbit around a second compact object (white dwarf, neu-
tron star or black hole). Exact masses can then be derived by observing post-
Newtonian effects in close binary systems (periastron advance and gravitational
redshift effects). In a few systems, even the Shapiro time-delay effect can now be
observed.

6.4.1 Post-Newtonian Potentials for Many-Body Systems

The most accurate masses for neutron stars follow from the analysis of the mo-
tion of a radio pulsar in a close binary system. Since both masses are of the same
order of magnitude, we have to treat a real relativistic two-body problem. Neu-
tron stars represent extremely compact objects, they can be considered as point
particles, at least for separations larger than 10 neutron star radii. The typical sep-
aration in a close binary system is about one solar radius, corresponding to at
least 50,000 neutron star radii. On these scales, tidal effects can be completely
neglected. As is well known from the analysis of planetary motion in the Solar
System, relativistic gravity affects the motion in two ways. On the one hand, ec-
centric orbits undergo a perihelion shift, and, on the other hand, the orbits slowly
shrink by the emission of gravitational waves. A third effect is that photons suf-
fer a time delay when they propagate in the gravitational field of the Sun. All
these effects will affect the propagation of the pulsar signal in a close binary
system.
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The Post-Newtonian Potentials

In order to analyze these effects in a close binary system, we have to consider the
relativistic two-body system for two point masses. For this purpose we expand the
metric tensor in post-Newtonian order, i.e. in the next higher order to the Newtonian
expansion in the small parameter ε = V/c � √

G M/c2r, where r denotes the
separation between the bodies. The expansion in the metric will be dictated, e.g. by
considering the motion of a particle in the resulting gravitational field, following
geodesics ∫ 2

1
dτ =

∫ 2

1
dt

√
−gαβ

dxα

dt

dxβ

dt
. (6.169)

Introducing the velocity vi = dxi/dt and time x0 = t, we arrive at the expression∫ 2

1
dτ =

∫ 2

1
dt

√
−(gtt + 2gtivi + gik vivk) . (6.170)

The Newtonian expansion would be gtt � −(1+2Φ) = −1+g(2)tt , as well as gti = 0
and gik = δik. In the next order of the expansion we get the post-Newtonian form
of the metric

gtt = −1+ g(2)tt + g(4)tt + O(ε6) (6.171)

gti = g(3)ti + O(ε5) (6.172)

gik = δik + g(2)ik + O(ε4) . (6.173)

The superscripts denote the order of expansion in ε. Due to the equations of motion,
the expansion in gtt goes to order ε2n , the expansion in gti to order ε2n−1 and the
expansion in gik to order ε2n−2. n = 2 is called post-Newtonian expansion, n = 3
post-post-Newtonian expansion, etc. The action for a test particle motion follows
therefore from∫

ds =
∫

dt

[
1− 1

2
v2 + 1

2
g(2)tt

]
(6.174)

+
∫

dt

[
−1

8
v4 + 1

4
g(2)tt v2 + 1

2
g(2)ik v

ivk + 1

2
g(4)tt − 1

8

(
g(2)tt

)2 + g(3)ti v
i

]
.

This corresponds to the formal expansion in the weak field limit gµν = ηµν + hµν.
Here we have the freedom to impose four gauge conditions, which are suitably
chosen as

htk,k − 1

2
hkk,t = 0 (6.175)

h jk,k + 1

2
h, j = 0 (6.176)
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for the trace h ≡ ηµνhµν = −htt + hii . These gauge conditions imply

g(3)tk,k −
1

2
g(2)kk,t = 0 (6.177)

1

2
g(2)tt,i + g(2)ik,k −

1

2
g(2)kk,i = 0 . (6.178)

The metric corrections htt , hti and hik should transform under spatial rotations as
a scalar, vector and symmetric tensor, respectively, and thus should be constructed out
of corresponding matter fields. For variables associated with the matter distribution
we have the scalars �0, |x− x′|, V2, V · (x− x′), etc.; vector fields x− x′, V, as well
as tensors V⊗ V and (x− x′)⊗ (x− x′). Out of these quantities we can therefore
construct the following potentials:

– a scalar potential

U(t, x) =
∫
�0(t, x′)
|x− x′| d3x′ , (6.179)

– a tensor potential

Uik(t, x) =
∫
�0(t, x′)(x − x′)i(x − x′)k

|x− x′|3 d3x′ , (6.180)

– a kind of superpotential

χ(t, x) = −
∫
�0(t, x′)|x− x′| d3x′ , (6.181)

which satisfies

χ,ik = −δikU +Uik , ∇2χ = −2U , (6.182)

– two velocity potentials (momentum currents)

Vi(t, x) =
∫
�0(t, x′) vi

|x− x′| d3x′ (6.183)

Wi(t, x) =
∫
�0(t, x′) [v′ · (x− x′)](x − x′)i

|x− x′|3 d3x′ , (6.184)

– as well as four additional post-Newtonian scalar potentials

Φ1 =
∫

�0
′v′2

|x− x′| d3x′ (6.185)

Φ2 =
∫

�0
′ U ′

|x− x′| d3x′ (6.186)

Φ3 =
∫

�0
′Π ′

|x− x′| d3x′ (6.187)

Φ4 =
∫

P′

|x− x′| d3x′ . (6.188)
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The stress tensor is the source of these potentials

T tt = �0(1+Π + v2 +U) (6.189)

T ti = �0(1+Π + v2 + 2U + P/�0) v
i (6.190)

T ik = �0 v
ivk (1+Π + v2 + 2U + P/�0)+ Pδik(1− 2γU) (6.191)

with Π as a measure for the internal energy.
In fact the solutions of any metric gravity theory can be expanded in terms of

these potentials as follows

gtt = −(1− 2U + 2βU2 − 4Ψ) (6.192)

gik = (1+ 2γU) δik (6.193)

gti = −7

2
∆1 Vi − 1

2
∆2 Wi (6.194)

with the post-Newtonian parameters β = 1, γ = 1, ∆1 = (4γ + 3)/7 = 1 and
∆2 = 1 in general relativity. The post-Newtonian potential Ψ is given by a combi-
nation of the potentials ΦA

Ψ = Φ1 +Φ2 +Φ3 +Φ4 . (6.195)

In order to show the correctness of this ansatz for the metric, one has to solve
Einstein’s equations up to post-Newtonian order, i.e. to calculate the Christoffel
symbols and Ricci tensors for the above expansion (which is left as an exercise).

For point particles of masses MA these potentials reduce to the following form
(G = 1)

U(rA) =
∑
B �=A

MB

rAB
(6.196)

Φ1(rA) =
∑
B �=A

MBv2
B

rAB
(6.197)

Φ2(rA) =
∑
B �=A

MB

rAB

∑
C �=B

MC

rBC
(6.198)

Φ3(rA) = 0 = Φ4(rA) (6.199)

Vi(rA) =
∑
B �=A

MBv
i

rAB
(6.200)

Wi(rA) =
∑
B �=A

MB(rAB · vB)rAB

r3
AB

(6.201)

The equation of motion for a particle could be derived directly from the geodesic
equation, using

d2xi

dt2
= d

dt

(
dxi

dτ

dτ

dt

)
=

(
dt

dτ

)−1 d

dτ

[(
dt

dτ

)−1 dxi

dτ

]

=
(

dt

dτ

)−2 d2xi

dτ2
−

(
dt

dτ

)−3 d2t

dτ2

dxi

dτ
(6.202)
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ending up with the expression for the acceleration

d2xi

dt2
= −Γ i

µν

dxµ

dt

dxν

dt
+ Γ 0

νλ

dxν

dt

dxλ

dt

dxi

dt
. (6.203)

This can be expressed in terms of velocities

d2xi

dt2
= −Γ i

00 − 2Γ i
0kv

k − Γ i
kmv

kvm +
[
Γ 0

00 + 2Γ 0
0 jv

j + Γ 0
jkv

jvk
]
vi . (6.204)

The equations of motion can, however, be derived more easily by using the above
action, or its Lagrangian for a point mass

L = −MA

(
1− 1

2
v2

A −
1

8
v4

A

)
(6.205)

+
∑
A �=B

MA MA

rAB

[
1+ (2γ + 1)v2

A − (2β − 1)
∑
C �=A

MC

rAC
− 7

2
∆1 vA · vB

]
.

The total Lagrangian for an ensemble of particles with masses MA can be written as
(Einstein–Infeld–Hoffmann (EIH) Lagrangian for a N-body system)

L = 1

2

∑
A

MAv2
A +

G

2

∑
B �=A

MA MB

rAB

+1

8

∑
A

MAv4
A +

3G

2

∑
A

MAv2
A

∑
B �=A

MB

rAB

−G

4

∑
A �=B

MA MB

rAB
[7vA · vB + (vA · nAB)(vB · nAB)]

−G2

2

∑
A

∑
B �=C

∑
C �=A

MA MB MC

rABrAC
. (6.206)

Thereby, nAB ≡ (xA − xB)/rAB is the unit vector pointing in the direction of the
two particles. This generalizes the Newtonian Lagrangian for a self-gravitating N-
body system to post-Newtonian order. One can show that the equations of motion
following from this Lagrangian are identical to (6.204), when the Christoffels are
expressed in terms of the many-body potentials.

6.4.2 Periastron Shift in Two-Body Systems

For a two-body system this Lagrangian reduces to, r ≡ r12 and n ≡ n12,

L = M1

2
v2

1 +
M2

2
v2

2 +
1

8

(
M1v4

1 + M2v4
2

)+ G M1 M2

r

+G M1 M2

2r

[
3
(
v2

1 + v2
2

)− 7v1 · v2 − (v1 · n)(v2 · n)
]

−G2

2

M1 M2(M1 + M2)

r2
. (6.207)
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One can define an effective mass

M∗
A = MA

(
1+ 1

2
v2

A

)
− 1

2

G MA MB

rAB
(6.208)

and the EIH equations imply the conservation of the center-of-mass

X ≡ M∗
1 x1 + M∗

2 x2

M∗
1 + M∗

2

(6.209)

with

d2X
dt2

= 0 . (6.210)

We now choose coordinates with X = 0 and define reduced variables, x = x1 − x2,

x1 =
[

M2

M
+ µδM

2M2

(
v2 − M

r

)]
x (6.211)

x2 =
[

M1

M
+ µδM

2M2

(
v2 − M

r

)]
x (6.212)

(6.213)

and get a reduced Lagrangian (modulo µ), µ = M1 M2/M, δM = M1 − M2,

L = L0 + L1 (6.214)

with

L0 = 1

2
v2 + G M

r
(6.215)

L1 = 1

8

(
1− 3µ

M

)
v4

+G M

2r

[
3v2 + µ

M
v2 + µ

M
(v · x/r)2

]
− G2 M2

2r2
. (6.216)

The corresponding Euler equation is then

v̇ = −G M

r3
x
[

1− G M

r
(4+ 2µ/M)+ (1+ 3µ/M)v2 − (3µ/2M)(v · x/r)2

]
+G M

r3
v(v · x)(4− 2µ/M) . (6.217)

Similar to the classical orbital solution, the post-Newtonian solution for the orbit
can be found in an analogous manner

p

r
= 1+ e cosφ − M

p

[
(3− µ/M)+ (1+ 9µ/4M)e2] (6.218)

+M

p

[
1

2
(7− 2µ/M)e cosφ + 3eφ sinφ − (µ/4M)e2 cos 2φ

]
.
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The term ∝ φ represents a secular advance of the orbit with, p = a(1− e2),

∆φ = 6πG(M1 + M2)

c2 p
(6.219)

as the periastron shift per orbit. This expression is similar to the result obtained
in Schwarzschild (see Sect. 8.1), except that the total mass M = M1 + M2 of the
binary system is now involved3.

For the binary pulsar PSR 1913+16 the measured periastron shift is

ω̇ = 4.226 deg yr−1 . (6.223)

The GR prediction is

ω̇G R = 2.11

(
M1 + M2

M�

)2/3

deg yr−1 . (6.224)

Due to the compactness of neutron stars, normal tidal effects are excluded. In this
way one gets a handle on the total mass of the system

M1 + M2 = 2.85 M� . (6.225)

6.4.3 The Shapiro Time Delay in a Binary System

Signals propagating in the gravitational field of a binary system will suffer a time
delay. This effect is usually discussed only for the Solar System, where it has been
accurately measured. Photon propagation is given by null geodesics

gαβ
dxα

dt

dxβ

dt
= 0 . (6.226)

3 There is a general way to derive any periastron shift in a perturbed orbit by using the
Hamiltonian–Jacobi equation for a Hamiltonian of the form

H = H0 + H1 . (6.220)

H0 is the Hamiltonian of the unperturbed problem

H0 = p2
1

2M1
+ p2

2

2M2
− G M1 M2

r
. (6.221)

The perturbed Hamiltonian is just H1 = −L1, however expressed in terms of positions
and momenta

H1 = −1

8

(
p4

1

M2
1

+ p4
2

M2
2

)

− G

2r

[
3

(
M2

M1
p2

1 +
M1

M2
p2

2

)
− 7p1 · p2 − (p1 · n)(p2 · n)

]
+G2

2

M1 M2(M1 + M2)

r2 . (6.222)
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The geodesic equation is given in post-Newtonian order

1− 2U −
∣∣∣∣dx

dt

∣∣∣∣2 (1+ 2γU) = 0 . (6.227)

The resulting trajectory of a signal in the binary system is in first approximation
a straight line with some small deviation, xPSR denoting the position of the pulsar,

x(t) = xPSR + n(t − te)+ xp(t) , (6.228)

where we assumed xp(te) = 0. The signal travels initially in the direction of the unit
vector n and is then deflected by the gravitational field of the companion. It is useful
to decompose xp into components parallel and perpendicular to the unperturbed
trajectory

x p(t)‖ = n · xp (6.229)

x p(t)⊥ = xp(t)− n[n · xp] . (6.230)

From the null geodesics condition we get

dx p‖
dt

= −(1+ γ)U (6.231)

and from the geodesics equation we can calculate the acceleration

d2xi
p⊥

dt2
= (1+ γ) [U,i − ni(n · ∇U)] . (6.232)

Along the unperturbed path of the signal, U has the form

U = G M2

r(t)
= G M2

|xP + n(t − te)| . (6.233)

The equation for x p(t) can easily be integrated to yield

x p‖(t) = −(1+ γ) G M2

c2
ln

(
r(t)+ n · x(t)
rP + n · xP

)
, (6.234)

which obviously satisfies the initial condition x p‖(te) = 0.

6.4.4 Decay of Binary Orbits due to Gravitational Radiation

In contrast to electrodynamics, gravitational radiation is generated by time-dependent
mass quadrupole moments Qik(t) with an energy loss first derived by Einstein in
1917

dE

dt
= − G

45c5
˙̈Qik
˙̈Qik . (6.235)
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The third time derivative of the traceless mass quadrupole tensor is the source of the
energy loss

Qik =
∫
(3xi xk − δikx2) �0(t, x) d3x . (6.236)

For the calculation one needs the solutions of a binary system (in units G = 1 = c)
in terms of the conserved angular momentum L and total energy E < 0

a = −M1 M2

2E
, E = −1

2

M1 M2

a
(6.237)

e2 = 1+ 2EL2(M1 + M2)

M3
1 M3

2

(6.238)

r = a(1− e2)

1+ e cosφ
(6.239)

r1 = M2

M1 + M2
r (6.240)

r2 = M1

M1 + M2
r . (6.241)

We first compute the moments of inertia

Iik =
∫
�0(x) xi xk d3x (6.242)

and choose the orbital plane given by coordinates (x, y). This produces the following
components

Ixx = M1x2
1 + M2x2

2 =
M1 M2

M1 + M2
r2 cos2 φ (6.243)

Iyy = M1 M2

M1 + M2
r2 sin2 φ (6.244)

Ixy = M1 M2

M1 + M2
r2 sinφ cosφ (6.245)

I = Ixx + Iyy = M1 M2

M1 + M2
r2 . (6.246)

These quantities determine the energy loss

−dE

dt
= 1

5

[
¨̇I ik
¨̇I ik − 1

3
( ¨̇I)2

]
= 1

5

[
( ¨̇I xx)

2 + ( ¨̇I yy)
2 + 2( ¨̇I xy)

2 − 1

3
( ¨̇I)2

]
. (6.247)

Inserting these expressions into the energy-loss formula we find (see problem 6.6)

−dE

dt
= 8M2

1 M2
2

15a2(1− e2)2

[
12(1+ e cosφ)2 + e2 sin2 φ

]
φ̇ . (6.248)
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This loss is averaged over one orbital period Pb according to Kepler’s law

Pb = 2πa3/2

√
M1 + M2

(6.249)

with

−dE

dt
= − 1

Pb

∫ Pb

0

dE

dt
dt = − 1

Pb

∫ 2π

0

dE

dt

1

φ̇
dφ . (6.250)

This integral can be done explicitly

−dE

dt
= 32

5

M2
1 M2

2(M1 + M2)

a5(1− e2)7/2

(
1+ 73

24
e2 + 37

96
e4
)
, (6.251)

or in dimensional form (Wagoner [408])

−dE

dt
= 32

5

G4 M2
1 M2

2(M1 + M2)

a5c5(1− e2)7/2

(
1+ 73

24
e2 + 37

96
e4
)
. (6.252)

This has in fact the correct dimension for an energy loss. For the binary system PSR
B1913+16, the energy loss is considerable

−dE

dt
= 0.6× 1033 erg s−1 = 0.16 L� . (6.253)

The change in the orbital period follows from

1

Pb

dPb

dt
= −3

2

1

E

dE

dt
(6.254)

and hence for PSR B1913+16 Ṗb = −2.4× 10−12 s s−1. The shrinking of the orbit
follows from

da

dt
= 2a2

G M1 M2

dE

dt

= −64

5

G3 M1 M2(M1 + M2)

a3c5(1− e2)7/2

(
1+ 73

24
e2 + 37

96
e4
)
. (6.255)

The solution to this equation can be written as, a0 = a(0),

a(t) = a0

(
1− t

t∞

)1/4

(6.256)

with the characteristic evolution time t∞ (merger time) given by

t∞ = 5

256

a4
0 c5(1− e2)7/2

G3 M1 M2(M1 + M2)

(
1+ 73

24
e2 + 37

96
e4
)−1

. (6.257)
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Fig. 6.26. Orbital decay of the binary system PSR 1913+16. The data points indicate the
observed change in the epoch of periastron. The parabola corresponds to the theoretically
expected change in the epoch for a system emitting gravitational waves according to general
relativity. Figure adapted from Weisberg and Taylor [415]

This means that the characteristic time-scale is given by the light travel time
through the orbit

t∞ � 0.02

(
c2a0

G M1

)3
a0

c
, (6.258)

prolonged by the third power in the inverse compactness of the orbit, G M1/c2a0

� 10−6, giving a characteristic time-scale t∞ � 1016 a0/c � 1016 s � a few
hundred million years. These systems will merge into a single object on time-scales
shorter than the age of the Universe. For this reason, such systems are thought to be
possible candidates for the origin of gamma-ray bursters and intense gravitational
wave emission.

In this discussion we have assumed that the eccentricity remains constant. Grav-
itational wave emission leads however also to a change in the eccentricity

e
de

dt
= M1 + M2

M3
1 M3

2

(
L2 dE

dt
+ 2EL

dL

dt

)
, (6.259)
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which can be written as

1

e

de

dt

Pb dt

dPb
= 19

18
(1− e2)

(
1+ 121

304
e2
) (

1+ 73

24
e2 + 37

96
e4
)−1

= 0.34 .

(6.260)

As a consequence, the eccentricity decreases with time. The reason for this is that
gravitational waves carry away angular momentum. The change in the angular
momentum can be written

dL

dt
= −32

5

G7/2 M2
1 M2

2(M1 + M2)
1/2

c5a7/2

(
1+ 7

2
e2
)
(1− e2)−1 . (6.261)

6.5 Masses of Neutron Stars from Radio Pulsar Timing

After several pulsar surveys, there are now about 50 known radio pulsars in bi-
nary systems, including at least seven in double neutron star binaries (Thorsett and
Chakrabarty [393]).

In some cases, the stellar masses can be directly determined from measurements
of relativistic orbital effects. In others, only an indirect or statistical estimate of
the masses is possible. In the following the general problem of mass measurement
in radio pulsar binaries and all current estimates of the masses of radio pulsars
and their companions are discussed. Significant constraints exist on the masses
of 21 radio pulsars and on six neutron star companions of radio pulsars. All the
measurements are consistent with a remarkably narrow underlying Gaussian mass
distribution, M = 1.35 ± 0.04 M�. There is no evidence that extensive mass ac-
cretion (∆M ≥ 0.1 M�) has occurred in these systems. The observed inclinations
of millisecond pulsar binaries are consistent with a random distribution, and thus
there is no evidence for either alignment or counter-alignment of millisecond pulsar
magnetic fields.

6.5.1 What is Pulsar Timing?

The orbiting pulsar is an ideal clock with an accuracy of Ṗ � 10−18 for millisecond
pulsars. The individual signals emitted by the pulsar are however somewhat washed
out, so that the timing accuracy is only in the range of 10 µs � 10−3 P. This
corresponds to about the travel time across the polar cap region of a neutron star.
Since this has to do with the physical origin of the radio emission, it will be barely
possible in the future to improve the timing accuracy. If we plot the pulse number
N as a function of time, this would be a linear relation for an ideal clock. The
deceleration of the pulsar, measured as Ṗ > 0 makes a deviation from this linear
relation. If the pulsar orbits in a binary system, this curve N(t) will be modulated
by means of the periodic orbit, i.e. the curve N(t) wobbles periodically around the
linear trend with an amplitude given by the light travel time across the binary system.
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For a close binary system, this amplitude is of the order of seconds, and the period
is given by the orbital period Pb.

Soon after the discovery of the system PSR 1913+16 Blandford and Teukolsky
(1976) derived a timing model for fitting to a sequence of pulse arrival times on
Earth. They assumed that the pulsar and its companion obeyed the Keplerian laws.
In this model the following Keplerian parameters enter into the timing model: the
period Pb, the epoch of periastron passage T0, the eccentricity e, the longitude
of periastron ω and the projected semimajor axis x = a1 sin i/c, where a1 is the
semimajor axis of the pulsar orbit and i the angle of inclination (see Fig. 6.27).
They also incorporated the largest relativistic effects, a combination of gravitational
redshift and time dilation, quantified in a parameter called γRD. Epstein [144] and
Haugan [196] completed the Blandford–Teukolsky model by deriving within GR
the order O(v2/c2) contributions to the timing formula. These terms arise from
the Shapiro time delay in the gravitational potential of the companion and from
post-Newtonian effects in the orbital motion. This formulation was given within
the framework of GR. Damour and Deruelle [128] found a way to incorporate all

Fig. 6.27. Geometry and orbital elements for a pulsar in a binary system. In a first approxi-
mation, the orbits are still Keplerian ellipses, which however advance in prograde direction.
Ω is the longitude of the ascending node N , ω the longitude of the periastron. i is the orbital
inclination angle, and f the true anomaly
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O(v2/c2) timing effects in a simple mathematical way common to a large class of
gravitational theories (see also Damour and Taylor [129]).

We now consider an inertial system in the center-of-mass of the binary system.
In this coordinate system, an observer is given by (tB, xB), and the pulsar in terms
of (tP , xP). The time difference is then

c(tB − tP) = |xB − xP| + 2G M2

c2
ln

(
2d(tB)

r(t)+ xP · n
)
+ c∆DM . (6.262)

The second term corresponds to the Shapiro time delay with an amplitude given by
∆S � RS/c � 15µs. The first factor can be expanded

|xB − xP| = dB(tB)− x1(tP) · n+ O(r/dB) , (6.263)

where dB denotes the distance of the observer with respect to the barycenter. From
this we obtain

c(tB − tP) = −dB + x1(tP) · n = −dB + x1(t∞ − dB/c+ x1 · n/c) · n (6.264)

and therefore in a Taylor expansion

c(tB − tP) � −dB + x1(t∞ − dB/c) · n+
[
ẋ1(t∞ − dB/c) · n

] [
x1(t∞ − dB/c) · n

]
.

(6.265)

The various terms have the following interpretation

– x1 · n � aP sin i/c � 1 s is the linear Doppler effect;
– x1 · n (v1/c) � 5 ms is the quadratic Doppler effect;
– the next higher order term x1 · n (v1/c)2 � 10µs includes post-Newtonian

corrections, since the orbit is not exactly elliptic;
– the next higher order terms are no longer measurable, since they would have

amplitudes in the range of 20 ns. This also corresponds to the accuracy for
ephemerid calculations in the Solar System.

In the arrival time curve N(t) we get a superposition of modulations of smaller and
smaller amplitudes.

There is an additional effect: the post-Newtonian time tP of the pulsar has to
be transformed to its proper time TP , corresponding to its clock. The line element
provides the following relation between the proper time TP of the radio pulsar and
the post-Newtonian time tP

dT 2
P = −ds2/c2 = (1− 2U) dt2 − v2

p/c
2 dt2 , (6.266)

with the following potential

U(t, x) = G M1

c2|x− x1(t)| +
G M2

c2|x− x2(t)| . (6.267)
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From this we get

dTP

dt
=

√
1− 2U − v2

p � 1−U(t, xP)− 1

2
v2

P . (6.268)

With the velocity vp for a Newtonian orbit of semimajor axis a, M = M1 + M2 and
m1 = G M1/c2,

v2
P =

M2
2

M

(
2

r
− 1

a

)
(6.269)

one gets

dTP

dt
= 1− M2

r
− M2

2

M

1

r
+ const

= 1− 1

r

M2(M1 + 2M2)

M
+ const . (6.270)

The relative separation is given by

r = |x| = a(1− e cos E) . (6.271)

Time is related to the eccentric anomaly E by means of Kepler’s equation

2π

Pb
(tP − T0) = E − e sin E , (6.272)

or
2π

Pb
dt = (1− e cos E) dE (6.273)

Therefore

dTP = dtP − M2

a

(
1+ M2

M

)
dE (6.274)

and therefore by using once again the Kepler equation we find

TP = tP − γRD sin E(t)− G M2

c2a

(
1+ M2

M

)
t + const (6.275)

with

γRD = G M2(M1 + 2M2)

c2aM

ePb

2π
. (6.276)

The third factor is suppressed with (vp/c)2 � 10−6. a can be replaced in terms of
Kepler’s third law so that

γRD = e

(
Pb

2π

)1/3

M2(Mp + 2M2)M−4/3 . (6.277)

In this form the effect is usually expressed in the literature. For circular orbits, the
gravitational redshift is constant, and similarly the quadratic Doppler shift is also
constant so that γRD vanishes. This effect is therefore important in highly eccentric
binary systems.
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6.5.2 The Timing Formula

Ideally, in order to model the rotational behavior of the neutron star, we require
TOAs (times of arrival) measured by an inertial observer. Due to the Earth’s orbit
around the Sun, an observatory located on Earth experiences accelerations with
respect to the neutron star. The observatory is therefore not in an inertial frame.
To a very good approximation, the center-of-mass of the Solar System, the Solar
System barycenter, can be regarded as an inertial frame. It is standard practice to
transform the observed TOAs to this frame using a planetary ephemeris such as
the JPL DE200. The transformation is summarized in the following equation as the
difference between the time T in the comoving pulsar frame and the topocentric
time t of the observer

T − t = t0 +∆C − D/ν2 +∆R� +∆E� +∆S� −∆R −∆E −∆S . (6.278)

Here t0 is a reference epoch and∆C is the offset between the observatory master clock
and the reference standard of terrestrial time. The dispersive delay is proportional
to 1/ν2, where D = DM/2.41 × 10−4 with the dispersion measure DM in units
of pc cm−3, when the radio frequency ν is in units of MHz and the delay is in
seconds. This effect is important when TOAs for signals of different frequencies
are compared. ∆R�, ∆E� and ∆S� are propagation delays and relativistic time
adjustments for effects in the Solar System. ∆R, ∆E and ∆S are the corresponding
effects accounting for phenomena within the pulsar’s orbit.

The first effect in a binary system is related to the varying propagation time of
a signal, called Römer time delay∆R. The amplitude follows from the orbital motion
of the pulsar in the binary system when projected into the orbital plane

∆R = x sinω (cos E − e)+ x
√

1− e2 cosω sin E , (6.279)

the next effect is due to varying gravitational redshift and quadratic Doppler effect

∆E = γRD sin E , (6.280)

and the third effect results from the Shapiro time delay written as

∆S = 2r ln
(

1− e cos E − s [sinω(cos E − e)+
√

1− e2 cosω sin E]
)
.

(6.281)

r is called the range parameter and s the shape parameter. These terms are written
in the eccentric anomaly E as a generalization of the Newtonian E, eccentricity e,
the projected semimajor axis x in units of seconds, the longitude of periastron ω,
and the epoch of periastron passage T0. The eccentric anomaly E is defined by the
relation

E − e sin E = 2π

[
T − T0

Pb
− Ṗb

2

(
T − T0

Pb

)2]
, (6.282)
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where the second term includes a possible shrinking of the orbit by a change in the
orbital period Pb. The factor −1/2 comes from the integration of the instantaneous
orbital frequency 1/[Pb+ Ṗb(T −T0)] to obtain the orbital phase. Similarly, the true
anomaly A(E) follows from

A(E) = 2 arctan

[√
1+ e

1− e
tan

E

2

]
. (6.283)

The advance of periastron is then measured by

ω = ω0 + Pbω̇

2π
A(E) . (6.284)

At a given time, the propagation delay across the pulsar’s orbit is calculated by
a model that contains 10 parameters

t − t0 = F[T ; Pb, e0, T0, ω0, x0; ω̇, γRD, Ṗb, r, s] . (6.285)

This is called the direct timing formula. The contributions from the individual
effects are shown in Fig. 6.29. When analyzing pulsar data one needs the inverse
timing formula T = f(t) in which the Solar System barycentric time t is the
independent variable. The fit parameters are the five Keplerian parameters (x, ω, T0,
Pb, e) evaluated at epoch t0, and the five post-Keplerian parameters (ω̇, Ṗb, γRD, r,
s). In a particular theory of gravity, the post-Keplerian parameters can be written
as a function of the pulsar mass M1 and of its companion M2, and the total mass
M = M1 + M2 of the binary system. In general relativity one finds the following
expressions

ω̇ = 3 T 2/3
�

(
Pb

2π

)−5/3
(M1 + M2)

2/3

(1− e2)
(6.286)

γRD = e T 2/3
�

(
Pb

2π

)1/3 M2(M1 + 2M2)

M4/3
(6.287)

r = T� M2 (6.288)

s = x

(
Pb

2π

)−2/3

T−1/3
� M2/3 M−1

2 (6.289)

Ṗb = −192π

5

(
2πT�

Pb

)5/3 1+ 73
24 e2 + 37

96 e4

(1− e2)7/2
M1 M2

(M1 + M2)1/3
. (6.290)

The masses M1, M2 and M are expressed in solar masses, s ≡ sin i, and T� ≡
G M�/c3 = 4.925490947µs is the unit of time known from Solar System timing.

Following the accumulation of about 10 to 20 barycentric TOAs from observa-
tions spaced over at least several months, a surprisingly simple model can be applied
to the TOAs and optimized so that it is sufficient to account for the arrival time of
any pulse emitted during the time span of the observations and predict the arrival
times of subsequent pulses. The model is based on a Taylor expansion of the angular
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Fig. 6.28. Timing residuals for PSR B1534+12 remained constant over a decade. Figure
adapted from [373]

rotational frequency about a model value at some reference epoch. The model pulse
phase as a function of barycentric time is thus given by:

Φ(T) = Φ∗ + (T − T∗)Ω∗ + 1

2
(T − T0)

2Ω̇∗ + . . . . (6.291)

where Φ∗ is the pulse phase at T∗. Based on this simple model, and using initial
estimates of the position, dispersion measure and pulse period, a timing residual is
calculated for each TOA as the difference between the observed and predicted pulse
phases (Fig. 6.28).

Early sets of residuals will exhibit a number of trends indicating a systematic
error in one or more of the model parameters, or a parameter not initially incorporated
into the model. An error in the assumed parameter set results in a linear slope with
time. A parabolic trend results from an error. Additional effects will arise if the
assumed position of the pulsar is incorrect. A position error of just one arcsecond
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Fig. 6.29. Simulation of the
modulation of pulsar arrival
times as a function of the orbital
time for the binary system PSR
J1913+16. Top: modulation by
means of the Roemer propa-
gation time for two different
epochs; middle: gravitational
redshift and quadratic Doppler
effect; bottom: Shapiro time
delay due to the gravitational
field of the companion. Since the
amplitude of the Shapiro effect
is of the same order as the timing
accuracy, this effect cannot be
observed in this system

results in an annual sinusoid with a peak-to-peak amplitude of about 5 ms for a pulsar
on the ecliptic; this is easily measurable for typical TOA uncertainties of order one
milliperiod or better. Similarly, the effect of a proper motion produces an annual
sinusoid of linearly increasing magnitude. This procedure provides therefore also
astrometric information (celestial coordinates and proper motion) of pulsars.

After a number of iterations, and with the benefit of a modicum of experience,
it is possible to identify and account for each of these various effects to produce
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Table 6.5. Timing data for the two most famous relativistic binary systems. The numbers in
brackets give the errors. In the first group, you find the astrometric parameters, the second
group gives the classical orbital elements of binary systems, and the third group lists the
post-Keplerian parameters

Parameter PSR B1913+16 PSR B1534+12

Spin period P [ms] 59.029997929613(7) 37.90444048785528(5)
Braking rate Ṗ [10−18] 8.62713(8) 2.42253(3)
Right ascension (J2000) 19:15:28.0002 15:37:09.95994(2)
Declination (J2000) 16:06:27.4043 11:55:55.6561(3)
Dispersion [pc cm−3] 168.770 11.619(12)
Timing accuracy [µs] 15 3

Orbital period Pb [d] 0.322997462 0.42073729933(3)
Eccentricity e 0.6171308(4) 0.2736775(5)
Semimajor axis ap sin i/c [s] 2.3417592(19) 3.729464(3)
Periastron length ω0 [deg] 226.57528(6) 267.44746(16)
Periastron passage T0 [MJD] 46443.99588319(3) 48778.82595096

Periastron shift ω̇ [deg/yr] 4.226621(11) 1.755794(19)
Grav/Doppler effect γRD [ms] 4.295(2) 2.071(6)
Shapiro time delay r [µs] – 6.7(1,3)
Orbital inclination s = sin i – 0.983(8)
Orbit decay Ṗb [10−12 s/s] –2.422(6) –0.129(14)

a timing solution which is phase coherent over the whole data span. The result-
ing model parameters provide spin and astrometric information about the neutron
star to a precision which improves as the length of the data span increases (see
Table 6.5). The latest observations of the original millisecond pulsar, B1937+21,
spanning almost 9 yr (exactly 165,711,423,279 rotations!) measure a period of
1.5578064688197945 ± 0.0000000000000004 ms defined at midnight UT on De-
cember 5 1988! Astrometric measurements based on these data are no less impres-
sive, with position errors of arcsec being presently possible.

6.5.3 Timing of the Binary System PSR B1913+16

More than seven binary systems consisting of a pulsating neutron star have been
found (Table 6.6). The merger time determined by emission of gravitational waves
is given by

τmerge � 107 yr

(
Pb

10 hr

)8/3 ( µ
M

)−1
(

M

M�

)−2/3

(1− e2)7/2 . (6.292)

The solution of the timing procedure is given in Table 6.5 for the the two systems PSR
B1913+16 and PSR B1534+12. The Shapiro parameters are not yet well defined for
PSR B1913+16 due to its low inclination. The post-Keplerian parameters can now
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Table 6.6. Binary systems containing radio pulsars which coalesce in less than a Hubble time.
τP is the pulsar characteristic age, τmerge is the time remaining to coalesce due to emission of
gravitational waves. B2127+11C is in a globular cluster

Pulsar P Pb e Mass τP τmerge Detection
[ms] [hr] [M�] [Myr] [Myr]

J0737–3039A 22.70 2.45 0.088 2.58 210 87 2003
J0737–3039B 2773 2.45 0.088 2.58 50 87 2004
B1534+12 37.90 10.10 0.274 2.75 248 2690 1990
J1756–2251 28.46 7.67 9.181 2.57 444 1690 2004
B1913+16 59.03 7.75 0.617 2.83 108 310 1975
B2127+11C 30.53 8.04 0.681 2.71 969 220 1990
J1141–6545 393.90 4.74 0.172 2.30 1.4 590 2000
J1518+4904 40.9 8.63d 0.249 2.62 9600
J1811–1736 104.2 18.78d 0.828 2.60 1700
J1829+2456 41.0 1.17d 0.14 2.53 60

be used to constrain the position of the pulsar in the mass plot (M1,M2) (Fig. 6.30).
The crossing of the lines given by the periastron shift ω̇ and the quadratic Doppler
effect γRD determine the position very accurately. The Shapiro shape parameter
which determines the inclination sin i of the orbital plane gives a first consistency
check.

A further relation is obtained from the shrinking of the orbital motion by the
emission of gravitational waves.

6.5.4 Masses of Companion Stars

While timing measurements of the relativistic corrections to the Keplerian orbital
equations provide the most accurate mass determinations for neutron stars, these
methods are only possible for close eccentric binary orbits or when the orbit is
viewed more or less edge-on. In the great majority of binary systems, the mass
function provides the only timing information about the companion mass. The
pulsar mass can then only be determined if additional constraints are found for
the companion star.

In recent years, about a dozen companion stars in radio pulsar binaries have
been optically detected. In most cases the companions are white dwarfs. They are
however extremely faint (MV � 26). The radius of the white dwarf can be estimated
directly from the optical flux and the mass estimated using the theoretical mass–
radius relation. Additional information can be gained from the surface gravity by
fitting a model atmosphere. White dwarf companions of millisecond pulsars are
believed to be He stars with masses M2 < 0.5 M�. Atmospheres of He white dwarfs
are however not well understood. Two pulsars have been found in binaries with main
sequence companions (B1259–63 with a Be star companion and J0045–7319 with
a B1V star companion).
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Fig. 6.30. Mass diagram for the binary pulsar system B 1534+12. The five post-Keplerian
parameters ω̇, γRD, r, s and Ṗb give constraints on the two masses. The offset in the orbital
decay is due to gravitational acceleration effects in the globular cluster

6.5.5 The Double Pulsar System PSR 0737-3039A+B

The pulsar PSR J0737–3039 was discovered as part of a high-latitude multibeam
survey of the southern sky using the 64-m Parkes radio telescope. It was found to be
in a 2.4 hr eccentric orbit that the observed orbital parameters suggested was another
neutron star [245]. Lyne et al. [261] reported the detection of the 2.8 s pulsar as the
companion to a 23 ms pulsar as the first double pulsar system (Table 6.7). Also short
eclipses and orbital modulation of the radio fluxes are observed. The relativistic
periastron advance, ω̇, and the Doppler factor γRD could be measured, and also the
Shapiro delay in the pulse arrival times of A due to the gravitational field of B could
be detected (Fig. 6.32). This provides four measured post-Newtonian parameters
resulting in the mass plot Fig. 6.32.

The detection of the pulsar B opens new constraints for this particular system.
First, we can exclude all regions in the mass plot due to the requirement sin i ≤ 1.
Secondly, with a measurement of the semimajor axes of orbit A and B, we obtain
a precise measurement of the mass ratio, R(MA,MB) = MA/MB = xB/xA, pro-
viding a further constraint in the mass plot. The R line is independent of any strong
field effects. These constraints make this system the most overdetermined DNS
binary to date and a truly unique lab for testing relativistic gravity. The position
of the allowed region in Fig. 6.32 also determines the inclination of the orbit with
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Fig. 6.31. Neutron star masses from observations of radio pulsar systems. Six double neutron
star systems are shown at the top of the diagram. Three young pulsars are companions of B
stars. Finally, we show recent data from radio pulsars with recycled white dwarf companions.
Vertical line is drawn at M = 1.40 M�

respect to the line-of-sight. This system is observed nearly edge-on with an angle
i � 87 degrees. This is very favorable for the observation of the Shapiro time delay
(Fig. 6.33).

The formation of double neutron star binaries can be understood by a binary
evolution scenario which starts with two main sequence stars. The initially more
massive star evolves first and explodes in a supernova to form a neutron star. Under
favorable conditions, this neutron star remains bound to its companion and spins
down as a normal pulsar for the next few million years. At some later time, the
secondary star comes to its end of its main-sequence lifetime and begins the red
giant phase. Depending on the orbital parameters of the system, an accretion disk is
formed around the neutron star with plasma from the red giant, making the system
now visible as an X-ray binary. The accretion process transfers angular momentum
to the neutron star, spinning it up to short periods and dramatically reducing its
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Table 6.7. Timing data for the first double pulsar relativistic binary system PSR 0737–
3039A+B (Lyne et al. [261]). The numbers in brackets give the errors. In the first group,
you find the astrometric parameters, the second group gives the classical orbital elements of
binary systems, and the third group lists the post-Keplerian parameters. Finally, we give some
important derived parameters

Pulsar PSR J0737–3039A PSR J0737–3039B

Spin period P [ms] 22.69937855615(6) 2773.4607474(4)
Perido derivative Ṗ 1.74(5)× 10−18 0.88(13)× 10−15

Epoch of period (MJD) 52870.0 52870.0
Right ascension (J2000) 07:37:51.247(2) –
Declination (J2000) −30:39:40.74(3) –
Dispersion [pc cm−3] 48.914(2) 48.7(2)
Timing accuracy [µs] 27 2660

Orbital period Pb [d] 0.102251563(1) –
Eccentricity e 0.087779(5)
Semimajor axis ap sin i/c [s] 1.41504(2) 1.513(4)
Periastron length ω0 [deg] 73.805(3) 73.805 + 180.0
Periastron passage T0 [MJD] 52870.0120589(6) –

Periastron shift ω̇ [deg/yr] 16.90(1) –
Grav/Doppler effect γRD [ms] 0.38(5)
Shapiro time delay r [µs] 5.6(−12,+18)
Orbital inclination s = sin i 0.99995(−32,+4)
Orbit decay Ṗb [10−12 s/s] not measured

Characteristic age [Myr] 210 50
Surface magnetic field [gauss] 6.3× 109 1.6× 1012

Spin-down luminosity Ė [erg/s] 5.8× 1034 1.6× 1030

Mass function [M�] 0.29097(1) 0.356(3)
Distance [kpc] 0.6
Total mass [M�] 2.588(3)
Mass ratio m A/m B 1.069(6)
Orbital inclination [deg] 87(3)
Geodetic precession period [yr] 75 71

magnetic field strength. A limiting spin period is then obtained due to equilibrium
between the magnetic pressure of the accreting neutron star and the disk pressure of
the infalling matter.

The orbital separation of such systems is dramatically reduced when matter
from the secondary is expelled from the system, resulting in a very compact system
consisting of a helium star and a neutron star. A sufficiently massive helium star
will undergo a supernova explosion forming a young second neutron star. If the stars
remain bound, the resulting system is a pair of neutron stars in eccentric orbit with
different magnetic field strengths, as is the case in the observed system. With masses
MA = 1.34 M� and MB = 1.25 M�, neutron star A shows a typical mass, while
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Fig. 6.32. Mass diagram for the binary pulsar system PSR 0737–3039A+B. The mass ratio
R = m A/m B = xB/xA provides the strongest constraint and determines together with the
periastron advance uniquely the masses and the inclination. Based on these data, the orbital
decay is predicted to be Ṗb = −1.24× 10−12 (dotted line). Data are taken from [244]

neutron star B has a somewhat smaller mass than the others (Fig. 6.31). The time
since the second supernova explosion can be estimated by comparing the spin-down
age of the pulsars, τA � 4τB.

This system has other interesting properties. The separation of the two pulsars in
their orbits is typically 900,000 km, or 3 lightseconds. The large orbital inclination
means that, at conjunction, the line-of-sight to one pulsar passes within about 0.15
lt-sec of the other. This is smaller than the light cylinder radius RL = c/Ω = 0.45
lt-sec of pulsar B, however much greater than the light cylinder of pulsar A. As the
pulsar moves, the line-of-sight from A passes through the magnetosphere of pulsar
B, providing the opportunity to probe the physical conditions in the magnetosphere
of pulsar B (see Fig. 6.41). This allows us to probe the radio transmission prop-
erties, the plasma density and the magnetic field structure of the magnetosphere.
In fact a short occultation of the pulses from A has already been measured cen-
tered upon superior conjunction (Lyne et al. [261]). The duration of the occultation
is only 20–30 s. The strong pulsar wind from pulsar A (about a factor one hun-
dred stronger than the wind from B) will form a kind of magnetopause around
the magnetosphere of pulsar B (similar to the Earth’s magnetopause formed by
the solar wind), and this will be probably located within the light cylinder of B.
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Fig. 6.33. The effect of the Shapiro time delay caused by the gravitational potential of B seen
in the timing residuals of the double pulsar. Top: timing residuals obtained by subtracting the
full timing model; bottom: timing residuals obtained by setting the Shapiro delay parameters
r = 0 = s. Figure adapted from Kramer et al. [245]

The pulsar wind from A is forced to flow around the quenched magnetosphere
of B.

6.6 Neutron Stars in our Galaxy

Neutron stars in isolation or as companions of compact objects can appear as radio
and/or X-ray pulsars. As of 2005, more than 1500 radio pulsars have been detected
in large radio surveys 4 and about 150 neutron stars are known as X-ray sources.

6.6.1 100 Million Neutron Stars in the Galaxy

Neutron stars are thought to be born in type II supernovae. The typical event rate for
such supernovae in spiral galaxies is of the order of one event every 50–100 years,
though the historical event rate in our own Galaxy is somewhat short of this number
due to various reasons. This means that our Galaxy is populated by at least a few
hundred million neutron stars. Since the lifetime of a typical pulsar is only a few
million years, we estimate to have about 10,000 active radio pulsars in our Galaxy.

4 See the on-line pulsar catalogue: www.atnf.csiro.au/research/pulsars/psrcat .
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Of these objects, only some fraction is visible due to the lighthouse effect. This
demonstrates that the total number of detectable pulsars will be in the range of
a few thousand objects for the entire Galaxy, depending somewhat on the topology
of the magnetosphere of neutron stars. Dead pulsars will live forever as cooling
rockets when flying through the Galaxy. The neutron star RX J1856–37 recently
detected by HST is an example of such a flying graveyard. It is located at a distance
of 200 lightyears and moves with a speed of 100 km/s through space. Its surface
temperature is about 700,000 K.

Similar to white dwarfs, we can distinguish between three types of neutron stars:

– Thermal emission from isolated neutron stars: Observations of isolated neu-
tron stars (or neutron stars in quiescent X-ray binaries) are extremely important in
fundamental physics, as thermal emission from the surface of a neutron star car-
ries signatures of its gravitational field, which may be used to infer its mass and
radius. Detection of absorption lines corresponding to elements on the neutron
star atmosphere and measurement of their gravitational redshift would provide
rather accurate data. From the gravitational redshift at the surface of the neutron
star, the ratio between its mass and radius may be measured, providing a very
strong constraint on neutron star models. Such models give physics an experi-
mentally testable handle on properties of matter at (supra-)nuclear densities.

– Rotation-powered neutron stars (radio pulsars): Neutron stars rotate very
rapidly, up to 600 times per second. But how are they spinning when they
are born? They may be born rotating very fast, with periods comparable to
a millisecond (although evidence is ambiguous). After that, they spin down ever
after because of magnetic torques. This seems to be supported by the fact that
some of the youngest pulsars, such as the Crab pulsar (33 ms) and the Vela pulsar
(80 ms) have unusually short periods. After a pulsar is born, its magnetic field
will exert a torque and slow it down, with typical spin-down rates of 10−13 s/s
for a young pulsar like the Crab.
Neutrons were discovered in 1932, and very shortly afterward (in 1934) a sug-
gestion was made by Walter Baade and Fritz Zwicky that neutron stars were
formed in supernovae. But for many decades after that, neutron stars were just
hypothetical phenomena that did not attract much interest. Since the stars are so
small, people felt that the prospects for observing them were minimal, and thus
little effort was expended on theory or observation of neutron stars.
This changed dramatically in 1967, due to serendipity and the diligence of an
English graduate student by the name of Jocelyn Bell. Bell and her advisor,
Anthony Hewish, were working on radio observations of quasars, which had
been discovered in 1963. Bell and some other graduate students constructed
a scintillation array for the observations, then she got down to examining the
charts of data produced (she had to analyze the miles of charts by hand, since
this was in the days before powerful computers). One day she noticed a bit of
“scruff” that appeared on the charts every second and a third. The scruff was
so regular that she first thought it must be artificial. However, careful checking
showed that indeed the signal was extraterrestrial, and in fact that it must be from
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outside the Solar System. This source, CP 1919, was the first radio pulsar to be
discovered.
The discovery initiated a storm of activity that has still not abated. A number
of other pulsars were discovered, including one in the Crab Nebula (Fig. 1.8),
site of a famous supernova in the year 1054 that was observed by Chinese,
Arabic, and North American astronomers (but not recorded, as far as we know,
by Europeans). Within a year or so of the initial discovery, it became clear that
(i) pulsars are fast, with periods known in 1968 from 0.033 seconds (the Crab
pulsar) to about 2 seconds, (ii) the pulsations are very regular, with a typical rate
of change of only a second per 10 million years, and (iii) over time, the period
of a pulsar always increased slightly.
With this data, it was realized quickly that pulsars had to be rotating neutron stars.
With certain exceptions that do not apply in this case, if a source varies over some
time t, then its size must be less than the distance light can travel in that time, or
ct (otherwise the variation would be happening faster than the speed of light).
Thus, these objects had to be less than 300,000 km/s times 0.033 seconds, or
10,000 km, in size. This restricts us to white dwarfs, neutron stars, or black holes.
You can get a periodic signal from such objects via pulsation, rotation, or a binary
orbit. White dwarfs are large enough that their maximum pulsational, rotational,
or orbital frequencies are more than a second, so this is ruled out. Black holes
do not have solid surfaces to which to attach a beacon, so rotation or vibration of
black holes is eliminated. Black holes or neutron stars in a binary could produce
the required range of periods, but the binary would emit gravitational radiation,
the stars would get closer together, and the period would decrease, not increase
(and would do so very quickly, too!). Pulsations of neutron stars typically have
periods of milliseconds, not seconds. The only thing left is rotating neutron stars,
and this fits all of the observations admirably.

– Accretion-powered neutron stars in X-ray binary systems: Not all neutron
stars are destined to lead a life of isolation. Some of them are born in binaries
that survive the supernova explosion that created the neutron star, and in dense
stellar regions such as globular clusters some neutron stars may be able to capture
companions. In either case, mass may be transferred from the companion to the
neutron star.
If the companion star has less than the mass of our Sun, the mass transfer occurs
via Roche lobe overflow. If part of the companion star’s envelope is close enough
to the neutron star, the neutron star’s gravitational attraction on that part of the
envelope is greater than the companion star’s attraction, with the result that the
gas in the envelope falls onto the neutron star. However, since the neutron star is
tiny, astronomically speaking, the gas has too much angular momentum to fall on
the star directly and therefore orbits around the star in an accretion disk. Within
the disk, magnetic or viscous forces operate to allow the gas in the disk to drift
in slowly as it orbits, and to eventually reach the stellar surface. If the magnetic
field at the neutron star’s surface exceeds about 108 G, then before the gas gets
to the stellar surface the field can couple strongly to the matter and force it to
flow along field lines to the magnetic poles. The friction of the gas with itself
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as it spirals in towards the neutron star heats the gas to millions of degrees, and
causes it to emit X-rays.
If the star has a companion, it can accrete from the companion and have its
rotational frequency altered that way. If the companion is a low-mass star, say
half the mass of our Sun or lower, accretion tends to proceed by Roche lobe
overflow. The radius of the inner edge of the disk is determined by the strength
of the magnetic field; the stronger the field, the farther out it can control the
accretion flow (for a given accretion rate). The star then (more or less) tries to
come to equilibrium with the Keplerian angular velocity of the matter at the inner
edge of the accretion disk. This means that neutron stars with relatively small
(108 to 109 gauss) magnetic fields can be spun up to high frequencies, and this
is the accepted picture of how we get millisecond pulsars.
If the companion of the neutron star is a high-mass star (over 10 solar masses)
instead, then the matter that makes it onto the neutron star goes in the form of
a low angular momentum wind. Therefore, the neutron star is not spun up to
such high frequencies; in fact, some X-ray pulsars that are in high-mass systems
have periods longer than 1000 seconds. The process of wind accretion is a very
complicated one, and numerical simulations of the process push the limits of
computers. It appears that, in some circumstances, a disk may form briefly
around the neutron star, only to be dissipated and replaced by a disk going the
other way. One barrier to understanding this kind of accretion is that, even with
today’s computers, high-resolution 3D simulations just aren’t feasible now, so
we have to derive what insight we can from good two-dimensional calculations.

6.6.2 Thermal Emission from Isolated Neutron Stars

Neutron stars are numerous, but observationally very diverse. In particular, direct
emission from the neutron star surface layers (the only source of information on the
physical conditions of the star) is only accessible in a handful of sources. This is
because the surface of old neutron stars (age > 106 yr) is too cold to emit X-rays,
while the radiation from young active radio pulsars (age < 104 yr) is dominated
by nonthermal emission from the magnetosphere surrounding the star. In the last
decade ROSAT satellite observations led to the discovery of seven dim sources,
which were later associated with radio-silent, isolated, middle-age (age 105–106 yr)
neutron stars. They are characterized by clean thermal emission at energies of about
0.1 keV without any trace of contamination from a surrounding supernova remnant
or magnetospheric activity. They are located within a few hundred pc, close enough
to be studied with the latest X-ray orbiting observatories and therefore represent
important targets for the study of neutron star surface emission.

Data on Cooling Neutron Stars

Observations of neutron stars with detection of thermal emission are summarized in
Table 6.8 and 6.9. These tables display four inferred quantities: the spin-down age tsd,
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Table 6.8. Neutron stars with hydrogen atmospheres. Data from [321]

Star log tsd log T∞ Distance log L∞
yr K kpc erg/s

RX J0822–4247 3.90 6.24± 0.04 1.9–2.5 33.85–34.0
1E 1207.4–5209 5.53 6.21± 0.07 1.3–1.9 33.27–33.74
RX J0002+6246 – 6.03± 0.03 2.5–3.5 33.08–33.33
PSR 0833–45 (Vela) 4.05 5.83± 0.02 0.22–0.28 32.41–32.70
PSR 1706–44 4.24 5.8± 0.13 1.4–2.3 31.81–32.93
PSR 0538+2817 4.47 6.05± 0.10 1.2 32.6–33.6

Table 6.9. Neutron stars with black-body atmospheres. The uncertainties in the observed radii
are still too big for confrontation with theory. Data from [321]

Star log tsd log T∞ R∞ Distance log L∞
yr K km kpc erg/s

RX J0822–4247 3.90 6.65± 0.05 1–1.6 1.9–2.5 33.60–33.90
1E 1207.4–5209 5.53 6.48± 0.01 1.0–3.7 1.3–3.9 32.70–33.88
RX J0002+6246 – 6.15± 0.11 2.1–5.3 2.5–3.5 32.18–32.81
PSR 0833–45 (Vela) 4.05 6.18± 0.02 1.7–2.5 0.22–0.28 32.04–32.32
PSR 1706–44 4.24 6.22± 0.04 1.9–5.8 1.8–3.2 32.48–33.08
PSR 0656+14 5.04 5.71± 0.04 7.0–8.5 0.26–0.32 32.18–32.79
PSR 0633+1748 (Gem) 5.53 5.75± 0.04 2.7–8.7 0.123–0.216 30.85–31.51
PSR 1055–52 5.43 5.92± 0.02 6.5–19.5 0.5–1.5 32.07–33.19
RX J1856.5–3754 – 5.6–5.9 > 16 0.105–0.129 31.44–31.68
RX J0720.4–3125 6.0± 0.2 5.55–5.95 5.0–15.0 0.1–0.3 31.3–32.5

the surface temperature T∞, the total thermal luminosity L∞ and the estimated dis-
tance d. The subscript∞ refers to quantities observed at Earth which are redshifted
relative to their values at the stellar surface. The data are taken from references given
in [321]. Table 6.8 refers to models incorporating atmospheres dominated by hy-
drogen, while Table 6.9 presents properties inferred from black-body atmospheres.
There are also sources available with only upper limits.

The estimation of T∞ and L∞ from the observed spectral fluxes requires atmo-
spheric modelling with the inclusion of three additional factors: the composition of
the atmosphere, the column density of X-ray absorbing material between the star and
Earth, and the surface gravitational redshift. The column density is important, since
the bulk of the emitted flux from neutron stars is absorbed by interstellar hydrogen,
before it reaches the Earth (Fig. 6.34). Since no narrow spectral lines are observed
in the neutron stars in Table 6.8 and 6.9, the atmospheric composition of these stars
is unknown. Neutron star atmospheres can be either light-element (i.e. H and He) or
heavy-element dominated. The latter ones have spectral distributions more closely
resembling a black-body distribution, due to higher opacities of heavy elements. If
the distance is known, the neutron star emission radius can be inferred. It seems that
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Fig. 6.34. The X-ray spectrum of the isolated neutron star RJ 1856–3754 for (a) a two-
component model and (b) a model with continuous temperature distribution. The X-ray and
optical data show no spectral features and are best fitted with a two-component black-body
model with kT∞bb,X � 63.5 eV and R∞bb,X � 4.4(d/120 pc) km for the hot X-ray emitting
region, and kT∞bb,opt < 33 eV and R∞bb,opt > 17(d/120 pc) km for the rest of the neutron
star surface responsible for the optical flux. The optical emission is then the Rayleigh–Jeans
spectrum emitted by the neutron star surface and the hot spot. The neutron star radius would be
14 km. This would rule out quark stars. Figure adapted from Burwitz et al. [93] and Trümper
et al. [400]

the inferred neutron star radii for stars younger than 100,000 years are consistent
with canonical values only if they are modelled with light-element atmospheres. On
the other hand, stars older than 100,000 years have inferred radii close to the canon-
ical range only if modelled with heavy-element atmospheres. It seems therefore that
the atmospheric composition of a neutron star evolves from light elements to heavy
elements on a time-scale of about 100,000 years.

Ages for the observed cooling neutron stars can be estimated from the observed
spin-down rate tsd = P/2Ṗ, where P and Ṗ are the period and its time deriva-
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tive, respectively. In some cases, one also has kinematic information by relating
pulsar transverse velocities to distances from the presumed sites of origin (e.g. OB
associations). The distances are estimated from pulsar dispersion measures, esti-
mated distances for the corresponding supernova remnant, or by observations of the
interstellar absorption to nearby stars.

These dim isolated neutron stars (DINs) are key objects in compact object as-
trophysics. They offer a unique laboratory for investigating the properties of matter
under extreme conditions, such as the equation of state at supranuclear densities, or
the interaction of highly relativistic plasmas with radiation in the presence of giga-
or teragauss magnetic fields. Detailed X-ray spectra of DINSs have been recently
obtained with Chandra and XMM–Newton, and show quite unexpected characteris-
tics. The prototype of the class, RX J1856.5–3754, exhibits a featureless spectrum
extremely close to a pure black-body (Fig. 6.34). Broad absorption features have
been detected in four pulsating sources with evidence of a spectral variation with
phase. Very recently, spectral evolution on timescale of years have been reported
for the second most luminous source, RX J0720.4–3125. In addition, when detected
the optical counterpart lies a factor about 5–10 above the extrapolation of the X-ray
black-body at optical wavelengths. All these new findings represent a challenge for
conventional atmospheric models, typically based on surface temperature distribu-
tions induced by a dipolar magnetic field.

Compact Stellar Radii from Thermal Emission

The observed temperature Teff,∞ determines the observed luminosity

L∞ = 4πσSBT 4
eff,∞ R2

∞ = L∗α2(R) . (6.293)

The last equality follows from the fact that the energy is redshifted and time is also
redshifted with respect to the timescale at the surface of the star, dt∞ = dτ/α(R).
The BB spectrum is redshifted when it leaves the gravitational field of the star, i.e.

Teff,∞ = α(R) Teff =
√

1− 2G M/c2 R Teff . (6.294)

Since L∗ = 4πR2σSBT 4
eff , this has the consequence that the observed radius R∞ is

apparently bigger than the true radius of the neutron star

R∞ = R

α(R)
� R√

1− 2G M/c2 R
. (6.295)

An intrinsic radius for a neutron star of 1.4 solar masses corresponds to an observed
radius between 13 and 14.5 km (Fig. 6.35). If massive neutron stars would have
quark cores, we would expect observed radii between 12 and 13 km.

Neutron Star Cooling

Neutron stars are formed at much higher temperatures than white dwarfs, typically
at 50 MeV. Much of this initial thermal energy is radiated away from the interior
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Fig. 6.35. Radius constraints on the mass–radius relation are given by lines of constant
observed radii R∞, together with the mass–radius relation for various EoS

of the star by means of neutrino emission (mainly by the modified URCA process
and neutrino Bremsstrahlung). After one day, the neutron star has cooled down to
a few billion K, and after 100 years the star’s interior becomes nearly isothermal
(thermally relaxed). After this period, the energy balance of the cooling neutron star
is determined by

dEth

dt
= CV (Ti)

dTi

dt
= −Lν(Ti)− Lγ (T∗)+ L H , (6.296)

with the following luminosities (in Newtonian expressions)

CV = 4π

3
R3 cv T (6.297)

Lν = 4π

3
R3 Qν T 8 (6.298)

Lγ = 4πR2 σSBT 4
∗ ∝ T 2+a , a � 1 . (6.299)

This Newtonian equation will be modified by some relativistic corrections (see
below). Ti is the internal (core) temperature, T∗ the surface temperature, and L H

denotes heating processes (e.g. frictional heating by superfluid neutrons in the inner
crust), L∗(T∗) = 4πR2∗σT 4∗ , and Lν(Ti) =

∫
εν dV is the neutrino luminosity. For

a recent review on the details, see Yakovlev and Pethick [424, 425].
The above Newtonian equations have to be replaced by the correct relativistic

relations for spherical stars (see problem 6.10)
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exp(−λ− 2Φ)

4πr2

∂

∂r
(exp(2Φ)Lr) = −Qν + Qh − cv

exp(Φ)

∂T

∂t
(6.300)

Lr

4πκr2
= exp(−λ−Φ) ∂

∂r
(exp(Φ)T ) . (6.301)

Qν is the neutrino emissivity, cv is the heat capacity per unit volume, κ is the
thermal conductivity, and Lr is the local luminosity given by the nonneutrino heat
flux transported through a sphere of radius r. QH denotes the energy production by
reheating (e.g. dissipation of rotational energy). After thermal relaxation, the red-
shifted temperature Ti(t) = exp(Φ)T(t, r) becomes constant throughout the stellar
interior. Then we obtain the equations of global thermal balance (6.296) with the
interpretation

Lν(Ti) =
∫

dV Qν(T) exp(2Φ) (6.302)

CV (Ti) =
∫

dV cv(T) , (6.303)

where dV = 4πr2/
√

1− 2Gm(r)/c2r is the element of proper volume.

Neutrino Emission Processes

Neutrino emission is generated by various reactions in the interior of neutron stars.
Neutrinos escape and carry away energy. The neutrino mechanisms in the core can
be subdivided into slow and fast processes with emissivities given by

Qslow = QsT 8
9 , Qfast = Q f T 6

9 , (6.304)

where Qs and Q f are slowly varying functions of the density, presented in Table 6.10.
The most powerful neutrino emission is provided by the direct Urca processes in nu-
cleon and hyperon matter. It consists of a pair of reactions, the beta decay of a neutron
and electron capture on a proton, whose net effect is the emission of a neutrino–
antineutrino pair. The composition of the matter remains unchanged. This process
can only occur if the proton concentration is sufficiently high. In degenerate matter,
only particles with energies within � kBT of the Fermi surface can participate in
reactions, since other processes are blocked by the Pauli exclusion principle. If the
proton and electron Fermi momenta are too small compared with the neutron Fermi
momenta, the process is forbidden, because momentum conservation cannot be satis-
fied. One finds that the ratio of the number density of protons to that of nucleons must
exceed 0.1 for this process to be allowed. Proton fractions in the outer core are esti-
mated to be lower than this. It could only occur in inner hyperon cores. In particular,
a concentration of Λ hyperons of order 10−3 could lead to rapid neutrino emission.

Pion-condensed and kaon-condensed matter could also lead to fast cooling pro-
cesses. Direct Urca processes can operate on the nucleon quasiparticles, which, in
the case of a pion condensate, is a coherent superposition of a neutron and a proton.
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Table 6.10. Neutrino emission processes in the cores of neutron stars and their emissivities.
T9 is the core temperature in units of 109 K. αc denotes the strong coupling constant for quarks

Process Name Process Emissivity Qν Reference
(erg cm−3 s−1)

Modified Urca n + n′ → n′ + p+ e− + ν̄e � 1020 T 8
9 Friman

n + p+ e− → n′ + n + νe and Maxwell [162]
Direct Urca n → p+ e− + ν̄e � 1027 T 6

9 Lattimer et al. [248]
p+ e− → n + νe

Quark Urca d → u + e− + ν̄e � 1026 αcT 6
9 Iwamoto [215]

u + e− → d + ν̄e

Kaon condensate n + K− → n + e− + ν̄e � 1024 T 6
9 Brown et al. [91]

n + e− → n + K− + νe

Pion condensate n + π− → n + e− + ν̄e � 1026 T 6
9 Maxwell et al. [276]

n + e− → n + n′ + νe

Slow neutrino reactions operate everywhere in the core, in particular in the outer
core (hence especially in low-mass stars). For matter consisting only of neutrons, pro-
tons and electrons, these are the modified URCA process and NN-Bremsstrahlung.
The modified Urca process differs from the direct one by an additional spectator
nucleon N required to ensure conservation of momentum and energy. There are
three Bremsstrahlung processes in n pe matter (nn, n p and pp). With hyperons or
quarks, other modified Urca processes could occur.

The neutrino reactions are drastically affected by baryon superfluidity. When
the temperature drops much below the critical temperature Tc of a given species,
the energy gap in the baryon spectrum makes these baryons inactive by suppress-
ing all reactions involving such baryons. As an example, superfluid protons in
n pe matter suppresses all Urca processes, but does not affect neutron–neutron
Bremsstrahlung.

Heat Capacity of Neutron Stars

The major contribution to the heat capacity in a neutron star comes from the core.
It is the sum of the heat capacities of the various degenerate constituents of dense
matter. The heat capacity per unit volume of a normal (nonsuperfluid) particle is
given by

cv = N(0)
π2

3
k2

BT = m∗n
p2

F

π2k2
BT , (6.305)

where pF is the Fermi momentum, N(0) the density of states at the Fermi surface, and
m∗ the effective mass at the Fermi surface (see Landau–Lifschitz). These quantities
are given through the relations
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Fig. 6.36. The contributions
of the various components for
the specific heat in a minimal
model of neutron star cores (not
including any hyperons) [321].
The crust–core transition occurs
at about half nuclear density

N(0) = 3n

pFvF
, vF = ∂ε

∂p
|pF , (6.306)

where vF denotes the velocity at the Fermi surface.
Neutron star cooling is strongly affected by superfluidity of nucleons in stellar

interiors. In principle, the EoS and the superfluidity model have to be obtained from
the same nuclear Hamiltonian. Such calculations are however extremely difficult.
Pairing interactions have a great influence on the specific heat. When T reaches Tc,
there is a sharp increase in the specific heat due to the large fluctuations occurring in
a second-order phase transition. Subsequently, when T � Tc, a Boltzmann suppres-
sion occurs due to the presence of a gap in the energy spectrum (for a discussion of
this point, see [321]). Microscopic theories predict two main types of superfluidity
inside neutron star cores: a singlet-state proton pairing and a triplet-state neutron
pairing at higher densities. These theories still give a large scatter of critical temper-
atures depending on the nucleon–nucleon interaction model. Note that superfluidity
induces an additional neutrino emission process associated with Cooper pairing of
nucleons

The main contributions to the n pe core comes from neutrons, while the con-
tributions from electrons and protons is only a small contribution (Fig. 6.36). The
total thermal energy of a nonsuperfluid neutron star (without quarks) is estimated
as Eth � 1048 T 2

9 erg. The heat capacity of an n pe neutron star core with strongly
superfluid neutrons and protons is determined by the electrons, which are not su-
perfluid, and is about 20 times lower than for a neutron star with a nonsuperfluid
core.
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Neutrino vs. Photon Cooling

The basic features of the thermal evolution of a neutron star follow from the equation
(6.296). In the neutrino cooling era, Lν � Lγ , we find then

dT

dt
= qν

cv
T 7 (6.307)

which has the solution

t − t0 = A

(
1

T 6
− 1

T 6
0

)
, (6.308)

where T0 is the initial temperature at t0. This gives for T � T0 a behavior T ∝
t−1/6, or a surface temperature T∗ ∝ t−1/12 (see below). The very slow decay of
the temperature is a direct consequence from the high exponent in the neutrino
emissivity.

Fig. 6.37. Cooling curves calculated with the APR EoS, including proton pairing in the outer
crust and neutron pairing in the inner crust. The various curves refer to neutron star masses
from 1.01 to 1.92 M� (step-size is 0.01 M�). Included are observed temperatures, and upper
limits for 12 isolated neutron stars. The sharp boundary between densely and rarely covered
domains corresponds to the direct Urca threshold for massive neutron stars. Figure adapted
from [185]
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The photon luminosity can be written as

L∗ = 4πR2σSBT 4
∗ = S T 2+4a , (6.309)

where the effective temperature T∗ has been converted into the internal temperature
T through an envelope model with a power-law dependence, T∗ ∝ T 1/2+a (see
Fig. 6.39). In the photon cooling era, Lγ � Lν,

t − t1 = B

4aS

(
1

T 4a
− 1

T 4a
1

)
, (6.310)

where T1 is the temperature at t1. This last equation shows that the temperature as
a function of time is a very steep function in the photon cooling era, T ∝ t−1/4a and
therefore L∗ ∝ t−2/a, while T ∝ t−1/6 in the neutrino cooling era, i.e. T∗ ∝ t−1/8a,
and therefore L∗ ∝ t−1/3 (see Fig. 6.38).

Since a � 1, we see that, during the photon cooling era, the evolution is very
sensitive to the nature of the envelope and to changes in the specific heat, as induced,
e.g. by nucleon pairing. The transition from neutrino dominated cooling towards
photon dominated cooling occurs at an age of about 100,000 years.

The Crust–Core Relation

For an outer crust composed of iron, a simple relation between surface temperature
and core temperature can be found (Fig. 6.39)

T∗ = 3.1× 106 K
( g∗

1014 cm s−2

)1/4
(

Ti

109 K

)0.549

. (6.311)

g∗ is the gravitational acceleration at the stellar surface. Neutrino emission is the
dominant cooling mechanism for the first 100,000 years (Fig. 6.37). After this time,
photon emission from the surface of the star gains over neutrino losses, and the
surface temperature drops rapidly. In the standard cooling scenario, the modified
URCA process n + N → p + N + e + ν̄e brings the temperature gradually down
to about one million K after the neutrino phase. Accelerated cooling occurs in this
phase for pion condensations or quark–gluon cores.

Thus, the thermal evolution of neutron stars between 10 years and 10 million
years is very sensitive to the composition of the interior. Since the typical tempera-
tures are expected to be in the range of UV–soft-X-ray regime, a hunt for such objects
has already been started with ROSAT. In fact thermal radiation has been observed
from about a dozen of isolated neutron stars (Fig. 6.38). These data must be, however,
considered as upper limits, since heating due to magnetospheric processes could be
important. In addition, the strong magnetic fields could lead to a nonuniform surface
temperature distribution. As with white dwarfs, the atmosphere of the neutron star
also plays an important role for the emergent spectrum. Particularly interesting are
the spectra emitted by iron atmospheres which show numerous spectral features
produced by iron ions in various ionization stages.
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Fig. 6.38. Cooling curves in a minimal model of neutron stars for various compositions of
the envelope, all models being 1.4 M� stars built with the EoS APR98 [321]. The two sets of
curves correspond to the extreme models of envelope chemical composition: light elements or
heavy elements. The different panels correspond to different assumptions about gap energies.
Figure adapted from [321]

Cooling of Neutron Stars with Color Superconducting Quark Cores

The formation of a condensate (K− or π−) in the first cooling phase would lead
to a rapid increase in the cooling. This is certainly in conflict with present cool-
ing observations. Superconducting quark matter will also affect the cooling curves
(Fig. 6.40).

Within nonlocal chiral quark models [81], the critical density for a phase transi-
tion can be low enough to occur in stars with masses beyond 1.3 solar masses. The
detailed structure of the phase diagram in these models still depends on the strength
parameter for the diquark coupling. For the 2SC phase stable hybrid star configu-
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Fig. 6.39. The surface temperature as a function of the core temperature Tb at the bottom of
the envelope for various amounts of light elements parametrized by η = ∆ML/M. ∆ML is
the mass in light elements in the envelope. Figure adapted from [321]

Fig. 6.40. Cooling curves for hybrid neutron stars including a 2SCX quark core. The various
curves show the effects for different masses (labels in terms of solar masses). Figure adapted
from [81]
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rations have been found even for masses of 1.3 solar masses. This phase has one
unpaired color of quarks (say blue) for which the very effective direct URCA process
would occur. This would lead to a too fast cooling of hybrid stars in disagreement
with observations. Therefore, it is assumed that a weak pairing channel is operating
also for blue colors with a resulting gap of the form

∆X(µ) = ∆c exp(−α(µ− µc)/µc) , (6.312)

with µ being the quark chemical potential, µc = 330 MeV, α = 10 and ∆c =
1.0 MeV [81]. The physical origin of this X-gap was still unclear, but the inclusion
of this gap provides acceptable fits to the cooling curves (Fig. 6.40).

6.6.3 Rotation-Powered Pulsars

The radio pulsars detected so far can be interpreted as rapidly spinning, strongly
magnetized neutron stars radiating at the expense of their rotational energy. The
energy source for these objects is neither fusion energy, nor gravitational energy. It
is simply the rotational energy stored in the rapid rotation of these compact objects.

By measuring the period P and its derivative Ṗ we can infer some fundamental
quantities for these objects. The pulsar slowing down can be written as

Ω̇ = −kΩn (6.313)

with n � 3 as the braking index of the pulsar. This equation can be solved

t = − Ω

(n − 1)Ω̇

[
1− Ω

n−1

Ωn−1
0

]
. (6.314)

Ω0 is the initial rotational frequency of the pulsar after its birth in a supernova
explosion. ForΩ � Ω0, we get the age of the pulsar (the so-called spin-down age)

tsd = − 1

n − 1

Ω

Ω̇
= 1

n − 1

P

Ṗ
= 1

2

P

Ṗ
(6.315)

for n = 3. The braking index can indeed be measured from the second derivative of
the period (presently only available for a few radio pulsars)

n = ΩΩ̈

Ω̇2
= 2− P P̈

Ṗ2
. (6.316)

A plot of the observed periods vs. period derivatives is shown in Fig. 6.42,
using the ATNF pulsar catalogue5. The diagram essentially decays into three sub-
classes. The bulk of objects is formed by standard pulsars with a mean period of
about 0.7 seconds (see Fig. 6.43 for the period histogram) and a typical braking

5 See online Web interface: http://www.atnf.csiro.au/research/pulsars/psrcat .
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Fig. 6.41. The magnetosphere of rotating neutron stars. A: Rotating magnetic field lines define
a light cylinder with radius RL = c/Ω � 50,000 (P/sec) km, when the period P is in units
of seconds. At the light cylinder, the dipolar magnetosphere gets distorted. Field lines from
the polar caps cross the light cylinder (open field lines), plasma generated near the polar cap
can escape along these field lines (B). C: The polar cap itself acts as a kind of discharge tube,
where strong parallel electric fields, generated by the rapid rotation, extract charges from the
surface of the neutron star and accelerate them to high energies
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Fig. 6.42. The fundamental pulsar diagram for the ATNF pulsar catalogue. Triangles represent
pulsars in a binary system. Shown are also lines of constant age and lines of constant surface
field strength in units of tesla for the dipole interpretation of the energy loss

Fig. 6.43. The pulsar period histogram from the ATNF pulsar catalogue
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of Ṗ = 2.5× 10−15. In the lower left corner we find the millisecond pulsars with
periods exceeding 1.5 milliseconds. The objects in the upper right corner represent
the soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs), which
were detected only in recent years. No pulsars have been found in the lower right
corner of the diagram, though there are certainly magnetized neutron stars rotating
with low frequency. This proves that the pulsar mechanism only operates for certain
conditions on period and magnetic field strength.

A rotating vacuum dipole magnetosphere would lose energy according to the
dipole formula (the Larmor formula in cgs units)

−Ė = 2

3c3
µ̈2 = 32π4

3c3
P−4 µ2

⊥ , (6.317)

where µ⊥ = B∗R3∗ sinχ is the magnetic moment of the neutron star with surface
field strength B∗ and radius R∗. The angle χ measures the inclination of the dipole
axis with respect to the rotational axis. For this process, the braking index would be
three, n = 3. Measured values for the braking index are usually below 3, indicating
that more complicated plasma processes are involved in the pulsar phenomenon.

Using this expression for the magnetic braking, we can get a handle on the field
strength of the neutron star. The rotational loss of the neutron star is given by

Ėrot = I∗ΩΩ̇ = −4π2 I∗
Ṗ

P3
, (6.318)

where I∗ is the moment of inertia of the neutron star (Fig. 6.11). Equating the two
energy-loss formulae, we obtain an expression for the projected field strength of the
neutron star

B∗ sinχ �
√

3c3 I∗ P Ṗ

8π2 R6∗
� 108 tesla

√
P Ṗ−15 . (6.319)

The period P is given in units of seconds and the period derivative Ṗ in units of 10−15

s s−1. The lines of constant field strength are also indicated in the pulsar diagram in
Fig. 6.42. According to this interpretation, AXPs and SGRs would have extremely
strong magnetospheres with surface field strengths B∗ > 1014 gauss.

The global spectra of radio pulsars are fairly complicated. Figure 6.44 displays
energy spectra for a handful of radio pulsars.

For older pulsars, there is a clear evidence for soft X-ray excess probably associ-
ated with the surface of the neutron star. In the case of the Crab pulsar, this thermal
emission is not yet visible.

X-Ray Observations of Radio Pulsars

Geminga is a radio-quiet pulsar with period P = 0.237 s, surface magnetic field
B∗ � 1.6× 1012 G, and characteristic age τ = P/2Ṗ = 3.4× 105 yr. The ROSAT
PSPC spectrum of Geminga has been fitted with a two-component model, either
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Fig. 6.44. The global spectra of seven radio pulsars sorted with age increasing from top to
bottom. Figure adapted from Becker and Pavlov [66]
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Fig. 6.45. The observed X-ray spectrum of PSR B0656. The intrinsic BB spectrum (dotted
line) is strongly absorbed by the ISM

two black-bodies or a black-body plus a power law. Both fits gave a satisfactory
description of the spectrum. This ambiguity was resolved by combining ROSAT
and ASCA data; the bulk of the soft X-ray flux is a black-body, and the hard X-ray
spectrum has a power-law profile. The soft X-ray component is parameterized as
a black-body with T = 5.77 × 105 K and a bolometric luminosity 1.47 × 1031

ergs/s; the hard X-ray spectrum is fitted by a power law with energy index 0.47 and
luminosity 8.13 × 1029 ergs/s. The luminosities were calculated from the parallax
distance of 160 pc from the HST measurements.

PSR 1055–52 and PSR 0656+14 resemble Geminga in many respects: period,
loss rate of rotational energy, and characteristic age (see Table 6.9). They also have
been fitted with a two-component model. The soft X-ray component has generally
been interpreted as thermal emission from all or a part of the surface of the neutron
stars. However, the source of the harder X-ray component has not been determined.
ROSAT data from PSR 1055–52 were fitted to a black-body together with a power
law of energy index 0.4–0.5. Although black-body models to describe the hard
X-ray component for a joint fit of ROSAT and ASCA data have been favored,
a reexamination of the same ASCA data shows that a power law with energy index
0.5 ± 0.3 and luminosity 1.5 × 1030 ergs s/1 (calculated at d = 500 pc) fits the
spectrum equally well. PSR 1055–52 possesses a large pulsed fraction of 0.73±0.33
at higher X-ray energies.

At present, about 20 pulsars have been detected in soft X-rays, but few of them
have sufficient photons for comprehensive spectral and temporal analysis. The above
five objects, observed in the X-ray energy range 0.1–10.0 keV, represent pulsars of
various classes. They all have periods of about 0.3 s. Geminga, PSR 1055–52, and
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PSR 0656+14 have characteristic ages τ � 105 yr, whereas PSR 1929+10 and
PSR 0950+08 have τ � 107 yr. Strong pulsed gamma-ray emission is detected
from Geminga and PSR 1055–52, but such radiation is still uncertain for PSR
0656+14. While Geminga, PSR 1055–55, and PSR 0656+14 have typical dipole
component magnetic fields B∗ � 1012 G, PSR 1929+10 and PSR 0950+08 have
weaker fields (B∗ < 1012 G). Luminosities have a great uncertainty associated
with the measurements of distance. Thermal soft X-ray emission is observed from
Geminga, PSR 1055–52, and PSR 0656+14, and the emitting area is comparable to
the entire surface of a neutron star. A thermal hard X-ray component is observed from
PSR 1929+10, PSR 0950+08, and PSR 0656+14 from an area that occupies only
a small fraction of the neutron star surface. A power-law spectrum in hard X-rays
is observed from the gamma-ray pulsars Geminga and PSR 1055–52. Light-curves
of the hard X-rays of both gamma-ray pulsars have pulsed fractions exceeding 50%,
which could be an indicator of nonthermal emission.

Gamma-Ray Pulsars

The Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton
Gamma Ray Observatory (CGRO) has detected six pulsars with strong gamma-
ray emission above 100 MeV: Crab, Vela, Geminga, PSR 1706–44, PSR 1055–52,
and PSR 1951+32. Similarities among the gamma-ray spectra and most of the
light-curves suggest that a similar powerful accelerator is operating in each of their
magnetospheres.

Models for magnetospheric accelerator gaps fall into two main classes [184]
(see also Fig. 6.41). For a polar-cap accelerator generally assumed to power the
radio emission of a pulsar, the acceleration of primary particles takes place relatively
near the surface of a neutron star. In the central dipole approximation for the stellar
magnetic field, all the radiation and pair production resulting from primaries that
have passed through such accelerators would be restricted to be within the open
field-line bundle that links the polar cap to the light cylinder (RL = c/Ω). Outer-
magnetospheric accelerators have been proposed for the emission of the energetic
photons from gamma-ray pulsars. These accelerators could achieve much higher
potential drops along magnetic field lines

∆V � Ω2 B∗R3

c2
� 1014 volt , (6.320)

with B∗ the surface dipole field, than can polar cap accelerators. Pair production
within such accelerators (e.g. from accelerator-produced GeV gamma-rays colliding
with keV X-rays from the stellar surface or its neighborhood) will result in a net flow
of primary e± out of the star being balanced by an inward flow of e± from the starward
end of the accelerator. Because of extensive e± flows generated by both polar cap and
outer-magnetospheric accelerators, it is difficult to see how both could survive on
the same field lines, pairs from one gap would be expected to quench the other gap.
However, a polar cap might be linked to both kinds of accelerator as long as the field
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lines through each are different (e.g. upward curving with a net positive [negative]
charge near the light cylinder for one and downward curving negative [positive] for
the other, or lines passing through the charge reversing surface � · B = 0 for the
one but not for the other).

Arguments for important outer-magnetospheric accelerators as well as polar cap
ones in gamma-ray pulsars but not in ordinary ones, include the following: (i) appar-
ently different death lines for the two families; for example, ordinary pulsar radio
emission appears to cease when polar cap accelerator e± production is no longer
possible while gamma-ray pulsar emission seems to be quenched when putative
outer-magnetospheric accelerators would no longer be able to sustain the mecha-
nism of collision between GeV gamma-rays and keV X-rays (thus Geminga and
PSR 1055–52 could maintain outer-magnetospheric accelerators, but PSR 1929+10
and PSR 0950+08 could not; the former are gamma-ray pulsars, while the latter
are not); (ii) strong optical emission coincident with X-ray emission from the Crab
pulsar that is difficult to explain unless its source is synchrotron radiation in the
outer magnetosphere; (iii) escape of 10 GeV gamma-rays from PSR 1951+32 and
PSR 1706–44, which seems more difficult to accomplish, if these gamma-rays orig-
inate in the neighborhood of strong polar cap fields. From an outer-magnetospheric
accelerator, because almost the full potential drop ∆V � 1014 V will be radiated
away by each electron in the accelerator, we indeed expect just such a luminosity,

Lγ � Ṅee∆V � 1034 erg/s , (6.321)

for Ṅe the maximum current through the accelerator (Goldreich–Julian current)

Ṅe � Ω2 B∗R3

ec
� 1032 s−1 . (6.322)

The spectrum of the Crab pulsar in the ROSAT and ASCA regime is dominated
by the radiation in two subpulses. That radiation is almost certainly from the same
region and particles that are the source of its high-energy (up to at least 1 GeV)
gamma-rays, but not pairs created on closed field lines in the near magnetosphere
discussed above. For X-rays from the latter we should look at the radiation between
these subpulses, which should also have a broader angular spread than that in the two
subpulses. The spectrum of this interpulse radiation has been isolated. A power law
with an energy index of 0.5 (smaller by 0.32 than that in the subpulses) is natural,
consistent with that for Geminga and PSR 1055–52. This radiation extends up to
200 keV.

Relativistic inflowing particles radiate away much of their energy before reaching
the polar cap. With constant bombardment of these particles at a rate of 1032 s−1 (the
Goldreich-Julian current), the polar cap would radiate X-rays. However, no evidence
for such a strongly heated polar cap is found in Geminga or PSR 1055–52. The total
thermal X-ray luminosity of PSR 1055–52 is 2.3×1032 ergs/s, whereas for Geminga
it is 1.5× 1031 ergs/s. In both cases, X-rays seem to be emitted from a large fraction
of the surface of the neutron star. We attribute the absence of observed hot polar caps
to the formation of a reflective e± “blanket” above the stellar surface.
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What Can we Learn from High-Energy Emission?

The broad-band spectra contain a lot of information on the emission processes in
the magentosphere of a pulsar. There exist a number of magnetospheric emission
models in the literature, but no theory reached a widespread acceptance. The physics
of the magnetosphere of rotating neutron stars is still one of the big mysteries.

What is known is that the radio emission of pulsars is a coherent process.
On the other hand, the optical, X- and gamma-ray emission must be incoherent.
Therefore, the fluxes in these energy bands are directly proportional to the densities
of the radiating particles, no matter which radiation process (synchrotron, curvature
radiation or inverse Compton emission) is at work in the given energy. Various
processes have been advanced for the high-energy emission:

– Nonthermal emission from charged particles accelerated in the pulsar magneto-
sphere. The energy distribution of these particles is in general a power law, and
the emission would then also be characterized by power-law-like spectra. The
energy of the photons would extend into the TeV band.

– X-ray and gamma-ray emission from the pulsar wind.

Fig. 6.46. Pulsars de-
tected so far in high-
energy emission, com-
pared to the sensitivity of
GLAST. The spin-down
energy loss is plotted as
a function of the spin
period of the neutron star
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Fig. 6.47. The observed radio (lower curve) and X-ray light-curves of millisecond pulsars. In
most cases, both polar caps are visible and the X-ray emission appears to be modulated in the
same way as the radio emission
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– Photospheric emission from the hot surface of a cooling neutron star. A modified
black-body spectrum would result in this case with low-amplitude intensity
variations with the rotational period (Fig. 6.47). This emission would occur in
the optical and soft X-ray region (see Fig. 6.45).

– Thermal soft X-ray emission from the neutron star’s polar cap which are heated
by relativistic particles, or by Joule heating due to currents crossing the polar
caps. This would lead to a strong modulation of the X-ray flux, especially for
millisecond pulsars (Fig. 6.47).

The Gamma-ray Large Area Space Telescope (GLAST) will open this high-
energy world to exploration and help us to answer these questions. With GLAST,
the sensitivity range for the detection of radio pulsars in the gamma-ray range can
be extended towards weaker sources (Fig. 6.46).

6.6.4 Accretion-Powered Neutron Stars and the Mass–Radius Relation

Over 90% of the strong Galactic X-ray sources appear to fall into two distinct
groups: (i) the high-mass X-ray binaries (HMXBs) and (ii) the low-mass X-ray
binaries (LMXBs). These two groups differ in a number of physical characteristics
(see Table 6.11). Binary pulsars and single millisecond pulsars are the descendants
of the X-ray binaries containing an accreting neutron star.

High-Mass X-Ray Binaries – HMXBs

There are about 130 known HMXBs and 25 have well-measured orbital parameters.
There are ∼ 40 pulsating HMXB sources with typical pulse periods between 10–
300 seconds (the entire observed range spans between 0.069 seconds and 20 minutes).

Table 6.11. The two main classes of strong Galactic X-ray sources

HMXB LMXB

X-ray spectra: kT ≥ 15 keV (hard) kT ≤ 10 keV (soft)

Type of time variability: regular X-ray pulsations only a very few pulsars
no X-ray bursts often X-ray bursts

Accretion process: wind (or atmos. RLO) Roche-lobe overflow

Timescale of accretion: 105 yr 107–109 yr

Accreting compact star: high B-field NS (or BH) low B-field NS (or BH)

Spatial distribution: Galactic plane Galactic center and
spread around the plane

Stellar population: young, age < 107 yr old, age > 109 yr

Companion stars: luminous, Lopt/Lx > 1 faint, Lopt/Lx � 0.1
early-type O(B) stars blue optical counterparts
> 10 M� (Pop. I) ≤ 1 M� (Pop. I and II)
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Among the systems with Porb ≤ 10 days and e ≤ 0.1 are the strong sources and
‘standard’ systems such as Cen X-3 and SMC X-1. These are characterized by
the occurrence of regular X-ray eclipses and double-wave ellipsoidal light variations
produced by tidally deformed (‘pear-shaped’) giant or subgiant companion stars with
masses > 10 M�. However, the optical luminosities (Lopt > 105 L�) and spectral
types of the companions indicate original ZAMS masses ≥ 20 M�, corresponding
to O-type progenitors.

The companions have radii 10–30 R� and (almost) fill their critical Roche lobes.
In a number of pulsating sources, such as X0115+63 (and Her X-1, an intermediate-
mass X-ray binary system) there are absorption/emission features in the X-ray spec-
trum which are most probably cyclotron lines, resulting from magnetic fields with
strengths B � 5 × 1012 G. Among the standard HMXBs, there are at least two
systems that are thought to harbor black holes: Cyg X-1 and LMC X-3.

Another group of HMXBs consists of the moderately wide, eccentric binaries
with Porb � 20–100 days and e � 0.3–0.5. A new third (sub-)group has recently
been proposed. These systems have Porb � 30–250 days and small eccentricities
e ≤ 0.2. Together these two groups form a separate subclass of HMXBs: the
Be-star X-ray binaries. In the Be-star X-ray binaries the companions are rapidly
rotating B-emission stars situated on, or close to, the main sequence (luminosity
class III–V). There are more than 50 such systems known making them the most
numerous class of HMXBs. The Be stars are deep inside their Roche lobes, as is
indicated by their generally long orbital periods (≥ 15 days) and by the absence of
X-ray eclipses and of ellipsoidal light variations. According to the luminosities and
spectral types, the companion stars have masses in the range about 8–20 M� (spectral
types O9–B3, III–V). The X-ray emission from the Be-star X-ray systems tends to
be extremely variable, ranging from complete absence to giant transient outbursts
lasting weeks to months (Fig. 6.48). During such an outburst episode one often
observes orbital modulation of the X-ray emission, due to the motion of the neutron
star in an eccentric orbit. The recurrent X-ray outbursts are most probably related to

Fig. 6.48. Schematic
model of a Be-star X-
ray binary system. The
neutron star moves in an
eccentric orbit around
the Be star which is
not filling its Roche
lobe. However, near the
periastron passage the
neutron star accretes
circumstellar matter,
ejected from the rotating
Be star, resulting in an X-
ray burst lasting several
days
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the irregular optical outbursts generally observed in Be stars, which indicate sudden
outbursts of mass ejection, presumably generated by rotation-driven instability in
the equatorial regions of these stars. While the Be-star X-ray binaries are transient
sources (often unobservable for months to years) the ‘standard’ systems are persistent
X-ray sources. HMXBs are located along the Galactic plane among their OB-type
progenitor stars 6.

Low-Mass X-Ray Binaries – LMXBs

Orbital periods have been measured for some 30 of these systems. They range from
11 min. to 17 days, similar to the orbital periods of cataclysmic variables. Only in the
few widest of these systems one can observe the spectrum of the optical companion.
In all other systems, the optical spectrum is that of the hot accretion disk. The
LMXBs are very seldom X-ray pulsars. The reason is their relatively weak magnetic
fields 109 ∼ 1011 G, which is expected to result from accretion-induced field decay.
On the other hand these sources show X-ray bursts (sudden thermonuclear fusion
of accreted matter at the surface of the neutron star, which are suppressed if the
magnetic field strength is > 1011 G. For this reason such bursts are not observed in
HMXBs.

The discovery of (kilohertz) quasiperiodic oscillations (QPOs) in the X-ray flux
of LMXBs has provided a clear timing signature of the accreting neutron stars and
black holes in these systems. In the past decade much insight of detailed accretion
physics and testing of general theory of relativity has been revealed by observations
and “beat frequency” models. There is more than a dozen of LMXBs systems for
which there is strong evidence for the presence of a black hole (see Sect. 6.5).

Low-mass X-ray binaries (LMXB) are binary stars where one of the components
is a black hole or a neutron star. The other component (donor) is filling its Roche
lobe and therefore transfers mass to the compact star. The donor is less massive than
the compact object, and usually on the main sequence. In some cases the donor can
be either degenerate or evolved, (subgiant or red giant). About one hundred LMXB’s

6 Besides the HMXB and LMXB systems with companion stars > 10 M� and ≤ 1 M�,
respectively, there must exist also a large number of Galactic compact binaries with
companion star masses in the interval 1–10 M�. These are the so-called intermediate-
mass X-ray binaries (IMXBs). IMXBs have recently been recognized as a class of their
own. IMXB systems are not easily observed as a result of a simple selection effect against
X-ray sources with intermediate-mass companions. The reason is the following: “Standard”
HMXBs have evolved (sub-)giant companions which are massive enough to have a strong
stellar wind mass-loss rate (typically Ṁwind � 10−6 M� yr−1) sufficient to power a bright
X-ray source, via an accreting neutron star or black hole, for 105–106 yr. The LMXBs often
evolve slowly on a nuclear time-scale (108 ∼ 109 yr) and the majority of the transferred
material is usually funnelled onto the compact object, via an accretion disk, yielding
accretion rates of 10−10–10−8 M� yr−1. In IMXBs the companions are not massive enough
to produce sufficiently high wind mass-loss rates to power an observable X-ray source.
Her X-1 and Cyg X-2 are systems of this type. In the latter system the companion presently
has a mass < 1 M�, but it is highly overluminous for this mass.
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have been detected from the Milky Way. Several LMXB have been discovered from
globular clusters.

A typical LMXB emits almost all of its radiation in X-rays, and typically less
than one percent in visible light, so they are among the brightest objects in the X-ray
sky, but relatively faint in visible light. The apparent magnitude is typically around
20 magnitudes. The brightest part of the system is the accretion disk around the
compact object. The orbital periods of LMXBs range from a few hours to a few
days.

X-Ray Bursters and Rotation of Neutron Stars

Many accreting neutron stars erupt in spectacular thermonuclear conflagrations ev-
ery few hours to days. These events are known as Type I X-ray bursts, or simply
X-ray bursts. Powerful new X-ray observatories, the Rossi X-ray Timing Explorer
(RXTE), the Italian–Dutch BeppoSAX mission, XMM–Newton and Chandra have
enabled the discovery of entirely new phenomena associated with thermonuclear
burning on neutron stars. Some of these new findings include: (i) the discovery of
millisecond (300–600 Hz) oscillations during bursts, so-called “burst oscillations,”
(ii) a new regime of nuclear burning on neutron stars which manifests itself through
the generation of hours long flares about once a decade, now referred to as “super-
bursts,” (iii) discoveries of bursts from low accretion rate neutron stars, and (iv) new
evidence for discrete spectral features from bursting neutron stars.

It is perhaps surprising that nuclear physics plays such a prominent role in the
phenomenology of an accreting neutron star, as the gravitational energy released
per accreted baryon (of mass m p) is G Mm p/R ≈ 200 MeV is so much larger
than the nuclear energy released by fusion (≈ 5 MeV when a solar mix goes to
heavy elements). Indeed, if the accreted fuel was burned at the rate of accretion,
any evidence of nuclear physics would be swamped by the light from released
gravitational energy. The only way the nuclear energy can be seen is when the
fuel is stored for a long period and then burns rapidly (as in Type I bursts and
superbursts).

The successful association of thermonuclear instabilities with X-ray bursts made
a nice picture of a recurrent cycle that consists of fuel accumulation for several
hours to days followed by a thermonuclear runaway that burns the fuel in ∼ 10–
100 seconds. It also secured the identification of the accreting objects as neutron
stars. The mass donors – the ultimate source of the thermonuclear fuel – are typ-
ically old, Population II objects or in some cases, degenerate helium or perhaps
carbon/oxygen white dwarfs. The accreted composition is important, as the nuclear
ashes and burst properties depend on the accreted mix of light elements. Unfortu-
nately, in most cases, we have little information on the composition of the accreted
fuel. Of the approximately 160 known LMXB’s about 70 are observed to produce
bursts [380].

Early theoretical studies noted the likely importance of spreading of the ther-
monuclear burning front around the neutron star surface. Because nuclear fuel is
burned in a time much shorter than it takes to accrete a critical pile it is unlikely
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Table 6.12. X-ray burst oscillation sources and properties

Source Frequency (Hz) ∆νQPO Porb(hr)

4U 1728–34 363 280–363 ?
4U 1636–53 581 250–320 3.8
KS 1731–260 524 260 ?
Galactic center 589 ? ?
Aql X-1 549 ? 19.0
4U 1702–429 330 315–344 ?
MXB 1658–298 567 ? 7.1
4U 1916–053 270 290–348 0.83
4U 1608–52 619 225–325 ?
SAX J1808.4–3658 401 ? 2.0
SAX J1750.8–2980 601 ? ?

that ignition conditions will be achieved over the entire surface simultaneously.
It appears more likely that burning is initiated locally and then spreads laterally,
eventually engulfing all fuel-loaded parts of the neutron star. For conditions most
prevalent in burst sources, the front may spread via convective deflagration, at lateral
speeds of up to ≈ 5× 106 cm s−1. Such speeds can account for the subsecond rise
times of some bursts, but the time required for burning to engulf the entire star is still
long compared to the spin periods of accreting LMXB neutron stars (milliseconds).
Moreover, if the burning front is not strongly convective, then a patchy distribution of
nuclear fuel is possible. These considerations suggest that during bursts the rotation
of the neutron star can modulate the inhomogeneous or localized burning regions,
perhaps allowing for direct observation of the spin of the neutron star.

An exciting development in the past decade has been the discovery of high
frequency (300–600 Hz) X-ray brightness oscillations during bursts. These mod-
ulations are now commonly called burst oscillations. They were first discovered
with the PCA onboard RXTE in bursts from the LMXB 4U 1728–34. As of
this writing, burst oscillation detections have been claimed for an additional 10
sources, one of which is the 401 Hz accreting millisecond pulsar SAX J1808.4–
3658, whose spin period is precisely known. Table 6.12 provides a catalog of
the known burst oscillation sources and summarizes some of their salient prop-
erties.

The oscillation frequency during a burst is typically not constant. Most com-
monly the frequency increases as the burst progresses, that is, the evolution can be
characterized as a chirp (Fig. 6.49). Most bursts show spin-up toward some limiting,
or asymptotic frequency, however, there are exceptions to this rule of thumb. For
example, 4U 1636–53 has shown a spin down in the cooling tail. This burst also
showed an unusually long thermal tail which may have been related to a reheating
episode having some connection to the spin-down. Spin downs are apparently rare.
The observed frequency drifts are generally< 1% of the mean frequency, and bursts
which have detectable pulsations during the rising phase show the largest frequency
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Fig. 6.49. X-ray burst profile and millisecond pulsations (contour lines) in the LMXB 4U
1702–429. Shown are contours of constant power spectral density as a function of frequency
and time. The solid curve shows the best fitting exponential model. During the outburst, the
rotation of the neutron star becomes visible. Figure adapted from [379]

shifts. This indicates that the process responsible for the frequency evolution be-
gins with the start of a burst, and not when oscillations are first detected within
a burst.

Strohmayer and Markwardt [379] studied the frequency evolution in bursts from
4U 1702–429 and 4U 1728–34 (Fig. 6.49). They found the frequency in these
bursts could be modelled as a smooth exponential recovery of the form, ν(t) =
ν0(1 − δνe−t/τ ), where ν0, δν, and τ are the asymptotic frequency, the fractional
frequency drift, and the recovery timescale, respectively. With this form they were
able to recover coherent signals, with coherence values, Q ≡ ν0/∆ν0 > 4500 in
some bursts. Figure 6.49 shows an example of a burst from 4U 1702–429 with
exponential frequency evolution. These results support the existence of a reference
frame on the neutron star, perhaps the nuclear burning layer, in which the oscillations
are coherent or nearly so. This frame, however, cannot be rigidly connected to the
bulk of the neutron star, because the torque required to change the spin frequency
of the star by ≈ 1% in only 10 seconds is unphysically large. This implies the
existence of shearing in the surface layers of the neutron star. In the exponential
model, the total amount of phase shearing is simply φshear = ν0δν(1− e−T/τ ), where
T is the length of the pulse train. For typical bursts this value ranges from about 4–8,
suggesting that the burning layer “slips” this many revolutions over the underlying
neutron star during the duration of the pulsations. The amount of phase shearing has
implications for the surface magnetic field strength, as a sufficiently strong field will
enforce corotation.
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QPOs in Accreting Neutron Stars

The fastest periodic signals seen to date in astronomy have been observed by RXTE
in accreting neutron stars. In February 1996, two groups analyzing data at Goddard
Space Flight Center began to see evidence for these ultrafast variations in the X-ray
light-curves of 4U 1728–34 (led by Tod Strohmayer of Goddard) and Sco X-1 (led
by Michiel van der Klis of the University of Amsterdam). The oscillations they
observed are nearly periodic and have frequencies of about 1000 hertz – hence the
name kilohertz (kHz) quasiperiodic oscillations (QPO).

To date these signals have been seen in about 20 neutron stars in the Galaxy.
Figure 6.50 shows a power spectrum of Sco X-1, in which the relative amplitude of
oscillation as a function of frequency is plotted. One can see two tiny peaks near
1000 Hz which represent the kHz QPO. They are dwarfed by the much larger peak
near 10 Hz showing the usual QPO, which has been known and studied in many
systems for over 10 years. Since the amount of power associated with an oscillation
varies as the frequency times the amplitude of the power spectrum at that point,
there is far more power in the kHz QPO than the normal QPO. In many of the
sources, one sees two frequencies which vary with flux – the exact relationship is
different for different objects. For some of the sources the difference between the

Fig. 6.50. The power spectrum for the X-ray source Sco X-1. The total observing time is
about 10,000 seconds. Various QPOs are visible: HBOs and their second harmonic, as well
as ν1 and ν2, and the break frequency νBreak
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frequencies remains constant, and is thought to be telling us the rotation rate of the
neutron star. The rotation rates seen so far are all between about 250 and 350 hertz
(i.e. rotations per second). The difference ν2 − ν1 is nearly constant at 300–500 Hz.
In the ultracompact binary system 4U 1820–30 it has been found that above a certain
flux level, the frequencies saturate to a maximum. The current understanding of this
saturation is that we are seeing the innermost stable circular orbit (ISCO) around
the neutron star, a radius predicted by general relativity inside of which matter must
inexorably spiral down to smaller radii. Besides the resonance peaks, the power
spectrum can generally be fitted by a broken power law

P(ν) = A ν−α
[
1+ (ν/νBreak)

β
]−1

(6.323)

with α � 1 and β � 1. Beyond the break frequency, the spectrum steepens consid-
erably.

The kHz QPO are the most important scientific result to date of RXTE, based
on the high timing capability of the satellite. One of the most developed model
to account for kHz QPO is the sonic point model of Cole Miller, Fred Lamb, and
Dimitrios Psaltis [294]. The model follows the detailed trajectories of blobs of gas
leaving the inner edge of the accretion disk around a neutron star and spiraling
down to the neutron star surface, taking into account the effects of general relativity.

Fig. 6.51. Plot of upper kHz QPO frequency (ν2) vs. lower kHz QPO frequency (ν1) for
the Atoll and Z sources for which double kHz QPOs have been published. Empty circles
correspond to Z sources, stars to Atoll sources, and filled circles to the Sco X-1 data. The
dotted line is the best linear fit to the Atoll points, the dot-dashed line is the best linear fit to
the Z points (excluding Sco X-1), and the thick line represents a fixed 3:2 ratio. Errors of the
frequencies are typically around a few Hz. Figure adapted from Belloni et al. [69]
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The gas spirals inward supersonically and collides with the surface of the neutron
star. These authors utilize observations of the highest frequency kHz QPO to place
constraints on the allowed equation of state for neutron stars. This relationship
between pressure and density for a gas made up of dense neutrons determines the
mass–radius relation for neutron stars. There is currently no consensus as to the origin
of these QPOs, nor on what physical parameters determine their frequencies, which
have been identified with various characteristic frequencies in the inner accretion
flow.

The upper QPO frequency ν2 is associated in most models with the Keplerian
frequency at the inner edge of the disk

rT � 15 km
M

M�

( ν2

1000 Hz

)−2/3
. (6.324)

This radius rT is then a function of the mass accretion rate in order to explain the
frequency variations. The truncation of a Keplerian disk beyond the innermost stable
orbit can have various reasons: truncation by a weak magnetosphere of the neutron
star, or by a transition to a hotter optically thin inner disk (see Sect. 10.3). In modern
theories of accretion towards compact objects, the geometrically thin optically thick
disk always gets truncated at a certain radius. The lower QPO frequency ν1 is usually
explained in terms of a beat frequency between ν2 and the rotation frequency ν∗ of
the neutron star surface, ν1 = ν2 − ν∗. This would require rotational frequencies in
the range of 300–500 Hz, as observed in many sources (see Table 6.12). The origin
of the low-frequency νHBO is less clear, but interestingly it is close to the frequency
of the Lense–Thirring precession frequency of the inner disk around the rotational
axis of the rotating neutron star [301, 374]

νLT = 8π2 I∗
Mc2

ν2
K ν∗ � 13.2 Hz

I45

M/M�
ν2

K,3 ν∗,2.5 . (6.325)

General relativity predicts that a rotating body with moment of inertia I∗ produces
a frame-dragging (or Lense–Thirring) effect: the orbital plane of a test particle in
a nonequatorial orbit precesses about the body’s symmetry axis.

Belloni et al. [69] have analyzed all published frequencies, ν1 and ν2, of the
twin kilohertz quasiperiodic oscillations (kHz QPOs) in bright neutron star low-
mass X-ray binaries. The two frequencies are well correlated but, contrary to recent
suggestions, the frequency–frequency correlation is significantly different from a
ν2 = (3/2)ν1 relation. The QPO frequencies are checked whether they cluster
around a region where ν2/ν1 ≈ 3/2. These results do not provide any useful infor-
mation about a possible underlying resonance mechanism in Sco X-1. The (unbiased)
distribution of QPO frequencies is consistent with a uniform distribution at a 2.4σ
level. In general, the distribution of the kHz QPO frequencies is not uniform and has
multiple peaks, which have no analogy in the distribution of points in the spectral
color–color diagrams of these sources.

Alternatively, one can constrain the compactness of the neutron star by measuring
the amplitudes of the periodic oscillations (which give direct evidence for the neutron
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star spin rates) during thermonuclear bursts. General relativity predicts that signals
arising from near the surface of the neutron star should be deflected by the strong
gravitational field. The more compact a star is, the more that strongly varying signals
are homogenized into smoothly varying signals. This occurs because the light from
any localized spot on the surface of the star would be bent considerably, so that the
spot might be seen even when it was on the far side of the star from our line-of-sight.
The observed amplitudes of the � 300 Hz oscillations tell us that the lower limit
on the radius for a neutron star is about 7.7 kilometers (for an assumed mass of 1.4
solar masses). A neutron star could not be more compact and yet show oscillation
amplitudes as large as those seen.

Typical neutron star flares last 10 seconds, a thousand times shorter and 500–
1000 times less energetic than this flare in binary star system 4U 1820–30, observed
with the Rossi X-ray Timing Explorer. The three-hour flare from the tiny neutron
star released 100 times more energy than the Sun does in a year.

The neutron star in 4U 1820–30 is in tight orbit with a low-mass dwarf star
burning mostly helium instead of hydrogen. Their orbital period of 11 minutes is
the shortest known of any binary system. The neutron star’s strong gravitational
potential pulls gas away from the companion star. This gas crashes down on the
surface of a neutron star. When enough gas builds up on the neutron star sur-
face – in this case, helium gas – the increased pressure raises the temperature
and initiates helium fusion, a nuclear reaction that manifests itself as an X-ray
flare. X-ray flares often erupt on neutron stars in binary systems several times
a day.

Problems

6.1. Proton–Neutron Ratio: Show that the proton–neutron ratio for neutron star
matter is close to 1/8, n p � nn/8.

Show that the Fermi momentum of the electrons in neutron star matter largely
exceeds the Fermi momentum of the free beta decay.

6.2. TOV Solution for Free Neutron Gas: Integrate the TOV equations for a free
neutron gas with EoS P = K�Γ and determine the maximal mass, maximal density
and minimal radius. Make a plot with mass vs. central density.

6.3. TOV Solver: Develop a solver for the TOV equations which can handle equa-
tions of state in numerical form. Apply this solver to various equations of state and
determine the mass as a function of central density.

6.4. Maximal Core Masses: The mass of a neutron star can be divided into the mass
of the envelope, where EoS is known, and the mass Mc of the core, where the EoS
is unknown (say above saturation density). Relativity requires that

Mc < Rc/2 (6.326)



304 6 Neutron Stars

and therefore for given central density

Mc <
1

2

√
3

8π�c
, Rc <

√
3

8π�c
. (6.327)

In order to study the possible ranges, we investigate the redshift factor α =
expΦ(r) > 0. α has its minimal value at the center. Derive the following equa-
tion for the redshift factor from the TOV equations√

1− 2M(r)

r

1

r

d

dr

[√
1− 2M(r)

r

1

r

dΦ

dr

]
= α

r

d

dr

(
M(r)

r

)
. (6.328)

Use this equation to show the inequality√
1− 2M(r)

r

1

r

dΦ

dr
≤

[∫ r

0
dr

r√
1− 2M(r)/r

]−1

. (6.329)

Derive from this equation the inequality

Mc ≤ 2

9
Rc

[
1− 6πR2

c Pc +
√

1+ 6πR2
c Pc

]
. (6.330)

6.5. Post-Newtonian Expansion: Calculate the Christoffel symbols for the post-
Newtonian expansion of the metric and derive the equations of motion for point
masses (neutron stars and black holes).

6.6. Binary Orbit Decay: Calculate the first, second and third time derivative of the
moment of inertia for a binary orbit

Iik =
∫
�0(x) xi xk d3x . (6.331)

6.7. Pulsar Diagram: Use the data on the web interface:
www.atnf.csiro.au/research/pulsar/psrcat to compile a (P, Ṗ) pulsar diagram.

6.8. Eddington Luminosity: What is the Eddington luminosity for a neutron star?

6.9. Crab Nebula: Compile all data about the spectrum for the Crab Nebula from
the literature (radio, infrared, optical, UV, X-rays, gamma-rays and TeV region).
Make with these data a spectrum of the Crab Nebula, log ν vs. log[ν Fν], where the
dimension of the spectral energy νFν is in units of Jy Hz. Derive from this spectrum
the total luminosity of the Crab Nebula and compare this with the energy loss of the
Crab pulsar.

6.10. Neutrino and Photon Transport in Neutron Stars: Discuss the diffusion
approximation for the photon and neutrino transport in neutron stars. Use the mo-
mentum formulation for the Boltzmann equation to recover the neutrino (photon)
transport equations for the number density Nν, the number flux Fν and the number
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source term SN , together with the mean neutrino energy density Jν, energy flux Hν,
pressure Pν and energy source term SE

∂[Nν/nB]
∂t

+ ∂[4πr2 expΦ Fν]
∂r

= expΦ
SN

nB
(6.332)

∂[Jν/nB]
∂t

+ Pν
∂[1/nB]
∂t

+ exp(−Φ) ∂[4πr2 exp(2Φ) Hν]
∂r

= expΦ
SE

nB
. (6.333)

6.11. Masses of Neutron Stars: Most of the binary pulsars have white dwarf stars
as companions, and the binary systems are practically circular. Find out a method
based on pulsar timing to measure the masses for such systems.

6.12. Self-Gravitating Bose–Einstein Condensates: The most general metric for
a time-dependent spherically symmetric object can be written as

ds2 = −α2 dt2 + a2(dr + β dt)2 + b2r2 dΩ2 , (6.334)

where dΩ2 = dθ2 + sin2 θ dφ2 is the metric on the unit two-sphere, β is the r-
component of the shift vector, and α, β, a and b are functions of t and r only. The
corresponding extrinsic curvature has only two nonvanishing components

Ki
j = diag(Kr

r, K θ
θ , K θ

θ) . (6.335)

Together with the four metric functions, we have to deal with six out of 16 possible
geometrical variables.
(i) Write down the inverse metric in matrix form.
(ii) Calculate all connection forms and Ricci tensors, necessary for the 3+1 split of
Einstein’s equations.
Assume that matter is given by a complex scalar field φ(t, r) with mass m. Such
a configuration forms a boson star. Boson stars can be viewed as zero-temperature
ground state, Bose–Einstein condensates, characterized by enormous occupation
numbers.
(iii) Show that the source terms in Einstein’s equations are given by

� = |Φ|2 + |Π|2
2a2

+ m2|φ|2
2

(6.336)

Sr = −Π
∗Φ +ΠΦ∗

2a
(6.337)

Sr
r = �− m2|φ|2 (6.338)

Sθθ =
|Π|2 − |Φ|2

2a2
− m2|φ|2

2
(6.339)

Sφφ = Sθθ (6.340)

S = 3|Π|2 − |Φ|2
2a2

− 3m2|φ|2
2

. (6.341)
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Here, we have defined the following quantities

Φ = φ′ , Π = a

α
(φ̇ − βφ′) . (6.342)

This is an example, where the pressure is not isotropic, Pr �= P⊥.
(iv) Calculate the Hamiltonian and momentum constraints for this system, as well
as the four evolution equation for ȧ, ḃ, K̇ r

r and K̇ θ
θ . Use the Klein–Gordon equation

to show that this results in equations for φ̇, Φ̇ and Π̇.
Fix the coordinate system by the maximal slicing condition, Tr(K) = 0, which
fixes the lapse function (see Sect. 2.8). Given maximal slicing, the remaining spatial
coordinate freedom is fixed by the isotropic condition

a = b = ψ2(t, r) , (6.343)

such that the spatial metric is conformally flat

ds2
(3) = ψ4(t, r)

(
dr2 + r2 dΩ2) . (6.344)

(v) Derive the constraints equation for the lapse function α following from the
condition Tr(K) = 0.
(vi) Formulate the remaining evolution equations for ψ(t, r), Kr

r , and φ(t, r).
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The Schwarzschild solution of general relativity is static and spherically symmet-
ric. As such, this solution can only describe nonrotating stellar structures. In this
section we derive a more general geometry that is able to cover rotating objects
which are axisymmetric. This class of gravitational fields contains several types of
astrophysical objects:

– rapidly rotating neutron stars (as numerical solutions of Einstein’s equations);
– rotating black holes (the Kerr solution as an analytic solution of Einstein’s

equations), will be discussed in Chap. 8;
– star–toroid systems (e.g. a neutron star surrounded by a self-gravitating torus);
– self-gravitating disk solutions;
– toroidal black hole solutions.

The calculation of the structure of rapidly rotating relativistic stars has a long
tradition in astrophysics. It dates back to the pioneering work of Carter [106],
Bardeen [55], and Bardeen and Wagoner [57]. Successful numerical methods
have been advanced in the last 15 years by Komatsu et al. [235] (KEH), Cook,
Shapiro and Teukolsky [123, 124], Bonazzola et al. [83, 84], and many oth-
ers since then (see Stergioulas [376]). The Kerr solution as an analytic solu-
tion of Einstein’s equations will be discussed in the next section. Here, we
concentrate on general properties of spacetimes for rotating objects. In par-
ticular, we derive the Ricci tensors for such geometries and discuss the nu-
merical solutions of Einstein’s equations for rotating neutron stars. Finally, the
question of the stability for such objects is a central issue of the present re-
search.

There are two main effects that distinguish a rotating relativistic star from its
nonrotating counterpart: The shape of the star is flattened by centrifugal forces
(an effect that first appears at second order in the rotation rate), and the lo-
cal inertial frames are dragged by the rotation of the source of the gravitational
field. While the former effect is also present in the Newtonian limit, the lat-
ter is a purely relativistic effect. The study of the dragging of inertial frames
in the spacetime of a rotating star is assisted by the introduction of the lo-
cal Zero Angular-Momentum Observers (ZAMO). These are observers whose
worldlines are normal to the hypersurfaces t = const, they are also called Eule-
rian observers. Then, the metric function ω is the angular velocity of the local
ZAMO with respect to an observer at rest at infinity. Also, the redshift factor α
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is the time dilation factor between the proper time of the local ZAMO and co-
ordinate time t (which is the proper time at infinity) along a radial coordinate
line.

7.1 Spacetime of Stationary and Axisymmetric Rotating Bodies

We first consider the metric appropriate to stationary and axisymmetric spacetimes.
For this purpose it is convenient to take as two coordinates the time t(= x0) and the
azimuthal angle φ(= x1) about the axis of symmetry. The stationary and axisymmet-
ric character of the spacetime requires that the metric coefficients be independent of
t and φ, i.e.

gαβ = gαβ
(
x2, x3) , (7.1)

where the coordinates x2 and x3 are the two remaining coordinates.
Besides stationarity and axisymmetry, we also require that the spacetime is in-

variant against simultaneous inversion of time t and angle φ, i.e. to the transformation
t → −t and φ→ −φ. The physical meaning of this condition is that the source of
the gravitational field has motions that are pure rotational about the axis of symmetry,
since the energy–momentum tensor as the source of the metric will have the same
symmetry. Differential rotation is, however, allowed. This invariance will require
that

gt2 = 0 = gt3 = gφ2 = gφ3 . (7.2)

Under these assumptions, the metric will have the following form

ds2 = gtt dt2 + 2gtφ dt dφ + gφφ dφ2

+
[
g22

(
dx2)2 + 2g23 dx2 dx3 + g33

(
dx3)2

]
. (7.3)

All the metric functions are only functions of x2 and x3. A further reduction is pos-
sible as a consequence of the fact that a metric of a two-space, (x2, x3), represented
by the brackets [. . . ] with positive or negative signature can always be brought to
the diagonal form

ds2
2 = ± exp (2µ)

[(
dx2)2 + (

dx3)2
]

(7.4)

by a mere coordinate transformation with exp(2µ) as a function of x2 and x3.
For the proof of this Lemma one has simply to consider a particular coordinate
transformation x′2 = Φ(x2, x3) and x′3 = Ψ(x2, x3). One can then show that

Φ,2 = √g
[
g32Ψ,2 + g33Ψ,3

]
(7.5)

Φ,3 = −√g
[
g32Ψ,2 + g33Ψ,3

]
(7.6)
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together with the integrability condition[√
g gABΨ,A

]
,B = 0 , A, B = 2, 3 (7.7)

will satisfy the requirements. As a consequence of this Lemma we can reduce the
number of free metric coefficients to four. For many purposes in the following, it is
however useful to consider only a diagonal form for the two-space so that

ds2 = − exp(2ν) dt2 + exp(2ψ) (dφ − ω dt)2

+ exp(2µ2)
(
dx2)2 + exp(2µ3)

(
dx3)2

. (7.8)

The five functions ν, ψ, ω, µ2 and µ3 are now functions of x2 and x3. It is important
to note here that in this form we left one gauge freedom for the coordinate choice.
It is this gauge freedom which is responsible for different expressions of the metric
found in the literature. The so-called quasi-isotropic gauge corresponds to γrθ = 0
and γθθ = r2γrr , if we choose the remaining coordinates to be of spherical type,
x2 = r and x3 = θ.

7.1.1 Physical Interpretation of the Metric

It is clear that the two functions µ2 and µ3 are of geometric origin and describe
the curvature of the two-space (x2, x3). As a consequence of the coordinate choice,
the function expψ has the meaning of a cylindrical radius. So there remain two
essential potentials which represent the gravitational field of the rotating body. In
analogy to the Schwarzschild solution, the first function exp ν represents the classical
gravitational field. It is often written as α ≡ exp ν, denoting the lapse function (or
redshift factor) for the time-slicing of a spacetime.

Bardeen Observers

In order to understand the meaning of ω we consider an orthonormal tetrad frame ea

for a = 0, 1, 2, 3 (called a Bardeen observer, locally nonrotating observer, or zero
angular-momentum observer ZAMO)

e0 = exp(−ν) (∂t + ω∂φ) (7.9)

e1 = exp(−ψ) ∂φ (7.10)

e2 = exp(−µ2) ∂2 (7.11)

e3 = exp(−µ3) ∂3 . (7.12)

One can then easily show that g(ea, eb) = ηab satisfies the Minkowski conditions.
The corresponding one-form basis is then

Θ0 = exp ν dt (7.13)

Θ1 = expψ (dφ − ω dt) (7.14)

Θ2 = expµ2 dx2 (7.15)

Θ3 = expµ3 dx3 . (7.16)



310 7 Rapidly Rotating Neutron Stars

This shows that the metric can be written as

ds2 = ηabΘ
aΘb . (7.17)

In this form the metric is locally Minkowskian, and the ea represent locally an inertial
frame. But this is true for any other observer obtained by means of a local Lorentz
transformation, e′a = Λb

a eb.

Motion and Frame-Dragging

Now let us consider a velocity field u at each point

ut = dt

ds
, uφ = dφ

ds
= Ωut , u A = dx A

ds
= utvA (7.18)

with proper time ds and

Ω = dφ

dt
(7.19)

as the angular velocity with respect to time t. The components

vA = dx A

dt
, A = 2, 3 (7.20)

denote the poloidal velocity. The normalization of the velocity field provides the
relation

1 = [
exp 2ν − exp 2ψ(Ω − ω)2 − exp 2µ2 (v

2)2 − exp 2µ3 (v
3)2

]
(ut)2 (7.21)

or

ut = exp(−ν)√
1− V 2

= 1

α
√

1− V 2
(7.22)

with the norm

V 2 = exp(−2ν)
[
exp(2ψ) (Ω − ω)2 + exp(2µ2) (v

2)2 + exp(2µ3) (v
3)2

]
. (7.23)

This is usually written for the Lorentz factor W with respect to ZAMO as

W = α ut . (7.24)

With this velocity field we can associate the following components with respect to
the local observer

u(a) = Θa
µ uµ (7.25)

or explicitly
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u(0) = W = 1√
1− V 2

(7.26)

u(1) = exp(ψ)(Ω − ω)
α
√

1− V 2
= exp(ψ)(Ω − ω)√

α2 − V̄ 2
(7.27)

u(A) = exp(µA)v
A

α
√

1− V 2
= exp(µA)v

A√
α2 − V̄ 2

. (7.28)

Therefore, a particle moving on a circular orbit with angular velocity Ω will be
assigned a rotational velocity expψ(Ω−ω)/αwith respect to ZAMOs. This particle
can be considered to be at rest in this system, whenever Ω = ω, i.e. with respect to
fixed stars the particle will still orbit around the central source with angular velocity
ω. This effect is called the dragging of inertial frames. In the following we will
show that the source for this potential ω is the angular momentum J , in the sense that
far away from the source ω ∝ J/r3. This potential drops therefore very rapidly with
increasing radius, and frame-dragging effects can only be observed in the immediate
vicinity of the surface of compact objects (see, however, also next section).

Induced Differential Rotation

The above result can also be discussed in another way. Let us write the velocity field
in the form

u = ut(k +Ωm)+ u A∂A (7.29)

with its angular velocity Ω and poloidal velocity u A. λ = uφ/E = j/E denotes its
specific angular momentum which is conserved in geodetic motions, E = uαkα =
−ut is the energy measured at infinity. Then Ω can be solved from the definition

Ω = uφ

ut
= gφφuφ + gtφut

gttut + gtφuφ
= gφφ(uφ/ut)+ gtφ

gtt + gtφ(uφ/ut)
(7.30)

resulting in the expression

Ω = Ω(λ) = ω+ α2

R2

λ

1− λω (7.31)

with the cylindrical radius R ≡ expψ = r sin θ exp ψ̄. Here we use the inverse
metric in the form

gtt = − 1

α2
(7.32)

gtφ = − ω
α2

(7.33)

gφφ = α2 − R2ω2

α2 R2
. (7.34)



312 7 Rapidly Rotating Neutron Stars

This means that the angular velocity is the sum of two terms: the classical one given
by the specific angular momentum and the frame-dragging ω from the rotation of
absolute space. Near the horizon of a black hole, for example, where α → 0, the
angular velocity of matter is completely dominated by the frame-dragging effect.
Whatever the specific angular momentum of the incoming matter is, this matter
is forced to rotate with the local angular velocity ω. When matter falls, e.g. into
a nonrotating black hole, it is forced to zero rotation near the horizon despite its
angular momentum. This behavior can never be mimicked in a kind of pseudo-
Newtonian accretion, since the effect of frame-dragging is absent in the Newtonian
world.

7.1.2 Geodetic and Lense–Thirring Precession

An effect predicted by general relativity and also known as frame-dragging, in
which the orbit of a small body orbiting around a rotating massive one is slightly
perturbed by the rotation. The effect was first predicted by Austrian physicists Joseph
Lense and Hans Thirring in 1918.

A rotating massive body drags space and time around with it. A gyroscope
orbiting Earth tends to tilt away from the plane of its orbit because the Earth is
dragging it. In curved spacetime, a gyroscope orbiting a body will precess

dS
dτ
= � × S (7.35)

with the geodetic precession

�GP = − 3

2c2
v×∇Φ . (7.36)

Φ = −G M/r is the external gravitational potential of the body. For this case, we
find for the geodetic precession

�GP = 3

2c2

G M

|x|3 (v× x) . (7.37)

A spin J of the body produces in addition the Lense–Thirring precession

�LT = − G

c2|x|3
(

J− 3(J · x)x
|x|2

)
. (7.38)

Gravity Probe B is an experiment developed by NASA and Stanford University
to precisely test these two predictions of Albert Einstein’s general theory of relativity,
measuring how space and time are warped by the presence of the Earth and how the
Earth’s rotation drags spacetime around with it. For a gyroscope orbiting near the
Earth, the geodetic effect leads to a tilting of the gyroscope’s spin axis in the plane
of the orbit (Fig. 7.2). This effect is predicted by general relativity theory to be 150
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Fig. 7.1. The satellite Gravity Probe B will measure the geodetic precession and the Lense–
Thirring effect in a satellite orbiting the Earth. Credits: Gravity Probe B (JPL)

times larger than the frame-dragging (Lense–Thirring) effect. GP-B will measure
this effect to a part in 10,000.

At the heart of the experiment inside Gravity Probe B are four gyroscopes (Fig.
7.1). The gyroscopes in Gravity Probe B are not flywheels, but electrically supported
spheres spinning in a vacuum. At the center of each of the four gyroscopes is
a jewel-like sphere of fused quartz the size of a ping-pong ball. According to NASA,
the ultrasmooth spheres, coated with niobium, are the roundest objects ever made
by man. The GP-B gyros, which are performing perfectly in orbit, will be listed
in the forthcoming edition of the Guinness Book of World Records as being the
roundest objects ever manufactured. Recent measurements show that the actual
characteristic spin-down period of the GP-B gyros exceeds 10,000 years – well
beyond the requirement of 2300 years. The spheres are enclosed in chambers to
prevent disruption from sound waves. They are chilled to near absolute zero to
prevent their molecular structures from creating disturbances. The gyroscopes are
30 million times more accurate than any gyroscope ever built. The gyroscopes spin
at 10,000 revolutions a minute. Very sensitive magnetometers detect any changes
in the gyroscope’s spin axis. To measure each orbit closely, a tracking telescope is
used to align the gyroscopes with a guide star. A magnetic-field measuring device
(SQUID) records changes relative to the guide star. The gyro readout measurements
from the SQUID magnetometers have unprecedented precision, detecting fields to
10−13 gauss, less than one trillionth of the strength of Earth’s magnetic field. The
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Fig. 7.2. The satellite Gravity Probe B will measure the geodetic precession and the Lense
Thirring effect in a satellite orbiting the Earth. Credits: Gravity Probe B (JPL)

satellite was launched to a 640-km high orbit on April 20, 2004, on a Delta 2 rocket
from Vandenberg Air Force Base, on the central coast of California. Gravity Probe
B spacecraft circles the globe every 97.5 minutes, crossing over both poles. Over the
course of a year, the anticipated spin axis drift for the geodetic effect is a minuscule
angle of 6614.4 milliarcseconds, and the anticipated spin axis drift for the frame-
dragging effect is even smaller, only 40.9 milliarcseconds. The GP-B program will
not release the scientific results obtained during the mission until after the science
phase has concluded. It is critically important to thoroughly analyze the data to
ensure its accuracy and integrity prior to releasing the results.

Previously, an international team of NASA and university researchers has found
the first direct evidence of the phenomenon that the Earth is dragging space and
time around itself as it rotates. Researchers believe they have detected the effect by
precisely measuring shifts in the orbits of two Earth-orbiting laser-ranging satellites,
the Laser Geodynamics Satellite I (LAGEOS I), a NASA spacecraft, and LAGEOS
II, a joint NASA/Italian Space Agency (ASI) spacecraft. LAGEOS II, launched
in 1992, and its predecessor, LAGEOS I, launched in 1976, are passive satellites
dedicated exclusively to laser ranging, which involves sending laser pulses to the
satellite from ranging stations on Earth and then recording the round-trip travel time.
The LAGEOS satellites are passive vehicles covered with retroreflectors designed
to reflect laser beams transmitted from ground stations. Given the well-known value
for the speed of light, this measurement enables scientists to determine precisely
the distances between laser ranging stations on Earth and the satellite. LAGEOS
is designed primarily to provide a reference point for experiments that monitor the
motion of the Earth’s crust, measure and understand the wobble in the Earth’s axis of
rotation, and collect information on the Earth’s size, shape, and gravitational field.
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Both satellites are spherical bodies with an aluminum shell wrapped around
a brass core. The design was a compromise between numerous factors, including
the need to be as heavy as possible to minimize the effects of nongravitational
forces vs. being light enough to be placed in a high orbit and the need to accom-
modate as many retroreflectors as possible vs. the need to minimize surface area
to minimize the effects of solar pressure. The materials were chosen to reduce the
effects of the Earth’s magnetic field on the satellite’s orbit. 426 cube-corner retrore-
flectors are imbedded in the satellites’ surface. 422 of these are made of fused
silica glass while the other four are made of germanium. The vehicles have no on-
board sensors or electronics, and are not attitude controlled. Science is performed
by reflecting laser light from the vehicle’s 426 retroreflectors. The design life is
50 years.

The Lense–Thirring effect, or frame-dragging effect, represents the manifesta-
tion that mass-currents, i.e. the angular momentum of the central mass, produce
on a moving test particle a force analogous to the Lorentz force of classical elec-
tromagnetism on a moving charged particle. This non-Newtonian gravitomagnetic
force is produced by the gravitomagnetic field of the rotating mass, a new feature
of Einstein’s theory. Considering a satellite orbiting the Earth, the Lense–Thirring
effect is responsible of a secular shift of the satellite ascending node longitude, Ω,
as well as of its argument of perigee, ω. A satellite undergoes a perigee precession
due to the Earth’s angular momentum JE

∆ΩLT = 2G JE

c2a3(1− e2)3/2
� 3 arcsec/century (7.39)

with a corresponding secular drift of the node

∆ΩLT = − 6G JE cos i

c2a3(1− e2)3/2
. (7.40)

The effect is very small, about 2 m/yr on the node of the LAGEOS-type satellites, the
best tracked Earth’s satellites through the powerful Satellite Laser Ranging (SLR)
technique. The SLR technique allows the determination of the position of both
LAGEOS satellites with precision of a few mm in their normal points, and a root-
mean-square of their range residuals of about 2–3 cm over a 15 days time span.
Therefore, from an analysis of the orbit of both LAGEOS satellites it is possible to
measure the relativistic precession predicted by Einstein’s theory.

7.1.3 On General 3+1 Split of Spacetime

The form of the metric (7.8) is a special realization of the so-called 3+1 split of
spacetime (see Sect. 2.8). In a deep way, general relativity is a theory of four-
dimensional spacetime. But humans experience spacetime as a three-dimensional
space that evolves in time. For the purpose of simulating spacetime on a computer, it is
also natural to slice four-dimensional spacetime into a sequence of three-dimensional
spaces, labelled by time (Fig. 2.7). In the computer, one begins with initial data on
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one such slice, then evolves them for a short moment of time to get the next slice,
and then discards the first slice and moves on to the next slice. Spacetime is built up
slice by slice.

In the 3+1 formalism spacetime is decomposed into a one parameter family of
space-like slices. This is the most intuitive approach as it corresponds to split-
ting spacetime into space and time. The field equations then comprise of four
constraint equations that have to be satisfied on the first slice and are then satis-
fied throughout spacetime by virtue of the contracted Bianchi identities, six evo-
lution equations, and four gauge variables that represent the gauge freedom of
general relativity and can be used to simplify the equations. The 3+1 formal-
ism is the most commonly used approach to numerical relativity. In particular, it
is very useful for studies of regions with matter. However, the formulation suf-
fers drawbacks in the description of radiation, because bringing in null infinity
to finite coordinates via conformal compactification cannot be done in a straight-
forward manner. At the present time, most simulations based on the 3+1 formal-
ism do not incorporate realistic boundary conditions at outer end of the computa-
tional grid.

All geometrical objects are now split into components with respect to this time-
slice of spacetime. In particular, the components of the energy–momentum tensor T
are expressed in terms of the following components

E = T(n, n) = Tµν nµnν (7.41)

Jα = −γµα Tµν nν (7.42)

Sαβ = γµα γ νβ Tµν (7.43)

S = Sαα . (7.44)

E is now the energy density measured by an adapted observer of four-velocity nα

(often called an Eulerian observer), J the momentum flow and Sij the corresponding
stress tensor. The entire stress–energy tensor can therefore be written as

Tαβ = E nαnβ + nα Jβ + Jαnβ + Sαβ . (7.45)

Similarly, the Ricci and Einstein tensor have to be split according to these time-slices,
as discussed in Sect. 2.8.

For a perfect fluid with stress–energy tensor

Tµν = (�+ P) uµuν + P gµν , (7.46)

where uα is the four-velocity of the fluid, � the energy density and P the pressure,
respectively, we define the Lorentz factor to be

W = −nµuν = α ut . (7.47)

From this we get the energy density

E = W2(�+ P)− P (7.48)
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and the momentum density

Ji = (E + P)vi , (7.49)

where the fluid three-velocity vi is related to the spatial components of the fluid
four-velocity by

ui = W

(
vi − β

i

α

)
. (7.50)

As usual, the Lorentz factor can be expressed as W = 1/
√

1− v2, where v = √
vivi

is the physical fluid velocity measured by the Eulerian observer. Finally, the stress
tensor is given by

Sij = (E + P)viv j + P γij . (7.51)

In a rotating configuration, the fluid four-velocity is just given by

u = ut

(
∂

∂t
+Ω ∂

∂φ

)
, (7.52)

whereΩ = uφ/ut is the fluid angular velocity, as seen by an inertial observer at rest
at infinity (fixed stars).

7.2 Einstein’s Field Equations for Rotating Objects

In this section we discuss the split of the Einstein tensor for the spacetimes of rotating
objects. This is a special case of the decomposition of Einstein’s field equations
within the ADM formalism obtained in Sect. 2.8, here given as a decomposition of
the Ricci tensor

R00 = 1

α
∆̄α+ 1

α
(∂t −Lβ)Tr(K)− Tr(K2) (7.53)

R0i = DiTr(K)− (D ·K)i (7.54)

Ric(g) = Ric(γ)− 2K2 + Tr(K)K

− 1

α
(D⊗ D)α− 1

α

(
∂t −Lβ

)
K . (7.55)

γ is the metric of the hypersurface with Ric(γ) as its Ricci tensor and R̄ its Ricci
scalar, K is the symmetric matrix formed by the extrinsic curvature

2αKij = −∂γij

∂t
+ Diβ j + D jβi . (7.56)

D is the covariant derivative for the hypersurface. When the first equation is coupled
to the energy–momentum tensor, we arrive at the generalized Poisson equation
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1

α
∆̄α+ 1

α
(∂t −Lβ)Tr(K)− Tr(K2) = 4πG[2E − ε + 3P] . (7.57)

Here we used the trace of the energy–momentum tensor, T = −ε+3P, for a perfect
fluid and the energy density measured by the ZAMO

E = γ 2(ε + PV 2) . (7.58)

This equation shows that the Poisson equation for the redshift factor is satis-
fied in the Newtonian limit, where α � 1 + Φ and all nonlinear terms are
neglected. It also shows that the extrinsic curvature leads to various correc-
tions for the Poisson equation. Since in our case, the gravitational fields are
stationary, all time derivatives vanish. In addition, we only get two constraints
equations, since Sφ is the only nonvanishing momentum density of the rotating
matter.

7.2.1 Ricci Tensors of Time-Slices

In the above decomposition of Einstein’s equations we need the Ricci tensors Ric(γ)
of the time-slices (for the derivation, see Appendix D), or in components R̄ij =
Ω̄m

i (em, e j), with the following six components

R̄11 = − 1

R
∇2[RΨ2] − Ψ3[∇3µ2] − 1

R
∇3[RΨ3] − Ψ2[∇2µ3] (7.59)

R̄22 = − 1

R
∇2[RΨ2] − Ψ3[∇3µ2] (7.60)

− exp(−µ2)∇3[exp(µ2)∇3µ2] − exp(−µ3)∇2[exp(µ3)∇2µ3]
R̄33 = − exp(−µ2)∇3[exp(µ2)∇3µ2]

− exp(−µ3)∇2[exp(µ3)∇2µ3] (7.61)

R̄12 = 0 (7.62)

R̄13 = 0 (7.63)

R̄23 = − 1

R
∇3[RΨ2] + Ψ3[∇2µ3] . (7.64)

By summation we get the Ricci scalar on the hypersurface

R̄ = −2
[ 1

R
∇2[RΨ2] + Ψ3(∇3µ2)+ 1

R
∇3[RΨ3] + Ψ2(∇2µ3)

]
−2∆(µ2, µ3) , (7.65)

where we have defined the second-order elliptic operator

∆(µ2, µ3) = exp(−µ2)∇3[exp(µ2)(∇3µ2)]
+ exp(−µ3)∇2[exp(µ3)(∇2µ3)] . (7.66)
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7.2.2 Extrinsic Curvature and 4D Ricci Tensors

We also need various expressions for the extrinsic curvature (D.21)

(K 2)î ĵ =
R2

4α2

⎛⎝ (∇2ω)
2 + (∇3ω)

2 0 0
0 (∇2ω)

2 (∇2ω)(∇3ω)

0 (∇2ω)(∇3ω) (∇3ω)
2

⎞⎠ (7.67)

with its trace

Tr(K 2) = R2

2α2

[
(∇2ω)

2 + (∇3ω)
2
]
. (7.68)

For the calculation of the Lie derivative (LβK)ij , we transform the extrinsic
curvature to a coordinate basis and use the definition of the Lie derivative

(LβK)ij = Kij,mβ
m + Kimβ

m
, j + Km jβ

m
,i . (7.69)

By transforming back to the orthonormal basis, we find for the Lie derivative of the
extrinsic curvature

(LβK)î ĵ =
R2

α

⎛⎝0 0 0
0 (∇2ω)

2 (∇2ω)(∇3ω)

0 (∇2ω)(∇3ω) (∇3ω)
2

⎞⎠ , (7.70)

with its trace

Tr(LβK) = R2

α
[(∇2ω)

2 + (∇3ω)
2] . (7.71)

With these expressions, we can now derive the 4D Ricci tensors in orthornormal
basis from the expressions (7.54)–(7.55)

R00 = 1

α
∆̄α− R2

2α2
(∇ω · ∇ω) (7.72)

R01 = 1

2
Div

[
R∇ω
α

]
(7.73)

R02 = 0 (7.74)

R03 = 0 (7.75)

R11 = − 1

R
∇A(RΨA)− Ψ3(∇3µ2)− Ψ2(∇2µ3)

− R2

2α2
(∇ω · ∇ω)− 1

α
(∇AΨ)(∇Aα) (7.76)

R22 = − 1

R
∇2(RΨ2)− Ψ3(∇3µ2)−∆(µ2, µ3)

+ R2

2α2
(∇2ω)

2 − 1

α
∇2(∇2α)− 1

α
(∇3µ2)(∇3α) (7.77)
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R33 = − 1

R
∇3(RΨ3)− Ψ2(∇2µ3)−∆(µ2, µ3)

+ R2

2α2
(∇3ω)

2 − 1

α
∇3(∇3α)− 1

α
(∇2µ3)(∇2α) (7.78)

R23 = − 1

R
∇3(RΨ2)+ Ψ3(∇2µ3)+ R2

2α2
(∇3ω)(∇2ω)

− 1

α
(∇3µ2)(∇2α)+ 1

α
∇2(∇3α) (7.79)

R12 = 0 (7.80)

R13 = 0 . (7.81)

7.2.3 3+1 Split of Einstein’s Equations

As the 3D Ricci tensor has four nonvanishing components, we have found in to-
tal six equations for the five unknown functions α, ω, Ψ , µ2 and µ3. The above
decomposition of the Ricci tensor provides then the following equations:

– Relativistic Poisson equation: The equation for R00 results in an equation for
the redshift factor, which we call the relativistic Poisson equation

∆̄α− R2

2α
(∇ω · ∇ω) = 8απG(T00 + T/2) . (7.82)

– Angular momentum equation: the constraint equation for the extrinsic curva-
ture determines the frame-dragging potential

Div

[
R∇ω
α

]
= 16πGT0φ . (7.83)

– Radius function: The component R11 determines the cylindrical radius function

1

R
∇A[RΨA] + Ψ3∇3µ2 + Ψ2∇2µ3 + R

2α2
(∇ω · ∇ω)+ 1

α
(∇AΨ)(∇Aα)

= −8πG[T11 − T/2] . (7.84)

This equation can also be written in closed form as (see problem 7.1)

1

α
Div [α∇ψ]+ R

2α2
(∇ω · ∇ω) = −8πG[T11 − T/2] . (7.85)

– Meridional curvature: the remaining two equations determine the curvature of
the meridional plane, exp(µ2) and exp(µ3). With this we calculate the combina-
tion R00 + R22 + R33 − R11

2∆(µ2, µ3) − R2

2α2
(∇ω · ∇ω)− 2

α
(∇AΨ)(∇Aα)

= −8πG(T00 − T11 + T22 + T33) . (7.86)
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In the isotropic gauge, µ2 = µ = µ3, this is a second-order elliptic equation for
µ alone.

– Constraint equation: Since there is no anisotropic source of matter, T23 = 0,
R23 = 0 has to be satisfied identically.

7.3 Stellar Structure Equations in Isotropic Gauge

7.3.1 The Isotropic Gauge

Already Carter [106] has shown that the equations considerably simplify in the
isotropic gauge (see also Bardeen [56])

exp(2µ2) = exp(2µ3) = exp(2µ) . (7.87)

One can discuss these either in cylindrical coordinates d� = dx2, dz = dx3, or in
pseudospherical coordinates dr = dx2 and r dθ = dx3.

It is convenient to write the cylindrical radius as

exp(ψ) = r sin θ B exp(−ν) , (7.88)

with B as a function of r and θ only. Originally, the stellar structure equations have
been derived for a metric of the form

ds2 = − exp(2ν) c2dt2 + B2r2 sin2 θ exp(−2ν)(dφ − ω dt)2

+ exp(2µ)
(
dr2 + r2 dθ2) . (7.89)

There are two main effects that distinguish a rotating relativistic star from its nonro-
tating counterpart: The shape of the star is flattened by centrifugal forces (an effect
that first appears at second order in the rotation rate), and the local inertial frames are
dragged by the rotation of the source of the gravitational field. While the former ef-
fect is also present in the Newtonian limit, the latter is a purely relativistic effect. The
study of the dragging of inertial frames in the spacetime of a rotating star is assisted
by the introduction of the local Zero Angular-Momentum Observers (ZAMO). These
are observers whose worldlines are normal to the t = const hypersurfaces, and they
are also called Eulerian observers. Then, the metric functionω is the angular velocity
of the local ZAMO with respect to an observer at rest at infinity. Also, exp(−ν) is
the time dilation factor between the proper time of the local ZAMO and coordinate
time t (which is the proper time at infinity) along a radial coordinate line. The metric
function exp(ψ) has a geometrical meaning: it is the proper circumferential radius
of a circle around the axis of symmetry. In the nonrotating limit, the metric (7.89)
reduces to the metric of a nonrotating relativistic star in isotropic coordinates.

In rapidly rotating models, similar to black holes, an ergosphere can appear,
where gtt > 0. In this region, the rotational frame-dragging is strong enough to
prohibit counter-rotating time-like or null geodesics to exist, and particles can have
negative energy with respect to a stationary observer at infinity. Radiation fields
(scalar, electromagnetic, or gravitational) can become unstable in the ergosphere.
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The Rotating Matter

The four-velocity of matter is, u(0) = W , and u(1) = W V in the locally nonrotating
system, α = exp ν,

u(0) = W

α
, u(1) = Ωu(0) , u(2) = 0 = u(3) (7.90)

with the velocity V (in units of c) with respect to the Bardeen observer

V ≡ �B(Ω − ω)
α2

(7.91)

and

W ≡ 1√
1− V 2

. (7.92)

The matter which is the source of the gravitational field has a total energy density ε
and pressure P, and is given by the energy–momentum tensor

Tµν = (ε + P)uµuν + Pgµν . (7.93)

In the locally nonrotating frame of reference, the energy–momentum tensor is given
by

T (ab) = Θa
µΘ

b
νTµν (7.94)

T (00) = W2(ε + PV 2) (7.95)

T (11) = W2(P + εV 2) (7.96)

T (01) = W2(ε + P)V (7.97)

T (22) = T (33) = P (7.98)

with its trace T = −ε + 3P.

7.3.2 Structure Equations for Rotating Stars

Einstein’s equations now follow from the Ricci tensor in the locally nonrotating
frame, as derived in the previous section (they have been derived in this form for
the first time by Butterworth and Ipser [94]). The equation for the redshift factor
α = exp(ν) follows from R00, � ≡ r sin θ, equation (7.82),

∇E · [B∇Eν] − 1

2
�2 B3 exp(−4ν)∇Eω · ∇Eω

= 4πG exp(2µ)
[
W2(ε + P)(1+ V 2)+ 2P

]
. (7.99)

The differential operators ∇E and the divergence ∇E · are taken in flat Euclidean
three-space. With this meaning, the equations can be written down in any coordinate
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system x2 and x3 in the isotropic gauge. This is essentially the Poisson equation for
the generalized Newtonian potential ν including the fact that self-gravity from the
frame-dragging potential is also a source for the redshift factor. A second equation
can be written down for the frame-dragging potential ω(r, θ) from the expression
(7.83)

∇E ·
[
�2 B3 exp(−4ν)∇Eω

] = −16πG �B2 exp(2µ− 2ν)W2(ε + P)V . (7.100)

This shows explicitly that the matter current generated by rotation is the source
for the frame-dragging potential. The equation for B is also a simple divergence
equation and follows from (7.85)

∇E ·
[
�∇E B

] = 16πG �B exp(2µ) P . (7.101)

These three equations determine the redshift factor, the frame-dragging potential
and the radius function.

The cylindrical radius function is therefore given by the pressure. What is the
source of the fourth function exp(µ)? In the above equations, this function only ap-
pears in the determinant of the metric. Essentially, we have two additional equations
at our disposal which have not yet been used, R22 and R23. As in the static case, one
equation hides the hydrostatic equilibrium, and the other one is responsible for the
function µ. It turns out that this equation for µ only depends on the first three metric
functions ν, B and ω by means of first-order derivatives. It results in a quite lengthy
expression (see Butterworth and Ipser [94]). Thus, three of the four gravitational
field equations are elliptic, while the fourth equation is a first-order partial differen-
tial equation, relating only metric functions. Alternatively, one could use equation
(7.86) as an elliptic second-order equation for µ

∇2
Eµ−

R2

2α2
(∇Eω · ∇Eω) − 2

α
(∇E AΨ)(∇E Aα)

= −8πG (ε + P) exp(2µ) . (7.102)

The exterior metric of a rapidly rotating neutron star considerably differs from
the Kerr metric. The two metrics only agree to lowest order in the rotational velocity.
At higher order, the multipole moments of the gravitational field created by a rapidly
rotating compact star are different from the multipole moments of the Kerr field.
There have been many attempts in the past to find analytic solutions to the Einstein
equations in the stationary, axisymmetric case, that could describe a rapidly rotating
neutron star. An interesting solution has been found by Manko et al. (see Sect. 7.6).
This solution reduces to a three-parameter solution, involving the mass, specific
angular momentum, and a parameter that depends on the quadrupole moment of
the source. Although this solution explicitly depends only on the quadrupole mo-
ment, it approximates the gravitational field of a rapidly rotating star with higher
nonzero multipole moments. It will be interesting to determine whether this analytic
quadrupole solution approximates the exterior field of a rapidly rotating star more
accurately than the quadrupole, slow rotation approximation.
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7.3.3 Mechanical Equilibrium and Effective Potential

In this section we derive the equations of motion for plasma in a general axisym-
metric spacetime. Due to axisymmetry, we have two global conservation laws, the
conservation of baryon number and the conservation of angular momentum. The
hydrostatic equilibrium follows then as a special case of the poloidal equations of
motion.

As discussed in Sect. 3.1, the motion of a plasma in the metric (7.89) is defined
by the following conserved variables

D = �0W (7.103)

SA = �0hW2vA (7.104)

Sφ = �0hW2vφ (7.105)

τ = E − D , (7.106)

where we used the following primary variables

vA = u A

W
+ β

A

α
(7.107)

vφ = uφ
W

(7.108)

Ω = uφ/ut (7.109)

W = αut = 1/
√

1− vAvA − vφvφ . (7.110)

Sφ is the angular momentum density of the plasma, while uφ is the specific angular
momentum with its relation

uφ = Sφ
�0hW

. (7.111)

The quantities SA are related to meridional motion vA, A = r, θ.
The equation of hydrostationary equilibrium follows from the projection of the

conservation of the stress–energy tensor normal to the four-velocity, or from the two
equations for the poloidal momentum density SA in (3.32)

1√−g
∂B

[√−g FB[SA]
]
= S[SA] , (7.112)

where FB[SA] = PδB
A is the only nonvanishing flux when vA = 0. This leads to two

poloidal equations

P,A + P√−g
∂A

[√−g
]
= T BC ∂B(gCA)− Tµν Γ B

µν gBA . (7.113)

In terms of Ω, this mechanical equilibrium can be written in a compact form (for
the derivation, see problem 7.4), using ut = W/α,
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∇A P − (�+ P)
[∇A ln ut − utuφ ∇AΩ

] = 0 . (7.114)

∇ is the nabla operator in the two-dimensional meridional plane, and we assume
some EoS P = P(�) given. This can be written with the specific angular momentum
l = −uφ/ut

∇P − (�+ P)
[∇ ln ut + utut l∇Ω] = 0 , (7.115)

and due to the normalization utut + uφuφ = −1 we have

utut(1− lΩ) = −1 . (7.116)

Therefore the hydrostatic equilibrium follows as

∇P

�+ P
= ∇ ln ut − l

1− lΩ
∇Ω , (7.117)

or explicitly

∇P

�+ P
= −∇ lnα+∇ ln W − l

1− lΩ
∇Ω . (7.118)

The first term is the gravitational force as measured in the ZAMO, the sec-
ond one comes from the motion, and the third term is due to differential rota-
tion.

For barotropic equations of state, P = P(�0), this can easily be integrated to
yield ∫ P

0

dP

�+ P
= ln ut − ln ut

0 − F(Ω) (7.119)

with

F(Ω) ≡
∫ Ω

Ωc

l(Ω′)
1−Ω′l(Ω′) dΩ′ . (7.120)

Ωc is the value of Ω on the symmetry axis. This function F(Ω) vanishes for rigid
rotation. Here, we use the relativistic enthalpy µ ≡ (� + P)/�0 and the specific
angular momentum l = l(Ω) given by the inversion of Ω(l)

l(Ω) = R2(Ω − ω)
α2 + R2ω(Ω − ω)/c2

. (7.121)

This is the classical expression for the specific angular momentum in the limit α→ 1
and far away from the central source, l → R2Ω.

This means that the pressure gradient is given by the effective potential Ψeff

defined as
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Ψeff ≡ ln ut + F(Ω) = ln(W/α)+ F(Ω) , (7.122)

with

1

�+ P
∇P = ∇Ψeff . (7.123)

This generalizes the expression of the effective potential in Newtonian physics

Ψeff = ΦN +
∫ R

0
R′Ω2(R′) dR′ (7.124)

with the associated hydrostatic equilibrium

1

�0
∇P = −∇Ψeff . (7.125)

Here, we have assumed that the rotation is constant on cylinders.

7.3.4 Stellar Parameters

Similar to static neutron stars, certain integrals over the matter distribution are ob-
servable quantities. For a rapidly rotating neutron star, we can compute numerically
the physical quantities shown in Table 7.1, once the above structure equations have
been solved. For this purpose, we assume the metric is given in the following form

ds2 = − exp(2Φ) c2dt2 + exp(2β) r2 sin2 θ(dφ − ω dt)2

+ exp(2µ)
(
dr2 + r2 dθ2) . (7.126)

Rest Mass and Proper Mass of a Star

First of all we can define the rest mass of the star (baryon number) in terms of the
rest-mass density �0

M0 =
∫
�0uµ dΣµ =

∫
�0ut√−g d3x =

∫
�0

W

α

√−g d3x =
∫
�0 W

√
γ d3x ,

(7.127)

or in coordinates

M0 = 2π
∫ ∫

�0
e2µ+β
√

1− v2
r2 sin θ dr dθ . (7.128)

The volume element dΣµ = kµ
√−g d3x can be expressed as a normal volume

element. The rest mass itself does not appear as a source for gravitational fields.
Similarly, we find for the proper mass

Mp = 2π
∫ ∫

ε
e2µ+β
√

1− v2
r2 sin θ dr dθ . (7.129)
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Table 7.1. Parameters of rotating stars

Parameter Physical meaning

εc Central energy density
rp/re Ratio of polar to equatorial radii
Ω Angular velocity of the star
M0 Baryon mass
Mp Proper mass
M Gravitational mass
Rcirc Equatorial circumferential radius
re Equatorial coordinate radius
J Total angular momentum
I Moment of inertia about the rotation axis
T Rotational energy
WG Gravitational energy
ve Velocity of comoving observer at the equator

relative to the locally nonrotating observer
Z p Polar redshift
Zc Central redshift
Zb

eq Equatorial redshift in the backward direction

Z f
eq Equatorial redshift in the forward direction

e Intrinsic eccentricity of the star’s surface
G RV2 Two dimensional virial identity
G RV3 Three dimensional virial identity

Mass and Angular Momentum for Axisymmetric Systems

We have seen that in suitable asymptotically Minkowskian coordinates, such that
the stationary Killing vector has the form k = ∂t , the metric components are always
given by

g00 = −1+ (2G M/r)+ O(1/r2) (7.130)

g0φ = (2G J/r3)+ O(1/r4) (7.131)

gij = [1+ (2G M/r)] δij + O(1/r2) . (7.132)

The meaning of the constants M and J is a consequence of the Komar integrals [234].
Let V be a volume of spacetime on a space-like hypersurface Σ with boundary ∂V .
To every Killing vector field ξ we can associate the Komar integral

Qξ (V) = q

16πG

∮
∂V

dSµν Dµξν (7.133)

for some constant q. Using Gauss’ law, we find

Qξ (V) = q

8πG

∫
V

dΣµ Dν(D
µξν) . (7.134)
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Since Killing fields satisfy the identity

DνDµξ
ν = Rµν ξ

ν , (7.135)

we obtain over Einstein’s equations

Qξ (V) = q

8πG

∫
V

dΣµ Rµν ξ
ν =

∫
V

dSµ Jµ(ξ) , (7.136)

where the current Jµ(ξ) is defined as follows

Jµ(ξ) = q
(

Tµνξ
ν − 1

2
T ξµ

)
. (7.137)

One can easily prove that his current is conserved, i.e. Dµ Jµξ = 0. Since this current
is conserved, the charge Qξ (V) is time-independent, provided Jµ vanishes on the
boundary ∂V .

For ξ = k, q = −2 is fixed by comparison with the Schwarzschild metric, and

M = M(V) = − 1

8πG

∮
∂V

dSµν Dµkν (7.138)

is the total energy contained in the volume V . For ξ = m, where m = ∂φ, we obtain
for q = 1 the angular momentum integral

J = J(V) = 1

16πG

∮
∂V

dSµν Dµmν . (7.139)

To check the coefficient, use Gauss’ law to write J = ∫
V dSµ Jµm , where the angular

momentum current is given by

Jµ(m) = Tµνm
ν − 1

2
Tmµ . (7.140)

Since dSµmµ = 0, we have

J(V) =
∫

V
dV T 0

νm
ν =

∫
V

dV
(
T 0

2x1 − T 0
1x2) (7.141)

in Cartesian coordinates, where

m = x1 ∂2 − x2 ∂1 . (7.142)

For weak gravitational sources, g � η, we have

J(V) � ε3 jk

∫
V

d3x x j T k0 . (7.143)

Therefore, the total angular momentum of an asymptotically flat spacetime is found
by taking ∂V to be a two-sphere at spatial infinity and calculating the integral in
(7.139).
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According to these considerations, the two quantities M and J as defined above
by the asymptotic expansion can be given a coordinate-independent form

8πG M = − lim∞

∮
(∇αkβ) dSαβ (7.144)

16πG J = lim∞

∮
(∇αmβ) dSαβ (7.145)

where m = ∂φ is the Killing vector of axisymmetry and where the integral is
taken over a space-like two-surface S with dS = (eφ ∧ e0) dS for the two mu-
tually orthogonal space-like and time-like normals eφ and e0. The limit is taken
over a two-sphere at arbitrarily large asymptotic distances. One can then use the
identities

(∇α∇α)kβ = Rβ�k
� , (∇α∇α)mβ = Rβ�m

� (7.146)

which hold in consequence of the Killing equations

∇(αkβ) = 0 = ∇(αmβ) (7.147)

to convert these expressions by means of Stokes’ theorem to the form

M = − 1

4πG

∫
Σ

Rαβkβ dΣα (7.148)

J = 1

8πG

∫
Σ

Rαβmβ dΣα . (7.149)

Σ is a space-like hypersurface extending from space-like infinity to the origin of
the star (or some bounding horizon in the case of black holes). Inserting Einstein’s
equations

Rαβ = 8πG

(
Tαβ −

1

2
Tr(T)gαβ

)
(7.150)

we see that the two constants are given by

M = −
∫
Σ

(2Tαβkβ − Tr(T)kα) dΣα (7.151)

J =
∫
Σ

Tαβmβ dΣα . (7.152)

The gravitational source is the total mass of isolated systems which can be expressed
as an integral over a space-like slice

M = −
∫
(2Tµν − δµν T)kν dΣµ =

∫
V
(2T t

t + T)
√−g d3x , (7.153)
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or explicitly

M = 2π
∫ ∫ [

e2µ+β
{
(ε+ p)(1+ v2)

1− v2
+ 2p

}
+2r sin θωeβ

(ε+ p)v

1− v2

]
r2 sin θ dr dθ . (7.154)

This mass appears as parameter in the redshift factor with its asymptotic expan-
sion

α(r) = 1− G M

c2r
+ O(1/r3) . (7.155)

Similarly, the total angular momentum of the star can be expressed as an integral
over the corresponding source term

J =
∫

Tαβ mβ dΣα =
∫

T t
φ

√−g d3x =
∫

j dM0 , (7.156)

or

J = 2π
∫ ∫

e2µ+2β (ε+ p)v

1− v2
r3 sin2 θ dr dθ . (7.157)

This quantity appears as the source for the frame-dragging potential in the asymptotic
region

ω = 2G J

c3r3
+ O(1/r4) . (7.158)

The angular momentum determines the moment of inertia by means of I = J/Ω.
From this expression, we also get the total kinetic energy

T = 1

2

∫ ∫
ΩdJ = 2π

∫ ∫
e2µ+2β (ε+ p)v

1− v2
Ωr3 sin2 θdrdθ , (7.159)

as well as the gravitational energy

WG = Mpc2 + T − Mc2 . (7.160)

Redshifts and Ellipsoidal Structure

The various redshifts from the surface can easily be calculated by means of

Zp = exp(−Φp)− 1, (7.161)

Z f
eq =

(
1− ve

1+ ve

)1/2 exp(−Φe)

1+ re exp[(Φe − βe)/2]ωe
− 1, (7.162)
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Zb
eq =

(
1+ ve

1− ve

)1/2 exp(−Φe)

1− re exp[(Φe − βe)/2]ωe
− 1 , (7.163)

where subscripts p and e denote values at the pole and the equatorial surface, respec-
tively.

The eccentricity of the meridional cross-section is defined by the following
procedure (Friedman et al. [161]). If the surface of the star is defined by

r = rs(θ) , (7.164)

the metric of the stellar surface can be expressed as

dσ2
∗ = e2βr2 sin2 θ dϕ2 + e2µ

[(
drs

dθ

)2

+ r2
s (θ)

]
dθ2 . (7.165)

If we embed this surface in the flat three-dimensional space, it is expressed as

R = Rs(z), (7.166)

in cylindrical coordinates (R, ϕ, z). The two-metric of this surface is

dσ2
∗ =

[(
dRs

dz

)2

+ 1

]
dz2 + R2

s dϕ2 . (7.167)

Comparing these two equations, we have the following relations, if they express the
same surface geometry

Rs(θ) = eβr sin θ , (7.168)

and

zs(θ) =
∫ π/2

θ

dθ

{
e2µ

[(
drs

dθ

)2

+ rs(θ)
2

]
−

(
dRs

dθ

)2
}1/2

. (7.169)

Using these quantities, the eccentricity e is defined as

e ≡
√

1−
(

zs(θ = 0)

Rs(θ = π/2)
)2

. (7.170)

Binding Energy

When we introduce a quantity h in the star as

µ

U0
= 1− h (7.171)
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then we get for the binding energy of the object

EB ≡ M0 − M =
∫

h dM0 − 2
∫

jΩ dM0 − 2
∫

P

�0ut
dM0 . (7.172)

The surfaces of constant h must coincide with the surfaces of constant Ω. This can
be expressed differentially: if the rest mass changes by the amount δdM0 and the
angular momentum by δJ = j dM0, the change in the binding energy is

δEB =
∫

h δdM0 −
∫
Ω δdM0 . (7.173)

Similar to a static star, an equilibrium model is uniquely specified by the
isentropic equation of state, P = P(ε), the value of the total rest mass M0 and
either by the angular momentum per unit rest mass or the angular velocity Ω
of the stellar surface [55].

7.4 The Slow-Rotation Approximation

In the slow-rotation limit, we can write the line element as

ds2 = − exp(2Φ) dt2 +
(

1− 2M(r)

r

)−1

dr2 − 2ω r2 sin2 θ dt dφ + r2 dΩ2 .

(7.174)

As in the nonrotating case, M(r) and Φ satisfy the TOV equations

dM

dr
= 4πr2� (7.175)

dΦ

dr
= M(r)+ 4πr3 P

1− 2M(r)/r
. (7.176)

The frame-dragging potential satisfies the equation

1

r3

d

dr

(
r4ι

dω̄

dr

)
+ 4

dι

dr
ω̄ = 0 , (7.177)

where ω̄ = Ω − ω is the rotational frequency with respect to nonrotating frames,
and ι(r) is defined as

ι = √
1− 2M(r)/r exp(−Φ) . (7.178)

The angular momentum J of the star follows from

J =
∫

M
Tµνm

ν d3Σµ (7.179)
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with m = ∂φ as the axial Killing field and the four-velocity u = ut(1, 0, 0,Ω).
Ω = uφ/ut is the angular velocity of the star. From this expression we obtain

J =
∫

M
(�+ P)(ut)2 (gtφ +Ωgφφ)

√−g d3x (7.180)

or

J =
∫

M
(�+ P)(ut)2 gφφ(Ω − ω)√−g d3x . (7.181)

This allows us to define the moment of inertia by means of I = J/Ω. In leading
order in the expansion for Ω we obtain

I = 8π

3

∫ R

0
r4 (�+ P) exp(−Φ)√

1− 2M(r)/r

ω̄

Ω
dr . (7.182)

The Mass-Quadrupole Moment

Rotation also leads to a quadrupolar deformation of the surfaces of constant density.
We have therefore also to perturb the redshift factor and the volume element. Hartle
and Thorne [195] have derived an exact form of this metric with accuracy up to
second-order terms in the specific angular momentum j = c3 J/G2 M2, and first
order in the dimensionless mass-quadrupole moment q = Q/M3, where M denotes
the mass of the star, J its angular momentum and Q its quadrupole mass moment.
Since J = IΩ and I � 0.25MR2∗, the dimensionless quantity j can be estimated in
terms of the Keplerian rotation at the equatorial radius, ΩK ,

j � 0.25
√

R∗/M (Ω/ΩK ) < 0.2 (7.183)

for observed neutron stars with periods P> 1.5 ms. In distinction to Schwarzschild,
this solution now has three parameters. We use geometrical units with c = 1 = G.
In these units, the mass is given in terms of the gravitational radius M = G M∗/c2,
and the Hartle–Thorne (HT) metric

ds2
HT = −α2 dt2 + γφφ(dφ − ω dt)2 + γrr dr2 + γθθ dθ2 , (7.184)

where

α2 = ∆R , ω = 2J

r3
(7.185)

γrr = S

∆
, γθθ = r2 B (7.186)

γφφ = r2 sin2 θ B (7.187)

gtt = −[α2 − γφφω2] = −
[
∆R − 4J2

r4
B sin2 θ

]
(7.188)

gtφ = −ωγφφ = −2J

r
B sin2 θ . (7.189)
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The functions are given as follows

∆ = 1− 2M

r
+ 2J2

r4
(7.190)

R = 1+ 2

[
J2

Mr3

(
1+ M

r

)
+ 5

8

Q − J2/M

M3
Q2

2(r/M − 1)

]
P2 (7.191)

S = 1− 2

[
J2

Mr3

(
1− 5M

r

)
+ 5

8

Q − J2/M

M3
Q2

2(r/M − 1)

]
P2 (7.192)

B = 1+ 2

[
− J2

Mr3

(
1+ 2M

r

)
+ 5

8

Q − J2/M

M3

×
{

2M√
r2(1− 2M/r)

Q1
2(r/M − 1)− Q2

2(r/M − 1)

}]
P2 . (7.193)

M is the mass, J the angular momentum and Q the mass quadrupole moment,
P2 ≡ P2(cos θ) = (3 cos2 θ − 1)/2 is the second Legendre polynomial, and Qm

n the
associated Legendre polynomials, defined as

Q1
2(z) =

√
1− z2

[
3z2 − 2

z2 − 1
− 3

2
z ln

(
z + 1

z − 1

)]
(7.194)

Q2
2(z) =

3

2
(z2 − 1) ln

(
z + 1

z − 1

)
− 3z3 − 5z

z2 − 1
. (7.195)

This gives the following explicit expressions which can numerically be used

Q1
2(r/M − 1) = r

M

√
1− 2M

r

×
[

3(r/M)2(1− 2M/r)+ 1

(r/M)2(1− 2M/r)

+3

2

r

M

(
1− r

M

)
ln

(
1− 2M

r

)]
(7.196)

Q2
2(r/M − 1) = −3

2

( r

M

)2
(

1− 2M

r

)
ln

(
1− 2M

r

)
−M/r(1− M/r)[3(r/M)2(1− 2M/r)− 2]

1− 2M/r
. (7.197)

The Hartle–Thorne metric is sometimes used in a somewhat different notation

ds2
HT = − exp ν [1+ 2Φ(r, θ)] dt2 − exp λ [1+ 2M/(r − 2M)] dr2

+r2[1+ 2Ψ(r, θ)][dθ2 + sin2 θ (dφ − ω dt)2] (7.198)

can be expressed in spherical coordinates (t, r, θ, φ)
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gtt = −(1− 2M/r) [1+ j2 F1 − qF2] (7.199)

grr = (1− 2M/r)−1 [1+ j2G1 + qF2] (7.200)

gθθ = r2 [1+ j2 H1 − qH2] (7.201)

gφφ = gθθ sin2 θ (7.202)

gtφ = 2( jM2/r) sin2 θ . (7.203)

The dimensionless angular momentum j and quadrupole moment q are defined by

j = J/M2 , q = Q/M3 . (7.204)

Here, we use the following functions, µ = cos θ,

F1 = [8Mr4(r − 2M)]−1 ×
[µ2(48M6 − 8M5r − 24M4r2 − 30M3r3 − 60M2r4 + 135Mr5 − 45r6)

+(r − M)(16M5 + 8M4r − 10M2r3 − 30Mr4 + 15r5)] + A1(r) (7.205)

F2 = [8Mr(r − 2M)]−1 (5(3µ2 − 1)(r − M)(2M2 + 6Mr − 3r2)
)

−A1(r) (7.206)

G1 = [8Mr4(r − 2M)]−1 ((L − 72M5r)− 3µ2(L − 56M5r)
)− A1(r) (7.207)

L = 80M6 + 8M4r2 + 10M3r3 + 20M2r4 − 45Mr5 + 15r6 (7.208)

A1 = 15r(r − 2M)(1− 3µ2)

16M2
ln

(
r

r − 2M

)
(7.209)

H1 = (8Mr4)−1(1− 3µ2)(16M5 + 8M4r − 10M2r3 + 15Mr4 + 15r5)

+A2(r) (7.210)

H2 = (8Mr)−1(5(1− 3µ2)(2M2 − 3Mr − 3r2))− A2(r) (7.211)

A2 = 15(r2 − 2M2)(3µ2 − 1)

16M2
ln

(
r

r − 2M

)
. (7.212)

The Kerr metric in Boyer–Lyndquist coordinates could be obtained from the
above metric after putting a = jM and q = j2, and making a coordinate transfor-
mation of the form

rBL = r − a2/(2r3)
(
(r + 2M)(r − M)+ µ2(r − 2M)(r + 3M)

)
(7.213)

θBL = θ − a2/(2r3)(3+ 2M) cos θ sin θ . (7.214)

7.5 Numerical Integration of the Stellar Structure Equations

As we have seen, the stellar structure is essentially determined by four elliptic partial
differential equations and the equation of hydrostatic equilibrium which yields us
the density structure in the interior. First models have been calculated by Wilson
(1972) and Bonazzola and Schneider (1974). Modern treatments essentially rely on
the following methods (see also Stergioulas [376]):



336 7 Rapidly Rotating Neutron Stars

– Slow rotation approximation discussed in the previous section: This method
includes quadrupole corrections to spherically symmetric stars induced by Ω2.
This method is definitely not appropriate for the treatment of rapid rotation in
millisecond pulsars.

– Butterworth and Ipser [94] applied a linearization procedure starting with non-
rotating configurations. This is also not suitable for rapid rotation.

– KEH: The most advanced method is based on a Green’s function approximation
(Komatsu, Eriguchi and Hachisu [235] (KEH)). The essential procedure is based
on the fact that the three elliptic type field equations can be converted into integral
equations using corresponding Green’s functions. As we have seen, the fourth
field equation is an ordinary first-order differential equation, which can simply
be solved. Cook, Shapiro and Teukolsky [123, 124] have improved this KEH
scheme by inventing a new radial coordinate

r = re
s

1− s
, (7.215)

mapping in this way the entire radial range into a finite interval. For this reason,
the region of integration has not to be truncated. This leads to a much faster
convergence. This code is public domain software and is described in the PhD
thesis of Stergioulas (SF code, [375]).

– Bonazzola and collaborators have developed a different method (spectral
method): functions are expanded in trigonometric functions in r and θ so that
fast Fourier transform methods can be applied [83, 85] (BGSM).

BGSM, Lorene

In the BGSM scheme, the field equations are derived in the 3+1 formulation with
the identification

exp ν = N , ω = Nφ (7.216)

exp 2ψ = A4 B2 r2 sin θ (7.217)

expµ2 = A2/B , expµ3 = rA2/B . (7.218)

All four chosen equations that describe the gravitational field are of elliptic type. This
avoids the problem with the second-order radial derivative in the source term of the
ODE used in BI and KEH. The equations are solved using a spectral method, i.e. all
functions are expanded in terms of trigonometric functions in both the angular and
radial directions and a Fast Fourier Transform (FFT) is used to obtain coefficients.
Outside the star, a redefined radial variable is used, which maps infinity to a finite
distance. In Salgado et al. [352,353] the code is used to construct a large number of
models based on various EoSs. The accuracy of the computed models is estimated
using two general relativistic virial identities, valid for general asymptotically flat
spacetimes. While the field equations used in the BI and KEH schemes assume
a perfect fluid, isotropic stress–energy tensor, the BGSM formulation makes no
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assumption about the isotropy of the energy–momentum tensor. Thus, the BGSM
code can compute stars with a magnetic field, a solid crust, or a solid interior, and it
can also be used to construct rotating boson stars.

Bonazzola et al. [85] have improved the BGSM spectral method by allowing
for several domains of integration. One of the domain boundaries is chosen to
coincide with the surface of the star and a regularization procedure is introduced for
the divergent derivatives at the surface (that appear in the density field when stiff
equations of state are used). This allows models to be computed that are nearly free
of Gibbs phenomena at the surface. The same method is also suitable for constructing
quasistationary models of binary neutron stars. The new method has been used in
Gourgoulhon [181] for computing models of rapidly rotating strange stars and it has
also been used in 3D computations of the onset of the viscosity-driven instability to
bar-mode formation.

AKM

A new multidomain spectral method has been introduced in Ansorg et al. (AKM, [34,
35]). The method can use several domains inside the star, one for each possible
phase transition. Surface-adapted coordinates are used and approximated by a two-
dimensional Chebyshev expansion. Requiring transition conditions to be satisfied
at the boundary of each domain, the field and fluid equations are solved as a free
boundary value problem by a Newton–Raphson method, starting from an initial
guess. The field equations are simplified by using a corotating reference frame.
Applying this new method to the computation of rapidly rotating homogeneous
relativistic stars, AKM achieve near machine accuracy, except for configurations at
the mass-shedding limit. The code has been used in a systematic study of uniformly
rotating homogeneous stars in general relativity (Schöbel and Ansorg [358]).

7.5.1 Comparison of Numerical Codes

The accuracy of the above numerical codes can be estimated, if one constructs
exactly the same models with different codes and compares them directly. The first
such comparison of rapidly rotating models constructed with the FIP and SF codes
has been presented by Stergioulas and Friedman [377]. Rapidly rotating models
constructed with several EoS’s agree to 0.1%–1.2% in the masses and radii and
to better than 2% in any other quantity that was compared (angular velocity and
momentum, central values of metric functions, etc.). This is a very satisfactory
agreement, considering that the BI code was using relatively few grid points, due to
limitations of computing power at the time of its implementation.

If one makes the extreme assumption of uniform density, the agreement is at the
level of 10−2. In the BGSM code this is due to the fact that the spectral expansion in
terms of trigonometric functions cannot accurately represent functions with discon-
tinuous first-order derivatives at the surface of the star. In the KEH and SF codes, the
three-point finite-difference formulae cannot accurately represent derivatives across
the discontinuous surface of the star.



338 7 Rapidly Rotating Neutron Stars

The accuracy of the three codes is also estimated by the use of the two virial
identities. Overall, the BGSM and SF codes show a better and more consistent
agreement than the KEH code with BGSM or SF. This is largely due to the fact that
the KEH code does not integrate over the whole spacetime but within a finite region
around the star, which introduces some error in the computed models.

A new direct comparison of different codes is presented by Ansorg et al. [34].
Their multidomain spectral code is compared to the BGSM, KEH, and SF codes
for a particular uniform density model of a rapidly rotating relativistic star. An ex-
tension of the detailed comparison in [34], which includes results obtained by the
Lorene/rotstar code in [179] and by the SF code with higher resolution than the
resolution used in [312]. The comparison confirms that the virial identity GRV3
is a good indicator for the accuracy of each code. The AKM code achieves nearly
double-precision accuracy, while the Lorene/rotstar code has a typical relative ac-
curacy of 10−4 to 10−6 in various quantities. The SF code at high resolution comes
close to the accuracy of the Lorene/rotstar code for this model. Lower accura-
cies are obtained with the SF, BGSM, and KEH codes at the resolutions used
in [312].

The AKM code converges to machine accuracy when a large number of about 24
expansion coefficients are used at a high computational cost. With significantly fewer
expansion coefficients (and comparable computational cost to the SF code at high
resolution) the achieved accuracy is comparable to the accuracy of the Lorene/rotstar
and SF codes. Moreover, at the mass-shedding limit, the accuracy of the AKM code
reduces to about five digits (which is still highly accurate, of course), even with
24 expansion coefficients, due to the nonanalytic behavior of the solution at the
surface. Nevertheless, the AKM method represents a great achievement, as it is the
first method to converge to machine accuracy when computing rapidly rotating stars
in general relativity.

7.5.2 Properties of Rotating Equilibrium Stellar Structures

In the following we show a few results from the integration of Einstein’s equations for
a typical EoS (the nuclear EoS SLy4). As a result of the integration we get the profiles
for the metric functions for given angle θ, for example. The most interesting function
is the frame-dragging frequency ω(r, θ), which decays as 1/r3 in the asymptotic
region. The potential has a smooth behavior and attains its maximum on the rotation
axis with a value of about 80 percent of the rotation of the neutron star (Fig. 7.3). It
immediately decays inside the star to a value of about 20 percent on the surface of
the star. This means that the absolute space has a strong differential rotation inside
the star which, however, vanishes on the rotational axis.

In contrast to static stars, rotating stars form a two-parameter sequence with
the central density εc as first parameter and the central rotation Ω∗ as the second
parameter. We only consider rigidly rotating stars. Figure 7.4 displays the total
gravitational mass vs. central total energy density for evolutionary sequences of
constant rest mass (constant baryon number) with increasing rotation. Above the
rest mass of 2.1 M� we find supramassive stars, which, however, can only exist as
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Fig. 7.3. The decay of the frame-dragging potential ω(r) as a function of the equatorial radius
for the equation of state SLy4 for a star of 1.4 M� rotating with a period of one second. Data
provided by A. Bauswein [63]

Fig. 7.4. The gravitational mass as a function of central density for SLy4 EoS. The sequences
are shown for fixed rest mass M0 (0.6, 1.0, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.5, 2.6, 2.7, 2.8 M�).
The solid line gives the nonrotating solutions, the left line is the mass-shed limit. For rapidly
rotating stars, the upper mass limit is higher. When these stars are slowed down, they would
collapse towards rotating black holes. Data have been calculated by A. Bauswein [63] using
the LORENE software package with the SLy4 EoS
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Fig. 7.5. The gravitational mass as a function of the equatorial radius. Sequences are shown
for fixed rest mass M0 with values as in the previous Figure. The solid lines denote sequences
of constant rotation period: nonrotating, 3.4 ms, 1.56 ms, 1.4 ms and mass-shed limit (from
left to right). Data have been calculated by A. Bauswein [63] using the LORENE software
package with the SLy4 EoS

rotating objects. When these stars are slowed down, they would collapse to form
black holes.

Figure 7.5 displays the total gravitational mass as a function of the equa-
torial circumferential radius for evolutionary sequences. This demonstrates that
rotation inflates the equatorial bulge even for neutron star matter and leads to
a strong ellipticity. This has interesting consequences for the question of the
last stable orbit for millisecond pulsars. These calculations show that rotation is
important for the structure of neutron stars for periods less than about 3 milli-
seconds.

Figure 7.6 displays the angular velocity as a function of the angular momentum.
Rapidly rotating pulsars would evolve along sequences of constant baryonic mass,
given by dotted lines. While normal neutron stars move towards the origin in this
plot, supramassive stars would spin up, before collapsing towards a black hole. If
a neutron star is sufficiently massive, the evolutionary sequence may exhibit an
extended region where spin-up is allowed for.

It has been noted by many people that the maximum rotational frequency for
many equations of state for neutron star matter seems to be given by a simple formula

Ωmax = χ
√

M∗
M�

(
Re

10 km

)−3/2

, (7.219)
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Fig. 7.6. Sequences of constant rest mass M0 in the (Ω, J)-plane. Rapidly rotating radio
pulsars would evolve along such sequences. Data have been calculated by A. Bauswein [63]
using the LORENE software package with the SLy4 EoS

where χ � 7600 s−1 and M∗ and Re are the total mass-energy and the areal radius
of the maximum-mass static configuration for given EoS.

Rapidly Rotating Strange Stars

Exact models of uniformly rotating strange stars, built of self bound quark mat-
ter, are calculated within the framework of general relativity by Gourgoulhon et
al. [181]. This is made possible thanks to a new numerical technique capable to
handle the strong density discontinuity at the surface of these stars (BGSM). Numer-
ical calculations are done for a simple MIT bag model equation of state of strange
quark matter. Evolutionary sequences of models of rotating strange stars at constant
baryon mass are calculated. Maximally rotating configurations of strange stars are
determined, assuming that the rotation frequency is limited by the mass shedding
and the secular instability with respect to axisymmetric perturbations. Exact for-
mulae which give the dependence of the maximum rotation frequency, and of the
maximum mass and corresponding radius of rotating configurations, on the value
of the bag constant, are obtained. The values of T/W for rapidly rotating massive
strange stars are significantly higher than those for ordinary neutron stars. This
might indicate particular susceptibility of rapidly rotating strange stars to triaxial
instabilities.
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7.6 Towards Analytical Vacuum Solutions for Rotating
Neutron Stars

For many purposes it would be extremely helpful to have analytic expressions for the
metric coefficients at least in the exterior, vacuum region of neutron stars. Accretion
theory would be much easier to be handled with analytic expressions. In fact, in
the last years some new aspects have emerged in this respect using some old ideas.
Essentially, one has to find out a way to combine metric functions in such a way that
the resulting Einstein’s equations decouple as much as possible, as in the case of the
Kerr geometry (see Sect. 8.1.2).

The exterior metric of a rapidly rotating neutron star differs, however, consid-
erably from the Kerr metric. The two metrics agree only to lowest order in the
rotational velocity. At higher order, the multipole moments of the gravitational field
created by a rapidly rotating compact star are different from the multipole moments
of the Kerr field. There have been many attempts in the past to find analytic solutions
to the Einstein equations in the stationary, axisymmetric case, that could describe
a rapidly rotating neutron star. An interesting solution has been found recently by
Manko et al. [267]. For nonmagnetized sources of zero net charge, the solution re-
duces to a three-parameter solution, involving the mass, specific angular momentum,
and a parameter that depends on the quadrupole moment of the source. Although
this solution depends explicitly only on the quadrupole moment, it approximates the
gravitational field of a rapidly rotating star with higher nonzero multipole moments.
It would be interesting to determine, whether this analytic quadrupole solution ap-
proximates the exterior field of a rapidly rotating star more accurately than the
quadrupole, slow rotation approximation.

7.6.1 Weyl–Papapetrou Form

A useful procedure in this direction had already been developed by Papapetrou in
1954. The vacuum equations can be written in a more elegant way, when we choose
cylindrical coordinates � = x2 and z = x3 and use the gauge freedom of the vacuum
case, exp(2µ2) = exp(2µ3) ≡ exp(2µ), so that the metric assumes the form

ds2 = − exp(2ν)c2 dt2 + exp(2ψ)(dφ − ω dt)2 + exp(2µ)
(
d�2 + dz2) . (7.220)

ψ, ν, ω and µ are now functions of � and z. Historically, it has been found that the
vacuum equations considerably simplify, if one uses the Weyl–Papapetrou form of
the metric

ds2 = − f(c dt − ~ω dφ)2 + 1

f

[
exp(2γ)

(
d�2 + dz2)+ �2 dφ2] (7.221)

with the transformation

exp(2γ) = exp(2µ)
[
exp(2ν)− ω2�2 exp(−2ν)/c2] (7.222)

f = exp(2ν)− �2ω2 exp(−2ν)/c2 (7.223)
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ω̃ = �2ω/c

exp(4ν)− �2ω2/c2
. (7.224)

The function f is a kind of mixture of the gravitational potential and the frame-
dragging potential. ω̃ is still proportional to the frame-dragging potential ω, while
exp(2γ)/ f = exp(2µ) is now just the metric of the meridional plane. The field
equations assume then the very simple form1

f ∇2 f = ∇ f · ∇ f − f 4

�2
∇ω̃ · ∇ω̃ (7.225)

∇ ·
(

f 2

�2
∇ω̃

)
= 0 , (7.226)

and γ is determined by means of the conditions

4γ,� = �
[
(ln f)2,� − (ln f)2,z

]
(7.227)

2γ,z = � (ln f),�(ln f),z . (7.228)

The equation for ~ω can now be satisfied in terms of the ansatz

Ψ,� ≡ f 2

�
ω̃,z , Ψ,z = − f 2

�
ω̃,� (7.229)

with the integrability condition[ �
f 2
Ψ,�

]
,�
+

[ �
f 2
Ψ,z

]
,z
= 0 . (7.230)

We can write therefore the two equations in the form of Ernst’s equations [145]

f ∇2 f = ∇ f · ∇ f −∇Ψ · ∇Ψ (7.231)

f ∇2Ψ = 2∇ f · ∇Ψ . (7.232)

7.6.2 Ernst Equations

With the introduction of the complex Ernst potential (Ernst [145, 146])

E ≡ f + iΨ (7.233)

we can combine the above two equations for f and Ψ into one complex equation

Re[E ] ∇2E − (∇E)2 = 0 . (7.234)

The virtue of this procedure is that the original complicated formulation of Einstein’s
equations in terms of four nonlinearly coupled partial differential equations has been

1 ∇ · u ≡ 1
�
(�u�),� + uz,z + 1

�
uφ,φ.
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reduced to one simple complex equation. This is a kind of a complex potential
equation in the meridional plane. Sibgatullin has shown in 1991 [370] that this can
be transformed to a linear integral equation with a Cauchy type kernel

E =
∫ 1

−1

µ(σ) e(ξ) dσ√
1− σ2

, (7.235)

where the kernel µ(σ) satisfies the integral equation∫ 1

−1

µ(σ) [e(ξ)+ e∗(η)] dσ
(σ − τ)√1− σ2

= 0 (7.236)

with the definition of the complex variables

ξ = z + iσ� (7.237)

η = z + iτ� , σ, τ [−1, 1] . (7.238)

The solution is determined by the values of the potential on the symmetry axis

e(z) ≡ E(� = 0, z) . (7.239)

Ernst’s potential for the Schwarzschild solution is simply given by one parameter

E(� = 0, z) = z − M

z + M
(7.240)

where M denotes the total mass. This can be generalized for the Kerr solution
(see later)

E(� = 0, z) = z − M + ia

z + M + ia
(7.241)

where now the parameter a is the spin parameter of the black hole. Mass enters as
a real parameter into this potential, while spin is imaginary. One can expect that
higher mass multipoles would also appear as real parameters, while spin multipoles
will be imaginary. This is in fact the case.

It is by no means clear that the result of the collapse of a rapidly rotating stel-
lar core will end in the Kerr solution. In fact the gravitational field for a rapidly
rotating neutron star is not the Kerr solution, since the mass-quadrupole moment
Q is an important parameter. In fact comparing with Newtonian gravity, one ex-
pects a doubly infinite series of solutions specified by the infinite number of mass-
multipole moments and angular momentum multipole moments. One could try the
solution for a finite multipole solution of order n in the form of (Sibgatullin and
Sunyaev [371])

E(� = 0, z) = zn − Mzn−1 +∑n
j=1 a j zn− j

zn + Mzn−1 +∑n
j=1 a j zn− j

(7.242)
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If we require that the coefficients with even index, a2k, are real (corresponding to
the Newtonian mass-multipole moments) and that the coefficients with odd index,
a2k−1, are pure imaginary (corresponding to the distribution of angular momentum),
then the solution is symmetric about the equatorial plane. The entire solution on the
meridional plane can then be written as

E(�, z) = ∆−
∆+

, ∆± = det(E±jk) (7.243)

for some suitable expressions Eik. These quantities are then found by the roots of
some polynomials.

As a special case, one can consider a three-parameter solution for n = 2 (the
so-called Manko-3 solution)

E(� = 0, z) = z2 + (ia − M)z + Mb

z2 + (ia + M)z + Mb
, (7.244)

where a ≡ jM and j denotes the specific angular momentum of the source, and b
is now a measure for the quadrupole mass moment of the source. This solution has
been found by Manko et al. in 1994.

7.6.3 Manko’s Solution

After more than 10 years of work in the field, Manko et al. [268] were finally able
to find a vacuum solution involving five parameters (mass, angular momentum,
charge, magnetic dipole moment and a mass quadrupole moment). This solution can
be expressed in terms of rational functions. For our purpose, we neglect charge and
magnetic dipole moment. If we denote by M the gravitational mass of the star, by
a = J/M the specific angular momentum, and introduce a parameter b which can
be related to the mass quadrupole moment, then the choice for the axis values of the
Ernst potential is

E(� = 0, z) = (z − M − ia)(z + ib)+ d − δ− ab

(z + M − ia)(z + ib)+ d − δ− ab
(7.245)

with the constants

δ = −M2b2

M2 − (a − b)2
(7.246)

d = 1

4

(
M2 − (a − b)2

)
. (7.247)

Manko et al. have shown that in order to write the solution in rational form one
has to introduce generalized spheroidal coordinates defined as

x = r+ + r−
2k

, y = r+ − r−
2k

, (7.248)
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where r± = √
�2 + (z ± k)2 and k = √

d + δ. This transformation can be in-
verted

� = k
√

1− y2
√

x2 − 1 , z = k xy , (7.249)

i.e. |x| ≥ 1 and−1 ≤ y ≤ 1. The metric can then be written in the Weyl–Papapetrou
form

ds2 = − f(dt −w dφ)2 +k2

f

[
exp(2γ)(x2 − y2)

(
dx2

x2 − 1
+ dy2

1− y2

)
+(x2 − 1)(1− y2) dφ2

]
, (7.250)

with the following rational ansatz

f = E

D
(7.251)

exp(2γ) = E

16k8(x2 − y2)4
(7.252)

w = −(1− y2)F

E
. (7.253)

The functions E, F and D are polynomials in the coordinates x and y (see Stute and
Camenzind [382])

D =
[
4(k2x2 − δy2)2 + 2kmx[2k2(x2 − 1)+ (2δ+ ab− b2)(1− y2)]

+(a − b)[(a − b)(d − δ)− m2b](y4 − 1)− 4d2
]2

+4y2
[
2k2(x2 − 1)[kx(a − b)− mb] − 2mbδ(1− y2)

+[(a − b)(d − δ)− m2b](2kx + m)(1− y2)
]2

(7.254)

E =
[
4[k2(x2 − 1)+ δ(1− y2)]2

+(a − b)[(a − b)(d − δ)− m2b](1− y2)2
]2

−16k2(x2 − 1)(1− y2)
[
(a − b)[(x2 − y2)+ 2δy2] + m2by2

]2
(7.255)

F = 8k2(x2 − 1)
[
(a − b)[k2(x2 − y2)+ 2δy2] + y2m2b

]
×
[
kmx[(2kx + m)2 − 2y2(2δ+ ab− b2)− a2 + b2]

−2y2(4δd − m2b2)
]

+
[
4[k2(x2 − 1)+ δ(1− y2)]2 + (a − b)[(a − b)(d − δ)−m2b](1− y2)2

]



7.6 Towards Analytical Vacuum Solutions for Rotating Neutron Stars 347

× {
4(2kmbx + 2m2b)[k2(x2 − 1)+ δ(1− y2)]

+(1− y2)
[
(a − b)(m2b2 − 4δd)

− (4kmx + 2m2)[(a − b)(d − δ)−m2b]]} . (7.256)

This metric can also be transformed to the canonical form

ds2 = −α2 dt2 + R2(dφ − ω dt)2 + exp(2µ2) dx2 + exp(2µ3) dy2 (7.257)

with the following coefficients

exp(2µ2) = k2 D

16k8(x2 − y2)4

x2 − y2

x2 − 1
(7.258)

exp(2µ3) = k2 D

16k8(x2 − y2)4
x2 − y2

1− y2
(7.259)

R2 = k2 D

E
(x2 − 1)(1− y2)− (1− y2)2 F2

DE
(7.260)

ω = − fw

R2
(7.261)

α2 = f( f −w) . (7.262)

The quadrupole moment and the current octupole moment are given in terms of
the three parameters M, a and b as (Berti and Stergioulas [70])

Q = −M[d − δ− ab+ a2] (7.263)

and

S3 = −M
[
a3 − 2a2b+ a[b2 + 2(d − δ)] − b(d − δ)

]
. (7.264)

In this approach, a and b are independent parameters. A vanishing angular momen-
tum, a = 0, does not necessarily imply a vanishing Q and S3, as we expect on
physical grounds. Indeed, a nonrotating star can have a nonvanishing quadrupole
moment

Q(a = 0) = −M

4

M2 + b2

M2 − b2
(7.265)

and a corresponding current octupole moment

S3(a = 0) = −bQ(a = 0) . (7.266)

There is no real value for b for which the quadrupole moment vanishes for a nonrotat-
ing star. This means that the solution of Manko does not reduce to the Schwarzschild
solution as the rotation vanishes. Therefore, the Manko solution is not suitable for
the description in the slow rotation approximation.
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Berti and Stergioulas [70] have however shown that the Manko solution is quite
suitable to cover rapidly rotating stars, when the rotation rate is large enough, so that
the induced quadrupole deformation roughly exceeds the minimum nonvanishing
oblate quadrupole deformation of the solution in the absence of rotation. Since the
quadrupole moment is roughly proportional to a2 M, one expects that this analytic
solution could be relevant for rotation rates satisfying j > 0.5, where j = J/M2 is
the dimensionless measure for the angular momentum of the star (this corresponds
to the Kerr parameter a in the case of rotating black holes).

It is interesting that the Kerr solution is covered by Manko’s solution for the
case of imaginary form of the parameter b, b = i

√
M2 − a2 (Stute and Camen-

zind [382]). In this case, one recovers the correct expressions for the quadrupole
moment, Q = −a2 M and the current octupole moment S3 = −a3 M.

Matching with Interior Solutions

The three parameters M, a and b are arbitrary in the analytic solution. When matched
to some interior solution, only a certain combination of the parameters a and b are
expected to correspond to a specific model for a neutron star. It is quite reasonable
to match the analytic exterior solution by matching the gravitational mass M, the
specific angular momentum a and the mass quadrupole moment Q. One can then
hope to find a current octupole moment S3 that is close to the corresponding value
in the numerical model.

For this purpose, one has first to construct a highly accurate numerical model.
The remaining parameter b is then determined from the numerical value of the
quadrupole moment Q, given by equation (7.263) with Q = Qnum, where Qnum is
the quadrupole moment of the numerical solution. The equation

−M
[
d(M, a, b)− δ(M, a, b)− ab+ a2]− Qnum = 0 (7.267)

has in general two possible real solutions for b, or no real solution. Thus for each
set of parameters (M, a, Qnum), there exist two different branches of solutions with
parameters (M, a, b−) and (M, a, b+), respectively (Fig.7.7).

These two solutions correspond to two completely different spacetimes. Manko
solutions are only found for a certain minimum specific angular momentum. For too
high angular momentum, the κ parameter, κ = √d + δ becomes imaginary, and no
Manko solution can be constructed [63]. Depending on the EoS, the Manko solution
is indeed a useful approximation for neutron stars in LMXBs with rotational periods
of a few milliseconds (Fig. 7.8).

Comparison with Slow Rotation

In [71], Berti et al. compare the HT slow-rotation expansion and the exact vacuum
solution by Manko et al. with the full general relativistic numerical CST spacetime.
They assume that the numerical models, obtained using the RNS code, are exact
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Fig. 7.7. Solutions of the equation (7.267) for a given quadrupole moment of the numeri-
cal solution. This case is for FPS and a rest mass of 2.4 M� at the rotation frequency of
1724 Hz [63]

Fig. 7.8. Rotational frequency for the Manko solutions matched to internal SLy4 neutron
stars [63]. Manko solutions only exist for the crosses, and not for all rapidly rotating objects.
The solid line denotes the Kepler limit for SLy4 neutron stars
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(within their numerical accuracy, that is of the order of 10−4 in each computed quan-
tity). They first integrate the HT structure equations for five representative equations
of state, keeping terms up to second order in the slow-rotation parameter epsilon.
Then they matched these models to the CST solutions, imposing the condition that
the gravitational mass and angular momentum of the models be the same. Limits of
validity of the slow-rotation expansion can be estimated by computing deviations
in the quadrupole moments and in the ISCO radii at different rotation rates. They
found that deviations in the quadrupole moment are � 20 percent for pulsars spin-
ning with a period of 1.5 ms (the spin period of one of the fastest known pulsar,
PSR J1939+2134). However, for these same spin rates deviations in the ISCO radii
are always smaller than one percent. Since the HT approximation gives excellent
predictions for ISCOs up to the fastest pulsar spin periods, it can safely be used,
whenever a full numerical solution would be too cumbersome to be implemented.

7.7 On Oscillation and Formation of Rotating Neutron Stars

Finally, we mention some recent topics in the research on rapidly rotating neutron
stars. Research projects center around questions such as the formation of rapidly
rotating neutron stars in core collapse processes and the corresponding radiation
of gravitational waves, oscillations of neutron stars and their stability in the time-
dependent approach.

The study of oscillations of relativistic stars is motivated by the prospect of
detecting such oscillations in electromagnetic or gravitational wave signals. In the
same way that helioseismology is providing us with information about the interior of
the Sun, the observational identification of oscillation frequencies of relativistic stars
could constrain the high-density equation of state. The oscillations could be excited
after a core collapse or during the final stages of a neutron star binary merger. Rapidly
rotating relativistic stars can become unstable to the emission of gravitational waves.

In the Newtonian limit, the Lagrangian approach has been used to develop varia-
tional principles, but the Eulerian approach proved to be more suitable for numerical
computations of mode frequencies and eigenfunctions [213]. A general linear pertur-
bation of the energy density in a static and spherically symmetric relativistic star can
be written as a sum of quasinormal modes that are characterized by the indices (l,m)
of the spherical harmonic functions Yl

m(θ, φ). The Eulerian perturbation in the fluid
δuµ can be expressed in terms of vector harmonics, while the metric perturbation
can be expressed in terms of spherical, vector, and tensor harmonics (see, e.g. [2]).

Oscillations of Neutron Stars

Neutron stars are laboratories for physics under extreme conditions, and may be
detectable sources of gravitational waves. Many interests center around and branch
out from the r-modes, fluid oscillations which feed on gravitational waves while
emitting them. The signals may carry information on gravitational and nuclear
physics that cannot be worked out in other ways.
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Bar Mode Instability

The long-term stable evolution of rotating relativistic stars in 3D simulations has be-
come possible through the use of High-Resolution Shock-Capturing (HRSC) meth-
ods, see Sect. 3.1. Shibata, Baumgarte, and Shapiro [366] study the dynamical
bar-mode instability in differentially rotating neutron stars, in fully relativistic 3D
simulations. They find that stars become unstable when rotating faster than a critical
value of T/W � 0.24. This is only somewhat smaller than the Newtonian value
T/W � 0.27.

Rapidly Rotating Core Collapse

At the end of their thermonuclear evolution massive stars have a compact central core
which is mainly composed of iron and nickel. This core collapses when its mass
exceeds a critical value. The collapse is brought to a halt when nuclear densities
are reached. About one percent of the gravitational binding energy released during
collapse will be transmitted to the stellar envelope either directly by a shock wave
or indirectly by neutrinos. This causes a supernova explosion leading to the ejection
of the stellar envelope and the formation of a neutron star. If no explosion occurs at
all or if the explosion is too weak the stellar envelope will fall back onto the neutron
star. When its mass exceeds a critical value, the neutron star will collapse to a black
hole. An alternative mechanism for the collapse to a black hole is provided by phase
transitions in the supranuclear equation of state of the neutron star.

Regardless of the fact that stars and especially massive stars at a late stage
of their evolution are rotating, all investigations of the collapse and the explosion
have assumed spherical symmetry. However, even in the case of an initially slowly
rotating core, the effects of rotation can become significant. There is no efficient
transport mechanism for angular momentum during the collapse. Thus, the ratio of
the centrifugal force to the gravitational force grows proportional to 1/r. During the
collapse, the density increases by a factor of 105, whereas the radius decreases by
a factor of� 50 and the influence of rotation increases by the same factor. In addition,
the nonspherical collapse to a neutron star or a black hole is an interesting source
of gravitational waves. Its detection would allow one to draw important conclusions
about the dynamics of a supernova. The only other way of gaining insight into the
dynamics is offered by neutrinos.

In previous investigations of the collapse of rotating cores relativistic effects
have not been taken into account. However, during the collapse to a neutron star
relativistic corrections of the gravitational potential can reach about 30 percent.
The formation of a (rotating) black hole can only be described within a relativistic
theory. In the case of rotating cores even moderate relativistic effects can be of
importance. If the angular momentum of a rotating core is sufficiently large, cen-
trifugal forces can stabilize the star below nuclear densities. This is true for the
Newtonian theory as well as in the relativistic case. Due to the deeper potential in
the relativistic case it is possible that the collapse is stabilized in the Newtonian
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case at a density below nuclear density whereas using the correct relativistic de-
scription the same core collapses to considerably higher densities. Thus, relativistic
effects can modify the collapse dynamics and thus the gravitational wave signal
qualitatively.

Core collapse supernovae are a promising source of detectable gravitational
waves. Most of the existing (multidimensional) numerical simulations of core col-
lapse in general relativity have been done using approximations of the Einstein field
equations. One of the most interesting such approximation is the so-called confor-
mal flatness condition (CFC) of Isenberg, Wilson and Mathews. Building on this
previous work, Cerda-Duran et al. [110] present new results from numerical simu-
lations of relativistic rotational core collapse in axisymmetry, aiming at improving
the dynamics and the gravitational waveforms. The computer code used for these
simulations evolves the coupled system of metric and fluid equations using the 3+1
formalism, specialized to a new framework for the gravitational field equations which
they call CFC+. In this approach, new degrees of freedom are added to the original
CFC equations, which extend them by terms of second post-Newtonian order. The
corrections for CFC+ are computed solving a system of elliptic linear equations.
The new formalism is assessed with time evolutions of both rotating neutron stars
in equilibrium and gravitational core collapse of rotating polytropes. Gravitational
wave signals for a comprehensive sample of collapse models are extracted using
either the quadrupole formula or directly from the metric. They discuss the results
on the dynamics and the gravitational wave emission through a detailed comparison
between CFC and CFC+ simulations. The main conclusion is that, for the neutron
star spacetimes analyzed in the present work, no significant differences are found
among CFC, CFC+, and full general relativity, which highlights the suitability of
the former.

Baiotti et al. [46] discuss the application of the Whisky code to the study of
the gravitational collapse of rapidly rotating stars to Kerr black holes. The initial
stellar models are modelled as relativistic polytropes which are either secularly or
dynamically unstable and with uniform angular velocities which range from very
slow rotation to the mass-shedding limit. They investigate the gravitational col-
lapse by carefully studying not only the dynamics of the matter, but also that of
the trapped surfaces, i.e. of both the apparent and event horizon formed during the
collapse. The use of these surfaces, together with the isolated horizon framework,
allows for a precise measurement of the black hole mass and spin. The ability to
successfully perform these simulations for sufficiently long times relies on the pos-
sibility of excising the region of the computational domain where the singularity is
formed. These authors have also found that the dynamics of the collapsing matter
is strongly influenced by the initial distribution of angular momentum in the pro-
genitor star. In particular, for initial stellar models with sufficiently high angular
velocities, the collapse can lead to the formation of an unstable disk in differential
rotation.
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Problems

7.1. Show the equivalence of the following expressions needed for the third stellar
structure equation

1

α
Div [α∇ψ] = 1

R
∇A[RΨA] + Ψ3∇3µ2 + Ψ2∇2µ3 + 1

α
(∇AΨ)(∇Aα) . (7.268)

Div is the divergence operator in three-space.

7.2. Tidal Forces and Curvature: Calculate all the components of Riemann tensor
in orthonormal basis for the line element (7.8).

7.3. TOV Limit: Derive the TOV equations as the slow-rotation limit from the
structure equations of rotating neutron stars.

7.4. Mechanical Equilibrium: Adapt the general relativistic hydrodynamical equa-
tions (3.32) to the metric of rotating neutron stars.
Derive the mechanical equilibrium of rotating neutron stars by starting from the 3+1
split of the hydrodynamical equations.

7.5. Angular Momentum and Quadrupole Moment: Give an estimate for the
dimensionless angular momentum parameter j = J/M2 for rapidly rotating neutron
stars. Give also an estimate for the dimensionless quadrupole parameter q = Q/M3

for neutron stars.

7.6. BGSM Equations: Show the equivalence of the structure equations derived in
Sect. 7.2.3 with the equations derived by BGSM [83] for the metric

ds2 = −N2 dt2 + B2r2 sin2 θ(dφ − ω dt)2 + A2 (dr2 + r2 dθ2) . (7.269)

The Einstein equations result then in a set of four elliptic equations for the metric
potentials

∆3ν = 4πG A2 (E + 3P + (E + P)U2)
+ B2r2 sin2 θ

N2
(∇ω)2 − (∇ν) · ∇(ν + β) (7.270)

∆̄3(ωr sin θ) = −16πG
NA2

B
(E + P)U

−r sin θ ∇ω · ∇(3β − ν) (7.271)

∆2[(NB − 1)r sin θ] = 16πG NA2 B Pr sin θ (7.272)

∆2(ν + a) = 8πG A2 [P + (E + P)U2]
+3B2r2 sin2 θ

4N2
(∇ω)2 − (∇ν)2 . (7.273)

Here, we introduced the following abbreviations, ν = ln N , a = ln A and β = ln B,
and ∇ is the flat space operator. In addition, BGSM use the following differential
operators
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∆3 = ∂2
3 +

2

r
∂r + 1

r2
∂2
θ +

1

r2 tan θ
∂θ (7.274)

∆̄3 = ∆3 − 1

r2 sin2 θ
(7.275)

∆2 = ∂2
3 +

1

r
∂r + 1

r2
∂2
θ (7.276)

∇ f · ∇g = (∂r f)(∂r g)+ 1

r
(∂θ f)(∂θg) . (7.277)

7.7. The HT Metric: Find expressions for the redshift factor α, the frame-dragging
potential ω and the cylindrical radius in the HT metric.
When a static equilibrium is perturbed by rotation, the geometry of spacetime is
changed. For a suitable choice of coordinates, the perturbed geometry can be ex-
pressed as follows [195]

ds2 = − exp(ν)[1+ 2(h0 + h2 P2)] dt2

+1+ 2(m0 + m2 P2)/(r − 2M(r))

1− 2M(r)/r
dr2

+r2[1+ 2(v2 − h2)P2)][dθ2 + sin2 θ (dφ − ω dt)2] , (7.278)

where P2 is the Legendre polynomial of order 2. All functions are only functions of
r. The surface of constant density in the rotating configuration is then given by

r → r + ξ0(r)+ ξ2(r)P2(cos θ) (7.279)

with

ξ0 = −P∗0 (ε + P)/(dP/dr) (7.280)

ξ2 = −P∗2 (ε + P)/(dP/dr) (7.281)

P∗2 = −h2 − r2(ω−Ω)2
3 exp ν

. (7.282)

ν, M(r) and P(r) satisfy the unperturbed TOV equations. Derive differential equa-
tions for the perturbed quantities h2(r), v2(r), ξ(r), etc. For the solutions, see
Semiyoshi et al. [383].
Show that the HT metric solves the structure equations for rotating neutron stars.

7.8. Manko’s Solution: By construction, Manko’s solutions have two Killing fields,
k = ∂t and m = ∂φ, or

kµ = (− f, f ~ω, 0, 0) (7.283)

mµ = ( f ~ω, �2/ f − f ~ω2, 0, 0) . (7.284)

Particles move on geodesics with conserved energy E and conserved angular mo-
mentum L

dxµ

ds
kµ = −E ,

dxµ

ds
mµ = L . (7.285)

Discuss the solutions in the equatorial plane.
Calculate the redshift for photons emitted from the surface of a rotating star.
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In this chapter we discuss the Schwarzschild solution as a global vacuum solution of
Einstein’s equations. We also derive the most important properties of orbital motion.
This is done by using the method of effective potentials. We also show the osculating
behavior of orbits near the Schwarzschild surface. Finally, the Schwarzschild solution
can be extended to regions inside the Schwarzschild surface which forms an event
horizon. These global vacuum solutions of Einstein’s equations are called black
holes. The nature of this interior vacuum of a black hole is under great debate, since
a physical vacuum has some structure, which is still unknown, and is not really
empty.

Whereas the solutions for rotating neutron stars can only be discussed within
the framework of a numerical approach, black holes represent pure gravitational
fields with a globally vanishing energy–momentum tensor, Tαβ = 0. In contrast
to the exterior vacuum solutions for neutron stars, black holes are specified by the
existence of an event horizon. This is the key feature which allows us to derive an
analytic expression for the metric elements of an axisymmetric spacetime.

Einstein’s general theory of relativity predicts the existence of black holes
as astrophysical objects so dense that even light cannot escape from them. The
boundary around the black hole, where the light cannot escape, is called the
event horizon. In 1974, Stephen Hawking of Cambridge University theorized
that a black hole is not entirely black, but could actually emit black-body, or
thermal, radiation. Hawking predicted that this radiation has a well-defined tem-
perature proportional to the gravitational force at its event horizon. In this chap-
ter we discuss the global aspects of rotating black holes; their astrophysical rel-
evance and the magnetospheres of black holes will be discussed in the next
chapter.

8.1 The Schwarzschild Black Hole

The Schwarzschild metric is a vacuum solution of Einstein’s field equations, it is
valid only in the empty space outside the object. This metric can however be extended
down to radii reaching the Schwarzschild surface, i.e. for r ≥ RS, and even towards
the interior of the horizon. The mathematical form of the metric is, however, different
in the object’s interior. Note that the event horizon is a mathematical surface and
need not coincide with any physical surface. Although the interior of a black hole,
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inside the event horizon, is a region that is forever hidden from us on the outside, its
properties may still be calculated.

The Schwarzschild solution

ds2 = −
(

1− 2G M

c2r

)
c2 dt2 +

(
1− 2G M

c2r

)−1

dr2 + r2 dΩ2 (8.1)

can be considered as a global solution of the vacuum equations, Tµν = 0, i.e. Rµν = 0
everywhere, even at r = 0. In this case, the Schwarzschild solution is called a black
hole, since nothing can escape from the horizon at r = RS. One can think of the
horizon as the place where the escape velocity equals the velocity of light. Outside
of the horizon, the escape velocity is less than the speed of light, so if you fire your
rockets hard enough, you can give yourself enough energy to get away. But if you
find yourself inside the horizon, then no matter how powerful your rockets are, you
cannot escape. Incidentally, the name “black hole” was invented by John Archibald
Wheeler, and seems to have stuck because it was much catchier than previous names.
Before Wheeler came along, these objects were often referred to as “frozen stars.”

A black hole is a region of an asymptotically flat spacetime from which
nothing can escape, not even light.

The light cones distort as r → 2G M/c2, so that no future-directed time-like or
null worldline can reach r > 2G M/c2 from r ≤ 2G M/c2. No signal from a star’s
surface can escape to infinity, once the surface has passed through r = 2G M/c2.
The star has collapsed to a black hole. For an external observer, the surface never
actually reaches r = 2G M/c2, but as r → 2G M/c2 the redshift of light leaving the
surface increases exponentially fast and the star disappears from view within a time
G M/c3. The late time appearance is then dominated by photons escaping from the
unstable photon orbit r = 3G M/c2. If an observer stayed outside a black hole,
while an intrepid observational general relativist dove into the black hole, sending
back signals all the time, he would simply see the signals reach him more and more
slowly. This is a consequence of our discussion of the gravitational redshift. As
infalling astronauts approach r = 2G M/c2, any fixed interval ∆τ1 of their proper
time corresponds to a longer and longer interval from the outside point of view. This
continues forever; we would never see astronauts cross r = 2G M/c2, we would just
see them move more and more slowly.

8.1.1 Tortoise Coordinates and Null Cones

The problem with our current coordinates is that dt/dr → ∞ along radial null
geodesics which approach r = 2G M/c2; progress in the r-direction becomes slower
and slower with respect to the coordinate time t. We can try to fix this problem by
replacing t with a coordinate which “moves more slowly” along null geodesics. We
may explicitly solve the condition characterizing radial null curves

dt = ± 1√
1− 2G M/r

dr = ±dr∗ (8.2)



8.1 The Schwarzschild Black Hole 357

to obtain

t = ±r∗ + const , (8.3)

where the tortoise or Regge–Wheeler coordinate r∗ is defined by

r∗ = r + 2G M

c2
ln

(
c2r

2G M
− 1

)
. (8.4)

As r ranges from 2M to infinity, r∗ ranges from−∞ to+∞. In terms of the tortoise
coordinate, the Schwarzschild metric is written in ingoing Eddington–Finkelstein
coordinates1

ds2 =
(

1− 2G M

r

) (−dt2 + dr∗2)+ r2 dΩ2

= −
(

1− 2G M

r

)
dv2 + 2 dr dv+ r2 dΩ2 . (8.5)

This represents some progress, since the light cones now behave regularly at r = 2M
(Fig. 8.1); furthermore, none of the metric coefficients becomes infinite at r = 2G M
(although both gtt and gr∗r∗ become zero). The price we pay, however, is that the
surface of interest at r = 2M has just been pushed to infinity.

Fig. 8.1. Finkelstein diagram of a collapsing star, which is a plot of t∗ = v− r against r. The
null cones, which are Minkowski-like at infinity, are tilted near the central object, so that no
future-directed time-like or null worldline can reach r > 2G M/c2 from r ≤ 2G M/c2

1 Just compute dr∗ and plug in to show that Schwarzschild follows.
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This metric is initially defined only for r > 2M, since the relation v = t + r∗(r)
between v and r is only defined for r > 2M. It can however be extended analytically
to all values r > 0 by means of the relation

r∗ = r + 2M ln
∣∣∣ r

2M
− 1

∣∣∣ . (8.6)

Since the cross-term dr dv is nonsingular at r = 2M, this singularity in the
Schwarzschild metric was really only a coordinate singularity.

8.1.2 Roads towards Black Hole Formation

The formation of stellar black holes is linked up with the evolution of massive stars.
At the peak of their lifetime, a star loses its fuel. It stops from burning hydrogen into
helium, because it consumed all its helium. During the end of its life it started to
fuse helium into other heavier elements (the heaviest one being Fe) which reached
the inner part of the star. That is how basically all heavy elements in our Universe
formed. But then, at the very end of its life, as waves of energy eject from the star’s
core which is starting to collapse, nucleosynthesis takes place, that is the star fuses its
atmosphere of helium with the iron core. So, all these heavy elements and millions
of neutrinos are ejected in waves as the star breaks apart. This explosion of a star
is called supernova. Of course, it depends on the mass of the star, whether there is
a remnant left out of the huge explosion or not. Now the star can have two roads to
follow depending on the mass of their remnants. If the remnant of the star is less
than 1.44 M� (the Chandrashekhar limit), the star will become a white dwarf, that
is a dead star which still has some kind of internal energy so it will still have some
luminosity, but the star is fading with time.

If the remnant is roughly 1.4 M�, the core will collapse. The atom’s protons and
electrons will merge together and their particles will recombine to form neutrons.
The result will be a new star made entirely of neutrons with a thin crust made of
heavy nuclei. This is a neutron star. The structure of these stars was discussed in
Chap. 6.

The other road a star can take is if its core is greater than about two solar masses.
Then, we can finally talk about black holes. The pressure of the collapse and the
gravity force of the entire mass squashing the core condenses all the matter together.
In this case, the neutrons are not only tightly packed together, but literally forced
together. If before the neutrons could stand being put together, now the pressure is
too high for them resisting these forces. The result is a further collapse. If the star
can collapse itself smaller than a certain radius, then it becomes a black hole with
a radius given by the Schwarzschild radius.

Supermassive black holes (with masses of millions to billions of times the mass
of the Sun) are found in the centers of most, if not all, massive galaxies, and the
black hole masses scale with the galaxy masses, so that larger black holes reside
in larger galaxies. Black holes probably evolve as material, such as gas, dust, stars
and even other black holes, gets sucked in by the strong gravitational pull. The
black hole seeds originally may have formed from the explosions of the first stars
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or from the collapse of clumps of gas in the early Universe. Each of these different
formation scenarios leads to very different numbers of intermediate-mass black holes
left over in the Universe today. Gravitational wave experiments, especially the Laser
Interferometric Space Antenna (LISA) expect to be very sensitive to the merging of
100,000-solar-mass black holes.

8.1.3 The Kruskal Extension

The fact that we never see the infalling astronauts reach r = 2G M/c2 is a meaningful
statement, but the fact that their trajectory in the t − r plane never reaches there is
not. It is highly dependent on our coordinate system, and we would like to ask
a more coordinate-independent question (such as, do the astronauts reach this radius
in a finite amount of their proper time?). The best way to do this is to change
coordinates to a system which is better behaved at r = 2G M/c2. There does exist
a set of such coordinates.

Eddington–Finkelstein Coordinates

We can now try new coordinates u and v by means of (these are the Eddington–
Finkelstein coordinates)2

u = t − r∗ , v = t + r∗ , (8.7)

or

v− u = 2r∗ , u + v = 2t . (8.8)

Then

dt2 = 1

4

[
dv2 + du2 + 2du dv

]
(8.9)

and

dr2 =
(

1− 2G M

r

)2

dr∗2 = 1

4

(
1− 2G M

r

)2 [
dv2 + du2 − 2du dv

]
. (8.10)

This implies

ds2 = −
(

1− 2G M

r

)
du dv+ r2dΩ2 . (8.11)

We can now extend the definition of the (u, v)-coordinates to the interior region
by replacing the expression for r∗ in equation (8.4) by means of

r∗ = r + 2M ln
∣∣∣ r

2M
− 1

∣∣∣ . (8.12)

2 In the following, we often use units with G = 1 = c.
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We use absolute bars around the argument of the logarithm, so that r∗ is now defined
inside and outside the horizon at r = 2M. By plotting lines of u and v = constant
both inside and outside the horizon, one can see that each point with r �= 0 and
r �= 2M can be uniquely identified by the intersection of null geodesics. Hence,
(u, v) is a viable coordinate system except for r = 0 and r = 2M. The coordinate r
is implicitly defined as a function of u and v

v− u

4M
= r∗(r)

2M
= r

2M
+ ln

∣∣∣ r

2M
− 1

∣∣∣ . (8.13)

This implies the metric expression

ds2 = ∓2M exp(−r/2M)

r
exp((v− u)/4M) du dv . (8.14)

Kruskal Coordinates and Maximal Extension

This representation of the metric is not an improvement over the Schwarzschild
formulation, since the system is discontinuous across the horizon. However, the
metric coefficients themselves approach finite values there. The discontinuity is
therefore finite and in some sense less series than a coordinate singularity. In fact,
it is trivial to get rid of the discontinuity by means of the transformation to new
coordinates U and V defined as follows (Kruskal–Szekeres (KS) coordinates)

U = exp(u/4M) = exp((r + t)/4M)

√
r

2M
− 1 (8.15)

V = − exp(−v/4M) = − exp[(r − t)/4M]
√

r

2M
− 1 . (8.16)

Then

dU dV = 1

(4M)2
exp((u − v)/4M) du dv

= 1

(4M)2
exp(r/2M)

( r

2M
− 1

)
du dv , (8.17)

in terms of which the metric becomes

ds2 = −32M3

r
exp(−r/2M) dU dV + r2 dΩ2 , (8.18)

where r(U, V) is given implicitly by UV = − exp(r∗/2M) or

UV = −
( r

2M
− 1

)
exp(r/2M) . (8.19)

In terms of these coordinates, the metric is now totally regular at r = 2M. The
curves of constant U and V are null geodesics. The singularity at r = 0 corresponds
to UV = 1.
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The Kruskal coordinates (T, R) are then linear combinations defined as

T = 1

2
(U + V) =

√
r

2M
− 1 exp(r/4M) sinh(t/4M) (8.20)

R = 1

2
(V −U) =

√
r

2M
− 1 exp(r/4M) cosh(t/4M) (8.21)

with the metric given as

ds2 = −32M3

r
exp(−r/2M)

(
dT 2 − dR2)+ r2 dΩ2 . (8.22)

r is defined implicitly from

R2 − T 2 =
( r

2M
− 1

)
exp(r/2M) . (8.23)

The coordinates (T, R, θ, φ) are known as Kruskal coordinates, or sometimes
Kruskal–Szekeres coordinates. Note that T is the time-like coordinate. The two-
space (T, R) is conformally flat, i.e. the light cones are as in Minkowski space
(Fig. 8.2). The coordinate transformation from (t, r) to (T, R) is implicit, so we
cannot find r = r(T, R), for example. One has, however, the following relations

UV = T 2 − R2 = − exp(r/2M)
( r

2M
− 1

)
(8.24)

U

V
= T − R

T + R
= −sgn( f) exp(−sgn(V)t/2M) , (8.25)

Fig. 8.2. Kruskal diagram: each point on the diagram is a two-sphere. Surfaces of constant t
(straight lines) and r (hyperbola) are drawn according to the original coordinate transforma-
tion. Schwarzschild coordinates only cover regions I and II of the extended manifold
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where f = 1 − 2M/r is the Schwarzschild factor. The singularity at r = 0 is
described by UV = 1 hyperbola.

Our original coordinates (t, r) were only well defined for r > 2M, which is only
a part of the manifold portrayed on the Kruskal diagram (Fig. 8.2). It is convenient
to divide the diagram into four regions.

The original region is region I; by following future-directed null rays we reach
region II, and by following past-directed null rays we reach region III. If we had
explored space-like geodesics, we would have been led to region IV. The definitions
which relate (R, T) to (t, r) are really only mathematically correct in region I; in
the other regions it is necessary to introduce appropriate minus signs to prevent the
coordinates from becoming imaginary.

The Kruskal coordinates have a number of miraculous properties. Like the (t, r∗)
coordinates, the radial null curves look like they do in flat space

T = ±R + const . (8.26)

Unlike the (t, r∗) coordinates, however, the event horizon r = 2G M is not infinitely
far away; in fact it is defined by

T = ±R . (8.27)

More generally, we can consider the surfaces r = const. These satisfy

R2 − T 2 = const . (8.28)

Thus, they appear as hyperbolae in the T -R plane. Furthermore, the surfaces of
constant t are given by

R

T
= tanh(t/4G M) . (8.29)

The coordinates (T, R) should be allowed to range over every value they can
take without hitting the real singularity at r = 0; the allowed region is therefore
−∞ < R <∞ and T 2 < R2+1. We can now draw a spacetime diagram in the T -R
plane (with θ and φ suppressed), known as a Kruskal diagram (Fig. 8.2), which
represents the entire spacetime corresponding to the Schwarzschild metric.

The Kruskal extension is a remarkable new spacetime. Region II is what we
think of as the black hole interior. Once anything travels from region I into II, it
can never return. In fact, every future-directed path in region II ends up hitting the
singularity at r = 0. Not only can you not escape back to region I, you cannot even
stop yourself from moving in the direction of decreasing r, since this is simply the
time-like direction. As a spaceship falls towards the singularity, its front and back
will be pulled apart from each other, while its body is squeezed to infinitesimal
thinness.

Regions III and IV might be somewhat unexpected. Region III is simply the time-
reverse of region II, a part of spacetime from which things can escape to us, while
we can never get there. It can be thought of as a “white hole.” There is a singularity
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in the past, out of which the Universe appears to spring. The boundary of region III
is sometimes called the past event horizon, while the boundary of region II is called
the future event horizon. Region IV, meanwhile, cannot be reached from our region
I either forward or backward in time (nor can anybody from over there reach us). It
is another asymptotically flat region of spacetime, a mirror image of ours. It can be
thought of as being connected to region I by a “wormhole,” a neck-like configuration
joining two distinct regions.

8.1.4 Penrose Diagram – the Conformal Structure of Infinity

We have seen that the Kruskal coordinate system provides a very useful representa-
tion of the Schwarzschild geometry. Before moving on to other types of black holes,
we will introduce one more way of thinking about this spacetime, the Penrose (or
Carter–Penrose, or conformal) diagram. The idea is to do a conformal transforma-
tion which brings the entire manifold onto a compact region such that we can fit the
spacetime on a piece of paper.

Minkowski Space

Let us begin with Minkowski space in polar coordinates, to see how the tech-
nique works. Technically the worldline r = 0 represents a coordinate singularity
and should be covered by a different patch, but we all know what is going on so
we will just assume that r = 0 is well-behaved. Then we switch to null coordi-
nates

u = (t + r)/2 , v = (t − r)/2 , (8.30)

with the ranges∞ < u, v <∞ and v ≤ u. The metric in these coordinates is given
by

ds2 = −2(du dv+ dv du)+ (u − v)2 dΩ2 . (8.31)

We now want to change to coordinates in which “infinity” takes on a finite coordinate
value. A good choice is

U ≡ arctan(u) V ≡ arctan(v) , (8.32)

with the ranges −π/2 ≤ U, V ≤ π/2 and V ≤ U . By using

dU = du

1+ u2
(8.33)

and

cos(arctan(u)) = 1√
1+ u2

(8.34)
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we are lead to

du dv+ dv du = 1

cos2(U) cos2(V)
(dU dV + dV dU) (8.35)

and

(u − v)2 = (tan U − tanV)2

= 1

cos2(U) cos2(V)
(sin U cos V − cos V sin U)2

= 1

cos2(U) cos2(V)
sin2(U − V) . (8.36)

Therefore, the Minkowski metric in these coordinates is

ds2
M = −

1

cos2(U) cos2(V)

[
2(dU dV + dV dU)− sin2(U − V)2 dΩ2] . (8.37)

This has a certain appeal, since the metric appears as a fairly simple expression
multiplied by an overall factor. We can make it even better by transforming back to
a time-like coordinate η and a space-like (radial) coordinate χ, via

η ≡ U + V , χ ≡ U − V (8.38)

with ranges −π < η < +π and 0 ≤ χ < π. In these coordinates, the metric is

ds2
M = w−2 (−dη2 + dχ2 + sin2 χ dΩ2) , (8.39)

where w = cos U cos V = (cos η+ cosχ)/2. The Minkowski metric may therefore
be thought of as related by a conformal transformation to the unphysical metric

ds2 = w2 ds2
M = −dη2 + dχ2 + sin2 χ dΩ2 . (8.40)

This describes the manifold R × S3, where the three-sphere is maximally sym-
metric and static. There is curvature in this metric, and it is not a solution to the
vacuum Einstein’s equations. This should not bother us, since it is unphysical; the
true physical metric, obtained by a conformal transformation, is simply flat space-
time. In fact this metric is that of the Einstein static Universe, a static (but unstable)
solution to Einstein’s equations with a perfect fluid and a cosmological constant. Of
course, the full range of coordinates on R × S3 would usually be −∞ < η < +∞,
0 ≤ χ ≤ π, while Minkowski space is mapped into the subspace. The entire R× S3

can be drawn as a cylinder, in which each circle is a three-sphere, as shown in
Fig. 8.3.

The shaded region represents Minkowski space. Note that each point (η, χ) on
this cylinder is half of a two-sphere, where the other half is the point (η,−χ). We
can unroll the shaded region to portray Minkowski space as a triangle, as shown in
Fig. 8.4.
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Fig. 8.3. The Einstein static Universe repre-
sented by a cylinder. Each point represents
one half of a two-sphere. The shaded re-
gion is conformal to Minkowski spacetime.
Its boundary may be regarded as conformal
infinity of Minkowski spacetime

Fig. 8.4. Penrose diagram
for Minkowski space
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This is the Penrose diagram for the Minkowski space. Each point represents
a two-sphere. In fact Minkowski space is only the interior of the above diagram
(including χ = 0); the boundaries are not part of the original spacetime. Together
they are referred to as conformal infinity. The structure of the Penrose diagram
allows us to subdivide conformal infinity into a few different regions:

– i+: future time-like infinity (η = π, χ = 0);
– i0: spatial infinity (η = 0, χ = π);
– i−: past time-like infinity (η = −π, χ = 0);
– I+: future null infinity (η = π − χ, 0 < χ < π);
– I−: past null infinity (η = −π + χ, 0 < χ < π).

There are a number of important features of the Penrose diagram for Minkowski
spacetime. The points i+, and i− can be thought of as the limits of space-like surfaces
whose normals are time-like; conversely, i0 can be thought of as the limit of time-like
surfaces whose normals are space-like. Radial null geodesics are at ±45 degrees in
the diagram. All time-like geodesics begin at i− and end at i+; all null geodesics
begin at I− and end at I+; all space-like geodesics both begin and end at i0. On
the other hand, there can be nongeodesic time-like curves that end at null infinity (if
they become asymptotically null).

It is nice to be able to fit all of Minkowski space on a small piece of paper, but we
do not really learn much that we did not already know. Penrose diagrams are more
useful when we want to represent slightly more interesting spacetimes, such as those
for black holes. The original use of Penrose diagrams was to compare spacetimes
to Minkowski space “at infinity” – the rigorous definition of asymptotically flat is
basically that a spacetime has a conformal infinity just like Minkowski space. We
will not pursue these issues in detail, but instead turn directly to analysis of the
Penrose diagram for a Schwarzschild black hole.

Penrose Diagram for Kruskal

We will not go through the necessary manipulations in detail, since they parallel the
Minkowski case with considerable additional algebraic complexity. The (u′′, v′′) part
of the metric (that is, at constant angular coordinates) is now conformally related to
Minkowski space. In the new coordinates the singularities at r = 0 are straight lines
that stretch from time-like infinity in one asymptotic region to time-like infinity in
the other. The Penrose diagram for the maximally extended Schwarzschild solution
thus looks like Fig. 8.5.

The only real subtlety about this diagram is the necessity to understand that i+
and i− are distinct from r = 0 (there are plenty of time-like paths that do not hit
the singularity). Notice also that the structure of conformal infinity is just like that
of Minkowski space, consistent with the claim that Schwarzschild is asymptotically
flat. Also, the Penrose diagram for a collapsing star that forms a black hole is what
you might expect.

Once again the Penrose diagrams for these spacetimes don’t really tell us anything
we didn’t already know; their usefulness will become evident when we consider more
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Fig. 8.5. Penrose diagram for the maximally extended Schwarzschild spacetime. Two lines
drawn at 45 deg angles should intersect in the diagram only if the corresponding two light
rays intersect in the actual spacetime. A Penrose diagram can be used as a concise illustration
of spacetime regions that are accessible to observation. The horizontal boundary lines of
a Penrose diagram correspond to the “infinity” or to singularities where light rays must end.
Thus, Penrose diagrams are also useful in the study of asymptotic properties of spacetimes
and singularities

general black holes. In principle there could be a wide variety of types of black holes,
depending on the process by which they were formed. Surprisingly, however, this
turns out not to be the case; no matter how a black hole is formed, it settles down
(fairly quickly) into a state which is characterized only by the mass, charge, and
angular momentum. This property, which must be demonstrated individually for the
various types of fields which one might imagine go into the construction of the hole,
is often stated as black holes have no hair. One can demonstrate, for example,
that a hole which is formed from an initially inhomogeneous collapse shakes off
any lumpiness by emitting gravitational radiation. This is an example of a “no-hair
theorem.” If we are interested in the form of the black hole after it has settled down,
we thus need only to concern ourselves with charged and rotating holes. In both
cases there exist exact solutions for the metric, which we can examine closely.

A Penrose diagram (named for mathematical physicist Roger Penrose) is a two-
dimensional diagram that captures the causal relations between different points in
spacetime. It is an extension of a Minkowski diagram where the vertical dimension
represents time, and the horizontal dimension represents space, and slanted lines at
an angle of 45 degrees correspond to light rays. The biggest difference is that locally,
the metric on a Penrose diagram is conformally equivalent to the actual metric in
spacetime. The conformal factor is chosen such that the entire infinite spacetime
is transformed into a Penrose diagram of finite size. For spherically symmetric
spacetimes, every point in the diagram corresponds to a two-sphere (Fig. 8.5).

We have seen how the maximally extended Schwarzschild geometry involves
several distinct regions, each of which can be covered by a (t, r) coordinate patch.
We now are interested in the causal links between these different patches; can an
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event in region II, for example, influence those in regions III? For this it is useful to
introduce the following rescaling

U = 2

π
arctan U , V = 2

π
arctan V . (8.41)

This transformation maps the real plane spanned by (U, V) into the finite area
I = [−1, 1]×[−1, 1], i.e. instead of an infinite two-dimensional plane we have only
to consider a finite square (Fig. 8.5). In these coordinates, the line element is given by

ds2 = −8π2 M3 exp(−r/2M)

r
sec2

(
πU

2

)
sec2

(
πV

2

)
dU dV . (8.42)

This line element has coordinate singularities as U or V approach ±1, but this is
of no major importance. This metric is in fact identical to the Kruskal–Szekeres
form (8.18), except for a multiplicative prefactor. Metrics of this type are called con-
formally identical. They have the properties that their null geodesics are the same.
While Penrose diagrams share the same basic coordinate vector system of other
spacetime diagrams for local asymptotically flat spacetime, it introduces a system of
representing distant spacetime by shrinking or “crunching” distances that are further
away. Straight lines of constant time and space coordinates therefore become hyper-
bolas, which appear to converge at points in the corners of the diagram. These points
represent “conformal infinity” for space and time (represented as ι-points in Fig. 8.5).

The key features of a Penrose diagram are given in Table 8.1.
We can now investigate which special locations in the Kruskal diagram get

mapped in the new coordinate system. In the Kruskal system, the future horizon
was defined as U = 0 for V > 0 and V = 0 for U > 0, which now translates into
(see Fig. 8.5)

H+ = { (U,V) ∈ I : U = 0 for V > 0, V = 0 for U > 0 } . (8.43)

Similarly, the past horizon is given by

H− = { (U,V) ∈ I : U = 0 for V < 0, V = 0 for U < 0 } . (8.44)

Table 8.1. Special features in the Penrose diagram

Feature r t u v U V

Future singularity 0 1− V 1−U
Past singularity 0 −1− V −1−U
Future horizon H+ 2M +∞ +∞ Finite 0, V > 0 0, U > 0
Past horizon H− 2M −∞ finite −∞ 0, V < 0 0, U < 0
Future time-like infinity i+ > 2M +∞ +∞ +∞ 0, +1 +1, or 0
Past time-like infinity i− > 2M −∞ −∞ −∞ 0, or −1 −1, or 0
Space-like infinity i0 +∞ finite −∞ +∞ ±1 ∓1
Future null infinity I+ +∞ +∞ finite +∞ U = +1 V = +1
Past null infinity I− −∞ −∞ −∞ Finite U = −1 V = −1
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Wormholes

One of the most intriguing aspect of the maximally extended Schwarzschild geometry
is the existence of two asymptotically flat regions I and IV. In a way, each of these
represent distinct worlds, with separate observers and politics. The two parallel
Universes are clearly causally disconnected from each other, it is impossible to
travel from one to the other without travelling faster than light. Although this may
seem more the stuff of science fiction than science fact, physicists first dreamed
up the idea of wormholes. In 1935, Albert Einstein and Nathan Rosen realized
that general relativity allows the existence of “bridges,” originally called Einstein–
Rosen bridges, but now known as wormholes. These spacetime tubes act as shortcuts
connecting distant regions of spacetime. By journeying through a wormhole, you
could travel between the two regions faster than a beam of light would be able to
if it moved through normal spacetime. As with any mode of faster-than-light travel,
wormholes offer the possibility of time travel.

8.2 Geodetic Motions in Schwarzschild Spacetime

As we have seen earlier, the equations governing the geodesics in a spacetime can
be derived from the energy integral given by the Lagrangian

2L = −gµν
dxµ

dλ

dxν

dλ
, (8.45)

where λ is some affine parameter along the geodesic. For time-like geodesics, λmay
be identified with the proper time τ .

8.2.1 A Lagrangian

For Schwarzschild the Lagrangian is (here we work in units c = 1 = G)

L = 1

2

[(
1− 2M

r

)
ṫ2 − ṙ2

1− 2M/r
− r2 θ̇2 − r2 sin2 θ φ̇2

]
, (8.46)

where a dot denotes differentiation with respect to λ. The corresponding canonical
momenta are

pt = ∂L

∂ ṫ
=

(
1− 2M

r

)
ṫ (8.47)

pr = −∂L
∂ṙ
=

(
1− 2M

r

)−1

ṙ (8.48)

pθ = −∂L
∂θ̇

= r2 θ̇ (8.49)

pφ = −∂L
∂φ̇

= r2 sin2 θ φ̇ . (8.50)
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The resulting Hamiltonian is

H = pt ṫ − (prṙ + pθ θ̇ + pφφ̇)−L = L . (8.51)

The equality of the Hamiltonian and the Lagrangian signifies that there is no potential
energy, as is evident from the definition of the energy integral. This fact indicates
that both are constant

H = L = const . (8.52)

By rescaling the affine parameter λ, we can arrange that 2C has the value +1
for time-like geodesics, and zero for null geodesics (space-like geodesics are not
covered).

Further integrals of motion follow from the equations

dpt

dτ
= ∂L

∂t
= 0 (8.53)

dpφ
dτ

= ∂L

∂φ
= 0 . (8.54)

Thus we find

pt =
(

1− 2M

r

)
dt

dτ
= E = const (8.55)

and

pφ = r2 sin2 θ
dφ

dτ
= L = const . (8.56)

Moreover, from the equation of motion

dpθ
dτ

= d

dτ
(r2θ̇) = −∂C

∂θ
= (r2 sin θ cos θ)

(
dφ

dτ

)2

, (8.57)

it follows that θ̇ = 0 when we assign the value π/2 to θ. Then θ̈ = 0, and θ will
remain constant at the assigned value. We conclude that the geodesic is described
in invariant plane. Then we find3

pφ = r2 dφ

dτ
= L = const . (8.58)

3 The three constants of motion E, L and H , which is essentially the normalization of
the four-momenta, are a consequence of the existence of two Killing fields K = ∂t and
m = ∂φ.
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8.2.2 The Effective Potential for Equatorial Motion

With these conditions, the constancy of the Lagrangian gives

E2

1− 2M/r
− ṙ2

1− 2M/r
− L2

r2
= 2L = +1, 0 , (8.59)

depending on wether we are considering time-like or null geodesics. For time-like
geodesics we find the two integrals of motion

(
dr

dτ

)2

+
(

1− 2M

r

)(
1+ L2

r2

)
= E2 (8.60)

and

dφ

dτ
= L

r2
. (8.61)

The first equation is often written in terms of an effective potential in the form

(
dr

dτ

)2

= E2 − V2 , (8.62)

where

V2 =
(

1− 2M

r

)(
1+ L2

r2

)
. (8.63)

This generalizes the Newtonian effective potential including the centrifugal term
(Fig. 8.6).

Let us examine the kinds of possible orbits, as illustrated in Fig. 8.6. There are
different curves V(r) for different values of L/G M; for any one of these curves,
the behavior of the orbit can be judged by comparing the E2 to V 2(r). The general
behavior of the particle will be to move in the potential until it reaches a “turning
point” where V(r) = E; then it will begin moving in the other direction. Sometimes
there may be no turning point to hit, in which case the particle just keeps going. In
other cases the particle may simply move in a circular orbit at radius rc = const;
this can happen if the potential is flat, dV/dr = 0. Differentiating V(r), we find that
the circular orbits occur when

r2
c −

L2

G M
rc + 3γL2 = 0 . (8.64)

γ = 0 in Newtonian gravity and γ = 1 in general relativity. Circular orbits will
be stable, if they correspond to a minimum of the potential, and unstable if they
correspond to a maximum. Bound orbits which are not circular will oscillate around
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Fig. 8.6. Effective potential as a function of radius for various values of the angular momentum
L/M. The abscissa is a dimensionless radius in units of gravitational radii, and G M/c is the
natural unit for the specific angular momentum L of a particle. In distinction to the Newtonian
effective potential, the relativistic effective potential attains a maximum for L/M > 3.464
and then vanishes at the Schwarzschild radius

the radius of the stable circular orbit. In Newtonian gravity, we find that circular
orbits appear at

rc = L2

G M
, (8.65)

stating that at this radius the centrifugal force is balanced by gravity attraction.
In general relativity, the situation is different, but only for r sufficiently small.

Since the difference resides in the term −G ML2/r3, as r → ∞, the behaviors are
identical in the two theories. But as r → 0, the potential goes to −∞, rather than
+∞, as in the Newtonian case. At r = 2G M/c2, the potential is always zero; inside
this radius is the black hole. For massless particles, there is always a barrier (except
for L = 0, for which the potential vanishes identically), but a sufficiently energetic
photon will nevertheless go over the barrier and be dragged inexorably down to the
center. At the top of the barrier there are unstable circular orbits.

For massive particles there are once again different regimes depending on the
angular momentum. The circular orbits are at

rc = L2 ±√L4 − 12G2 M2L2

2G M
. (8.66)

For large L there will be two circular orbits, one stable and one unstable

rc � L2 ± L2
(
1− 6G2 M2/L2

)
2G M

=
( L2

G M
, 3G M

)
. (8.67)
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In this limit, the stable circular orbit becomes farther and farther away, while the
unstable one approaches 3G M, a behavior which parallels the massless case. As we
decrease L, the two circular orbits come closer together; they coincide when the
discriminant vanishes

L = √12 G M , (8.68)

for which

rc = rms = 6 G M/c2 = 3RS . (8.69)

It disappears entirely for smaller L. Thus 6G M/c2 is the smallest possible radius
of a stable circular orbit in the Schwarzschild metric. It is called the radius
of marginal stability, or ISCO (innermost stable circular orbit). There are also
unbound orbits, which come in from infinity and turn around, and bound but noncir-
cular ones, which oscillate around the stable circular radius. Note that such orbits,
which would describe exact conic sections in Newtonian gravity, will not do so in
GR, although we would have to solve the equation for d/dt to demonstrate it. Finally,
there are orbits which come in from infinity and continue all the way in to r = 0;
this can happen either if the energy is higher than the barrier, or for L <

√
12 G M,

when the barrier goes away entirely. We have therefore found that the
Schwarzschild solution possesses stable circular orbits for r > 6G M/c2 and

unstable circular orbits for 3G M/c2 < r < 6G M/c2.
It is important to remember that these are only the geodesics; there is nothing

to stop an accelerating particle from dipping below r = 3G M/c2 and emerging, as
long as it stays beyond r = 2G M/c2.

8.2.3 Orbital Equation and Bound Orbits in Schwarzschild Spacetime

We now discuss exact solutions for the orbital motion in the equatorial plane. By
considering r as a function of φ instead of τ , we obtain the equation(

dr

dφ

)2

= (E2 − 1)
r4

L2
+ 2M

L2
r3 − r2 + 2Mr . (8.70)

We now introduce the variable u ≡ 1/r, as in the analysis of the Keplerian orbits in
the Newtonian theory. With this replacement, we obtain the fundamental equation(

du

dφ

)2

= 2M u3 − u2 + 2M

L2
u − 1− E2

L2
. (8.71)

This equation determines the geometry of the geodesics in the invariant plane. Once
it has been solved for u = u(φ), the solution can be completed by direct quadratures
of the equations

dτ

dφ
= 1

Lu2
(8.72)

dt

dφ
= E

Lu2(1− 2Mu)
. (8.73)
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Bound Orbits

The solutions of (8.71) will depend on whether E2 < 1 or E2 ≥ 1. This distinction is
between bound orbits and unbound orbits. Bound orbits are governed by an equation(

du

dφ

)2

= f(u) , (8.74)

where f(u) is given by

f(u) = 2Mu3 − u2 + 2M

L2
u − 1− E2

L2
. (8.75)

It is clear that the geometry of the geodesics will be determined by the positions of
the roots f(u) = 0. Since f(u) is cubic in u, there are two possibilities: either all
roots are real, or one of them is real and the two remaining are complex-conjugate
ones. Let u1, u2, u3 denote the roots of f(u) = 0. Then we have

u1u2u3 = (1− E2)/2ML2 (8.76)

and

u1 + u2 + u3 = 1/2M . (8.77)

Since 1 − E2 > 0, it must allow for one positive real root. From the further facts
that f < 0 for u = 0 and f(u)→ ±∞ for u → ±∞, we can distinguish between
five cases:

1. Three different real roots u1 < u2 < u3: There exist two distinct orbits confined
to the interval u1 ≤ u ≤ u2 and u > u3, i.e. an orbit which oscillates between
two extreme values of r and an orbit, starting at a certain aphelion distance given
by 1/u3 plunges into the singularity at r = 0, i.e. u →∞. These two classes of
orbits are called orbits of the first and second kinds. The orbits of the first kind
are the relativistic analogues of the Keplerian orbits. The orbits of the second
kind have no Newtonian analogue. Orbits of both kinds are most conveniently
parametrized by an eccentricity e and a latus rectum l, similar to Newtonian
orbits.

2. u1 = u2 is a double root: In this case, the orbit of the first kind is a stable circular
orbit, while the orbit of the second kind still plunges into the singularity.

3. u2 = u3 is a double root: In this case the orbit of the first kind starts at a certain
aphelion distance 1/u1 and approaches the circle of radius 1/u3 asymptotically,
by spiralling around it an infinite number of times. The orbit of the second kind
is a continuation of the orbit of the first kind in that it spirals away from the
same circle (towards the center).

4. u1 = u2 = u3: All three roots coincide. This allows for an unstable circular
orbit of radius 1/u1.

5. Only one real root u1: In this case we only have one class of orbits: they all
plunge into the singularity after starting from a certain aphelion distance. They
are similar to radial geodesics.



8.2 Geodetic Motions in Schwarzschild Spacetime 375

Orbits of the First Kind

In this case all three roots are positive, and we can write them as

u1 = 1

l
(1− e) (8.78)

u2 = 1

l
(1+ e) (8.79)

u3 = 1

2M
− 2

l
. (8.80)

The semilatus rectum l is some positive constant4 and the eccentricity e < 1 for
u1 > 0, as required by the condition E2 < 1.

The conformity with the ordering u1 < u2 ≤ u3 requires

1

2M
− 2

l
≥ 1+ e

l
, (8.84)

or

l ≥ 2M(3+ e) . (8.85)

Defining a parameter

µ ≡ M/l (8.86)

one finds the inequality

µ ≤ 1

2(3+ e)
or 1− 6µ− 2µe ≥ 0 . (8.87)

In these parameters f(u) is written as

f(u) = 2M

(
u − 1− e

l

)(
u − 1+ e

l

)(
u − 1

2M
+ 2

l

)
. (8.88)

4 For a Keplerian ellipse, the semilatus rectum l is the distance l measured from a focus such
that

1

l
= 1

2

(
1

r+
+ 1

r−

)
, (8.81)

where r+ = a(1 + e) and r− = a(1 − e) are the aphelion and perihelion positions of the
orbit. Plugging the values of r+ and r− into the equation for l gives

1

l
= 1

a(1− e2)
, (8.82)

and therefore

r+ = l

1− e
, r− = l

1+ e
. (8.83)

This justifies the ansatz for the roots u1 and u2.
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This has to agree with the original form of the function, giving the relations

M

L2
= 1

l2

[
l − M

(
3+ e2)] (8.89)

1− E2

L2
= 1

l3

[
(l − 4M)

(
1− e2)] (8.90)

or, in terms of µ

1

L2
= 1

lM

[
1− µ (

3+ e2)] (8.91)

1− E2

L2
= 1

l2
(1− 4µ)

(
1− e2) . (8.92)

It follows from these equations that µ < 1/(3+ e2) and µ < 1/4.
As in the Keplerian problem, we now make the ansatz

u = 1

l
(1+ e cosχ) . (8.93)

χ is now a kind of relativistic anomaly. At aphelion, χ = π, we find u = (1− e)/l
and at perihelion, χ = 0, u = (1 + e)/l. This substitution leads to the equa-
tion (

dχ

dφ

)2

= 1− 2µ(3+ e cosχ)

= (1− 6µ+ 2µe)− 4µe cos2(χ/2) , (8.94)

or alternatively to

±dχ

dφ
= √

1− 6µ+ 2µe
√

1− k2 cos2(χ/2) , (8.95)

where

k2 = 4µe

1− 6µ+ 2µe
. (8.96)

The solution for φ can be expressed in terms of the Jacobian integral

F(ψ, k) =
∫ ψ

0

dγ√
1− k2 sin2 γ

, (8.97)

where

ψ = 1

2
(π − χ) . (8.98)
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Thus we may write

φ = 2√
1− 6µ+ 2µe

F(π/2− χ/2, k) , (8.99)

where the origin of φ has been chosen at aphelion passage where χ = π. The per-
ihelion passage occurs at χ = 0, where ψ = π/2. A particular example is shown in
Fig. 8.7 for the case e = 0.5 and l = 10.0.

The solution can be completed by the expressions for the proper time τ and the
coordinate time t

τ = 1

L

∫
dφ

u2
= 1

L

∫
dφ

dχ

dχ

u2
(8.100)

and

t = E

L

∫
dφ

dχ

dχ

u2(1− 2Mu)
. (8.101)

Post-Newtonian Corrections and Perihelion Advance

The first-order corrections to the Keplerian orbits of the Newtonian theory can readily
be deduced from equation (8.94). Under normal conditions, the parameterµ = M/L

x
-25 -20 -15 -10 -5 0 5 10 15 20 25

y

-25

-20

-15

-10

-5

0

5

10

15

20

25
Schwarzschild Bound Orbit

Fig. 8.7. Bound orbits of the first kind near a black hole, E2 < 1. Shown are orbits with
eccentricity e = 0.5 and l = 11
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is a very small quantity – it is essentially the ratio of the gravitational radius M to the
major axis of a planetary orbit or a binary star orbit. So we expand equation (8.94)
to first order in µ to obtain

−dφ = dχ (1+ 3µ+ µe cosχ) (8.102)

or in integrated form

−φ = (1+ 3µ)χ + µe sinχ + const . (8.103)

From this we infer that the change in φ after one complete revolution during which
χ changes by 2π is 2π(1+ 3µ). Therefore, the advance of the perihelion,∆φ, per
revolution is

∆φ = 6πM

l
= 6πG M

c2a(1− e2)
. (8.104)

a is the semimajor axis of the Keplerian ellipse. This is the standard result first
derived by Einstein.

For the motion of Mercury around the Sun, the relevant orbital parameters are

G M�
c2

= 1.48× 103 m , a = 5.79× 1010 m , e = 0.2056 . (8.105)

This gives

∆φMercury = 5.01× 10−7 radian/orbit = 0.103 arcsec/orbit . (8.106)

It is customary to express this in terms of precession per century: Mercury orbits
once every 88 days, yielding

∆φMercury = 43.0 arcsec/century . (8.107)

The major axis of Mercury’s orbit precesses at a rate of 43.0 arcsecs every 100
years. The observed value is however 5601 arcsecs/100 years. Most of this is due to
the precession of the equinoxes in our geocentric coordinate system, exactly 5025
arcsecs/100 years. The gravitational perturbations of the other planets contribute
an additional 532 arcsecs/100 years, leaving 43 arcsecs/100 years to be explained
by Einstein. Einstein was certainly very enthusiastic about these numbers when he
figured this out for the first time. All the other planets show smaller perihelion
precession due to the increasing semimajor axis.

8.3 The Kerr Black Hole

In a collapse situation, asymmetries of the matter distribution are rapidly radiated
away by gravitational waves. One expects therefore that the collapse leads to a sta-
tionary and axisymmetric configuration, which is given by two Killing vectors. The
final state of the ultimate collapse should be represented by a kind of ground state
of Einstein’s equations.
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8.3.1 Kerr Black Hole in Boyer–Lindquist Coordinates

According to the considerations in Chap. 7, we may seek for a global vacuum
solution with a stationary and axisymmetric line element of the form (see Sect. 7.1)
given in quasispherical coordinates (t, φ, r, θ)

ds2 = −α2 dt2 + R2 (dφ − ω dt)2 + exp(2µ2) dr2 + exp(2µ3) dθ2 . (8.108)

The five functions ν = lnα, ω, ψ = ln R, µ2 and µ3 only depend on the spa-
tial coordinates r and θ. One has to remember that the two functions µ2 and µ3

are essentially not independent, but can be reduced to one by means of a gauge
transformation.

In Boyer–Lindquist (BL) coordinates (t, φ, r, θ) the solution found by Kerr in
1963 can be expressed in the following form [86]

α2 ≡ e2ν = �2∆

Σ2
(8.109)

R ≡ eψ = Σ

�
sin θ (8.110)

ω = 2aMr

Σ2
(8.111)

eµ2 = �√
∆
, eµ3 = � . (8.112)

It is a tradition to use the following polynomials of r and cos θ

∆ = r2 − 2Mr + a2 (8.113)

�2 = r2 + a2 cos2 θ (8.114)

Σ2 = (
r2 + a2)2 − a2∆ sin2 θ . (8.115)

This solution is uniquely given by two parameters: the mass M of the source and
the Kerr parameter a, which is related to the angular momentum of the source,
J = aM. In physical units, the mass is given in terms of the gravitational radius
G M/c2, and similarly for the angular momentum, a is in units of G M/c2. This
metric is asymptotically flat and approaches the Schwarzschild metric in the limit
a → 0.

8.3.2 A Short Derivation of the Kerr Solution

The original derivation of the solution by Kerr is quite implicit and cumbersome.
Chandrasekhar [4] has given a more intuitive way towards a derivation, which is,
however, still quite lengthy.
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The Equations in BL Coordinates

As derived in Sect. 7.2, Einsteins’s equations provide the following highly nonlinear
equations for the five metric functions in the case of a global vacuum solution

∆̄α− R2

2α
(∇ω · ∇ω) = 0 (8.116)

Div

(
R

α
∇ω

)
= 0 (8.117)

αDiv

(
1

α
∇ψ

)
+ R2

2α2
(∇ω · ∇ω) = 0 (8.118)

∆(µ2, µ3)− R2

2α2
(∇ω · ∇ω)− 2

α
ΨA(∇Aα) = 0 . (8.119)

The last equation results from the Einstein tensors R00−R11+R22+R33. In addition,
we also have to satisfy the constraint equation R23 = 0

R23 = − 1

R
∇3(RΨ2)+ Ψ3(∇2µ3)+ R2

2α2
(∇3ω)(∇2ω)

− 1

α
(∇3µ2)(∇2α)− 1

α
∇2(∇3α) = 0 . (8.120)

The first equation is the relativistic Poisson equation which shows that the
extrinsic curvature ∇ω acts as a source for the redshift factor α

∆̄α = R2

2α
(∇ω · ∇ω) . (8.121)

The term on the right-hand side represents an effective energy density. The key
equation is the second equation, which tells us that the vorticity of absolute space
is conserved. It has no explicit source term. This equation can be seen in analogy to
Ampère’s equation, when expressed in terms of the vector potential Ψ = RAφ. In
vacuum, this equation has the same form

Div

(
R

α
∇Ψ

)
= 0 . (8.122)

Similar to Maxwell’s theory, the source of the frame-dragging potential is a ring
current of orbiting mass elements of infinite density (a so-called ring singularity),
as will be shown by analyzing the Riemann curvature tensors. This ring singularity
generates the frame-dragging potential ω. Quantum effects are expected to smooth
out the singularity. The third equation is of similar type, the axial curvature is also
generated by frame-dragging. The last equation determines the meridional curvature,
i.e. the two functionsµ2 andµ3 in terms of frame-dragging and gravitational forces. It
is therefore not astonishing that this nonlinear system of partial differential equations
has an analytic solution.
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For the first equation we need the Laplacian on the hypersurface with metric γ
for α = exp ν

√
γ∆̄α = ∂A

[
exp(ν + ψ + µ2 + µ3) gAB∂Bν

]
(8.123)

= [
exp(ν + ψ + µ3 − µ2)ν,2

]
,2 +

[
exp(ν + ψ + µ2 − µ3)ν,3

]
,3 .

In total, the first equation is equivalent to[
exp(ν + ψ + µ3 − µ2)ν,2

]
,2 +

[
exp(ν + ψ + µ2 − µ3)ν,3

]
,3

= 1

2
exp(3ψ − ν) [exp(µ3 − µ2)(ω,2)

2 + exp(µ2 − µ3)(ω,3)
2] . (8.124)

The second equation determines the frame-dragging potential[
exp(3ψ − ν − µ2 + µ3) ω,2

]
,2 +

[
exp(3ψ − ν + µ2 − µ3) ω,3

]
,3 = 0 . (8.125)

For the following, it is useful to introduce the function

β = ψ + ν . (8.126)

The third equation determines the radius function

[ exp(β + µ3 − µ2) ψ,2
]
,2 +

[
exp(β + µ2 − µ3) ψ,3

]
,3 (8.127)

= −1

2
exp(3ψ − ν) [exp(µ3 − µ2) (ω,2)

2 + exp(µ2 − µ3) (ω,3)
2] .

The sum and the difference between the first equation (8.124) and the third equation
(8.128) give the equations for β and ψ − ν[

exp(µ3 − µ2) (expβ),2
]
,2 +

[
exp(µ2 − µ3) (expβ),3

]
,3 = 0 (8.128)[

exp(β + µ3 − µ2) (ψ − ν),2
]
,2 +

[
exp(β + µ2 − µ3) (ψ − ν),3

]
,3

= − exp(3ψ − ν) [exp(µ3 − µ2) (ω,2)
2 + exp(µ2 − µ3) (ω,3)

2] .(8.129)

The equation for R23 = 0 can explicitly be written as

(ν + ψ),2,3 − (ν + ψ),2µ2,3 − (ν + ψ),3µ3,2 + ψ,2ψ,3 + ν,2ν,3
= 1

2
exp(2ψ − 2ν) ω,2ω,3 . (8.130)

These five equations look quite desperate, but Chandrasekhar [4] has shown
that the equations for the five functions can be split into two independent pairs of
equations and one equation forµ2+µ3. The essential assumption is the existence of
a horizon which is in Boyer–Lindquist coordinates just given by a surface r = const.
This means that BL coordinates are horizon-adapted coordinates. It is by no means
clear that the horizon is not given by a general two-surface N (r, θ) = const in any
other quasispherical coordinate system.
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(i) The Existence of a Horizon

In accordance with the assumed stationarity and axisymmetry, the equation for the
event horizon is of the form

N(x2, x3) = 0 (8.131)

with the condition being a null surface

gAB N,A N,B = 0 , A, B = 2, 3 . (8.132)

This implies for the chosen metric

e2(µ3−µ2) N2
,r + N2

,θ = 0 (8.133)

for quasispherical coordinates x2 = r und x3 = θ. If the horizon is given by a surface
r = const, N,θ vanishes on the horizon. We can now use the gauge freedom to specify
a relation between µ2 and µ3 as a mere function of radius

e2(µ3−µ2) ≡ ∆(r) , (8.134)

where∆(r) is some function to be found. The equation for the null surface at position
r = rH requires therefore

∆(rH) = 0 . (8.135)

The equation for β can then suitably be solved. Since ∆ is at our disposal, β can
be solved independently of the other functions. The central problem is to solve the
equations for ψ − ν and ω. The solution for µ2+µ3 presents no difficulty, once the
solutions for ψ − ν and ω are known.

For the following, we introduce the functions

β ≡ ψ + ν , χ ≡ eν−ψ . (8.136)

The second condition that this null surface is spanned by the Killing vectors ∂t and
∂φ requires that the determinant of this subspace also vanishes at the horizon

e2β(rH) = 0 . (8.137)

For this reason we can try an ansatz of the form

eβ = √∆ f(r, θ) (8.138)

with a function f regular on the surface ∆ = 0 and on the axis θ = 0. In fact,
we can even try a separable ansatz with f = f(θ) and demonstrate that this leads
to solutions of Einstein’s equations. It is one of the mysteries of the Kerr geome-
try that many equations are separable (see, e.g. the Hamilton–Jacobi equation for
geodesics).
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With the above ansatz for β, the equation for β is simply[√
∆(eβ),2

]
,2
+

[
1√
∆
(eβ),3

]
,3
= 0 . (8.139)

This leads to [√
∆(
√
∆),r

]
,r
+ 1

f
f,θθ = 0 . (8.140)

Since f must be regular on the axis and we want to have the usual expression for
the cylindrical radius in the asymptotic region, the only choice is

f(θ) = sin θ (8.141)

and therefore ∆ satisfies a very simple equation

∆,rr = 2 . (8.142)

The general solution contains two free parameters M and a

∆(r) = r2 − 2Mr + a2 (8.143)

which are chosen in accordance with its later interpretation as mass M and angular
momentum parameter a. As it turns out, these are the only free parameters of
the solution, since the other equations are highly nonlinear and do not allow the
introduction of further free parameters. Both parameters M and a have the dimension
of a length, the corresponding mass is denoted as MH with the relation M =
G MH/c2. Thus, with this choice of the gauge, we have determined two of the five
functions

eµ3−µ2 = √∆ (8.144)

eβ = eψ+ν = √∆ sin θ . (8.145)

(ii) Three Key Equations

Since two of the five functions are determined by the equations (8.144) and (8.145),
we are left with three equations for ω, α and ψ[

exp(4ψ)
ω,r

sin θ

]
,r
+

[
exp(4ψ)

ω,θ

∆ sin θ

]
,θ
= 0 (8.146)[

(∆ sin θ) ν,r
]
,r +

[
sin θ ν,θ

]
,θ
= exp(4ψ)

2∆ sin θ

[
∆(ω,r)

2 + (ω,θ)2
]

(8.147)[
(∆ sin θ)ψ,r

]
,r +

[
sin θ ψ,θ

]
,θ
= −exp(4ψ)

2∆ sin θ

[
∆(ω,r)

2 + (ω,θ)2
]
. (8.148)

These are highly nonlinearly coupled partial differential equations of second order,
which, however, surprisingly can be solved by an ansatz with rational functions (this
is another mystery of the Kerr solution)



384 8 Black Holes

ω(r, θ) = 2aMr

Σ2
(8.149)

R2(r, θ) = exp(2ψ) = Σ2 sin2 θ

�2
(8.150)

α2(r, θ) = exp(2ν) = �2∆

Σ2
(8.151)

χ(r, θ) = exp(ν − ψ) = �2
√
∆

Σ2 sin θ
. (8.152)

where Σ2 and �2 are polynomials of r and cos θ, specified in the beginning. It can
be shown that this ansatz in fact solves all three equations.

(iii) The Meridional Curvature

The last equation we have to solve is for the surface element exp(µ2 + µ3) of
the meridional plane. Since expµ2 = expµ3/

√
∆, the last equation provides us

a second-order differential equation for expµ3. The solutions for the two meridional
metric functions are therefore

exp(2µ2) = �2/∆ , exp(2µ3) = �2 . (8.153)

With this last relation we have determined all five metric functions.

8.3.3 The Weyl–Papapetrou Form of the Kerr Metric

It is interesting that the metric can be expressed in terms of the functions ∆
and χ

ds2 = − √∆ sin θ

[
χ(dt)2 − 1

χ
(dφ − ωdt)2

]
+ exp(µ2 + µ3)√

∆

[
(dr)2 +∆(dθ)2] , (8.154)

with the introduction of

χ ≡ exp(ν − ψ) . (8.155)

This is also equivalent to

ds2 = − expβ

[
χ(dt)2 − 1

χ
(dφ − ωdt)2

]
+ exp(2µ)

[
(dr)2 +∆(dθ)2] (8.156)

Since β satisfies the simple Laplace equation

∇2 expβ = 0 , (8.157)
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we may consider expβ as one of the coordinates and seek a coordinate transforma-
tion

(x2, x3)→ (�, z) (8.158)

such that

exp(2µ) [(dx2)2 + (dx3)2] → f(�, z) [(d�)2 + (dz)2] . (8.159)

Such a transformation is possible, if

(�,2)
2 + (z,2)2 = (�,3)2 + (z,3)2 (8.160)

and

�,2�,3 + z,2z,3 = 0 . (8.161)

These conditions can be satisfied by means of

�,2 = z,3 , �,3 = −z,2 . (8.162)

Since ∇2� = 0 for � ≡ expβ, these relations can be satisfied. With this transforma-
tion we have achieved then the Weyl–Papapetrou form of the Kerr metric with the
explicit expression for the cylindrical radius

� = √∆ sin θ . (8.163)

This shows that the cylindrical radius � is only a suitable coordinate outside the
horizon, where ∆ vanishes.

8.3.4 Uniqueness of the Kerr Solution

The Kerr solution, which endows a stationary, axisymmetric, asymptotically flat
spacetime with a smooth convex event horizon is just characterized by two parame-
ters – the mass M and the angular momentum J = aM. The uniqueness of the Kerr
metric for the description of black holes follows from a theorem by Robinson [345]:

Stationary axisymmetric solutions of Einstein’s equations for the vacuum which
satisfy

1. are asymptotically flat,
2. contain a smooth convex horizon,
3. are nonsingular outside the horizon

are uniquely specified by two parameters: the mass M and angular momentum JH

with JH < M2
H, and only by these two parameters.5

5 For the proof, see, e.g. [4], p. 292.
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8.3.5 Global Properties of the Kerr Metric

The Kerr metric has various interesting properties which are shortly discussed.

Asymptotic Expansion

For vanishing Kerr parameter, a = 0, the Kerr metric becomes the static, spherically
symmetric Schwarzschild metric. The leading order terms in asymptotic expansion
are given by

α2 � 1− 2M

r
, R � r sin θ (8.164)

ω � 2aM

r3
, e−2µ2 � 1− 2M

r
, eµ3 � r . (8.165)

Therefore, the metric is asymptotically flat and the parameter M can be identified
with the mass of the black hole. The total angular momentum follows from the
specific angular momentum a, according to JH = aMH . Hence, the function ω
can be interpreted as a potential that is unambiguously determined by the angular
momentum of the rotating black hole. As we have seen in the previous chapter, there
exists no analogue in Newtonian gravity. The quantity 2πR = 2π

√
gφφ represents

the circumference of the cylinders that are concentric to the axis of symmetry, the
axis of rotation of the black hole located at θ = 0.

Event Horizons

The horizon is a 2D surface of spherical topology, where the redshift factor vanishes
(i.e. the redshift observed at infinity is infinite, z →∞)

αH = 0 "→ ∆(r±) = 0 . (8.166)

The equation ∆(r) = 0 has in general two solutions. These are the outer horizon
or event horizon of the Kerr black hole given by its radius

r+ = M +
√

M2 − a2 , (8.167)

and the inner horizon or Cauchy horizon

r− = M −
√

M2 − a2 . (8.168)

In physical units, one has to replace M by G MH/c2 and a by a = a∗(G MH/c2). The
total angular momentum of the black hole will be given by JH = MHa. Physically
meaningful solutions have therefore to satisfy the condition |a| ≤ M, or |a∗| ≤ 1,
otherwise no horizon will exist. The special case a = M is known as the extreme
Kerr solution. From this we get the maximal specific angular momentum of a Kerr
black hole jmax = G MH/c, und JH ≤ MH jmax.
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Fig. 8.8. Direct comparison of the structures of a Schwarzschild black hole (left) and an
extreme Kerr black hole (right). Nonrotating black holes exhibit a point singularity. Ro-
tating black holes have a ring singularity and an oblate ergosphere. Figure provided by
A. Müller [304]

In consequence, there will be two horizons in general. The horizons are null
surfaces because they are light-like. The gravitational redshift suppresses any emis-
sion at the event horizon. This results in the blackness of the black hole. Cauchy
horizons are semipermeable surfaces: once trapped behind the Cauchy horizon there
is no turning back. An observer crossing the Cauchy horizon witnesses the complete
history of the outer world only in one instant of time. This is because the inner
horizon represents a region of infinite blueshift (see, e.g. the time-like trajectories in
the Penrose diagram 8.12).

The hypersurfaces with r = r± are Killing horizons of the Killing vector field

ξ = k +ΩH m , ΩH = a

r2± + a2
. (8.169)

At these surfaces we measure surface gravities

κ± = r± − r∓
2(r2± + a2)

. (8.170)

Intermezzo about Killing Horizons

A null hypersurface N is called Killing horizon of a Killing vector field ξ , if ξ
is normal to N on N . Let l be a normal to N such that l · Dl = 0 in an affine
parametrization. Then, since ξ = f l on N , for some function f , it follows that

(ξ · D)ξ = κ ξ on N , (8.171)
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where κ = (iξ · d) ln f is called surface gravity. Since ξ is normal to N , the
Frobenius theorem implies

ξ[µDνξ�]|N = 0 . (8.172)

For a Killing vector field ξ , Dµξν = D[µξν], i.e. the symmetric part vanishes. In this
case, the above equation can be written as

ξ�Dµξν + (ξµDνξ� − ξνDµξ�) = 0 . (8.173)

Multiplying by Dµξν, we get

ξ�(D
µξν)Dµξν = −2(Dµξν)ξµDνξ� (8.174)

or

ξ�(D
µξν)Dµξν = −2(ξ · Dξν)Dνξ�

= −2κ ξ · Dξ�
= −2κ2 ξ�|N . (8.175)

Hence, except for points at which ξ = 0,

κ2 = −1

2
(Dµξν)(Dµξν)|N . (8.176)

One can then prove that κ is constant on Killing horizons, i.e.

(ξ · ∂)κ2 = −(Dµξν) Rνµ�σξ
�ξσ = 0 (8.177)

due to the antisymmetry of the Riemann tensor. In a Kruskal spacetime, the surface
gravity is given by

|κ| = c3

4G M
, (8.178)

and the Killing field ξ = k spans a Killing horizon.
In general there is no natural normalization of the surface gravity, since ξ2 = 0.

In an asymptotically flat spacetime, the requirement that k2 →−1 in the asymptotic
region provides however a suitable normalization.

In order to see that the hypersurfaces N± in the Kerr geometry defined by r = r±
are Killing horizons, one has to transform the Kerr metric into Kerr coordinates
(v, χ, r, θ) defined by

dv = dt + r2 − a2

∆
dr (8.179)

dχ = dφ + a

∆
dr , (8.180)
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giving the metric

ds2 = − ∆− a2 sin2 θ

�2
dv2 + 2dv dr

− 2a sin2 θ(r2 + a2 −∆)
�2

dv dχ − 2a sin2 θ dχ dr

+ (r2 + a2)2 −∆a2 sin2 θ

�2
sin2 θ dχ2 + �2 dθ2 . (8.181)

The normals l± to the hypersurfaces N± are found to be given by

l± ∝ r2± + a2

r2± + a2 cos2 θ
f±

(
∂

∂v
+ a

r2± + a2

∂

∂χ

)
. (8.182)

First of all one can show that l2± = 0, so that N± are null hypersurfaces. Then we
define ξ± = ∂v + a/(r2± + a2) ∂χ and N± turn out to be Killing horizons of ξ±.
A straightforward calculation gives then values of κ± in equation (8.170).

Angular Velocity of the Horizon

The event horizon is a Killing horizon for the Killing field

ξ = k +ΩH m , (8.183)

with ξ2 = 0, where

ΩH = a

r2+ + a2
= 1

2

a

M

1

r+
(8.184)

is called the angular velocity of the horizon. This angular velocity is independent
of the latitude, i.e. the horizon is rigidly rotating. Unfortunately, no orbiting spots
can observed on the horizon, since all radiation from the horizon suffers infinite
redshift.

Ergosphere and Frame-Dragging

There is an intriguing difference between the Schwarzschild and the Kerr solution: in
the Kerr spacetime there is no globally static observer. In contrast to Schwarzschild,
in Kerr there is no globally time-like nonrotating Killing field.

Although k is time-like at infinity, it need not be time-like everywhere outside
the horizon. For Kerr we find

k2 = gtt = −∆− a2 sin2 θ

�2
= −

(
1− 2Mr

r2 + a2 cos2 θ

)
. (8.185)
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k is therefore time-like, provided

r2 + a2 cos2 θ − 2Mr > 0 . (8.186)

For M2 > a2, this implies

r > rE(θ) = M +
√

M2 − a2 cos2 θ . (8.187)

The boundary of this region, r = rE(θ), marks the transition of the coordinate t from
a time-like to a space-like coordinate. This is called the static limit or ergosphere.
The region r+ ≤ r ≤ rE is the so-called ergoregion (Fig. 8.9).

The ergosphere intersects the horizon at the two poles, but lies outside the horizon
for all other latitudes.

As can immediately be investigated from the formula for the static limit, the
ergosphere has an angle dependence. Therefore, it has an oblate structure: in the
equatorial plane the ergosphere starts always at the Schwarzschild radius, 2G M/c2;
but it ends at the poles at the outer horizon, r = r+. Stationarity means illustratively
that hypersurfaces with t = const can be shifted identically. But the corresponding
Killing field is not globally time-like. In the vicinity of the hole it becomes space-
like.

Within the ergosphere, the so-called ergoregion, everything must rotate! This
includes observers, photons and magnetic field lines. The name of this phenomenon
is the frame-dragging effect. Let us consider a velocity field of an observer (or
a plasma particle) of the form

U = Ut(k +Ωm) , Ω = Uφ

Ut
. (8.188)

Fig. 8.9. Ergosphere and ergoregion of a Kerr black hole. Also shown is the orbit of marginal
stability. This is the innermost stable circular orbit (ISCO) where stable rotation is possible.
For smaller radii, the orbiter must fall into the hole or escape. When a∗ > 0.7, the photon
orbit moves inside the ergosphere (see Fig. 8.11). Figure provided by A. Müller [304]
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This velocity field must be globally time-like which implies (in the signature
−+++)

gtt + 2Ω gtφ +Ω2 gφφ < 0 , (8.189)

and hence, Ω has to satisfy the limits (Fig. 8.10)

Ω− ≤ Ω ≤ Ω+ , Ω− = ω− cα

R
, Ω+ = ω+ cα

R
. (8.190)

Since α(r+) = 0, any observer (or plasma particle) rotates at the outer horizon with
the angular velocity of the Kerr hole, ΩH ,

ΩH ≡ ω(r+) = 1

2

a

M

1

r+
= a

r2+ + a2
. (8.191)

In the Kerr space we find special observers, called ZAMO (zero angular momen-
tum observer) with angular velocity Ω = ω (angular velocity with respect to fixed
stars) which will have vanishing specific angular momentum

Uφ = gφα Uα = gφφ Uφ + gtφ Ut

= Ut(ωgφφ + gtφ) = Ut gφφ(ω+ gtφ

gφφ
) = 0 . (8.192)

It is therefore suitable to express physical observables with respect to this special
observer system, also called Bardeen observers.
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Fig. 8.10. Illustration of frame-dragging for a Kerr parameter, a = 1.0, in the equatorial plane.
The upper solid curve,Ω+, represents the prograde limit of angular velocity; the lower solid
curve limits the retrograde case,Ω−. At the outer horizon, r+ = 1.0 G M/c2, the limits equal
the frame-dragging potential ω (dotted line). Within one Schwarzschild radius (ergoregion),
any form of matter must rotate with a fraction of the horizon’s angular velocity
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Characteristic Radii

The Kerr geometry exhibits a number of characteristic radii. Some of them have
already been introduced, e.g. the inner and outer horizon, r±, and ergosphere rE.

Besides these radii, there are several others that are of special interest for accretion
theory of black holes (Fig. 8.9). The radius of marginal stability will be derived in
parametrized form (see Sect. 8.3)

rms = M
(

3+ Z2 ∓
√
(3− Z1)(3+ Z1 + 2Z2)

)
(8.193)

Z1 = 1+
(

1− a2

M2

)1/3 ((
1+ a

M

)1/3 +
(

1− a

M

)1/3
)

(8.194)

Z2 =
√

3
a2

M2
+ Z2

1 . (8.195)

The solution of this equation determines the critical radius where stable rotation on
circular orbits is possible. For r < rms, there are no stable orbits and the orbiting
object is forced to fall into the hole or to escape. Two interesting limits are rms(a =
1) = M (extreme Kerr) and rms(a = 0) = 6M (the Schwarzschild case).

The marginally bound orbit, rmb, is the characteristic radius where a test particle
starts (as viewed from infinity) to be gravitationally bound by the black hole

rmb =
(√

M +√M − a
)2
. (8.196)
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Fig. 8.11. Characteristic radii of a Kerr black hole in the equatorial plane as a function of
the angular momentum a∗. Black holes are confined to the range −1 ≤ a∗ ≤ +1. The upper
curve represents the radius of marginal stable orbits, the middle curve the marginally bound
orbit and the lower curve the photon orbit. The solid horizontal line gives the position of the
ergosphere
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Another radius marks the photon sphere,

rph = 2M

[
1+ cos

(
2

3
arccos(−a/M)

)]
. (8.197)

Photons may circulate around the Kerr black hole in this sphere, but the trajectories
are unstable. All characteristic radii are shown in comparison and their dependence
on the Kerr parameter a in Fig. 8.11. It is remarkable that nearly all these character-
istic radii coincide for an extreme Kerr black hole, a∗ = +1.

On the Ring Singularity

As in Schwarzschild, the horizons are no true singularities in Kerr. In order to find
the true singularities, we have to calculate the components of the curvature tensor.
This is left as an exercise to the reader.

As indicated in the discussion of the components of the Ricci tensor there exists
a mass current. Due to axisymmetry of the Kerr metric this current is located
in the equatorial plane. The derivation of this feature follows from the curvature
tensor of the Kerr geometry. It tells us that the condition for the intrinsic singularity,
the curvature singularity, is �(r, θ) = 0. With �2 = r2 + a2 cos2 θ one finds that
r = cos θ = 0 must be simultaneously fulfilled. This can occur when r = 0 and
θ = π/2. Surprisingly, this can be interpreted as a ring singularity lying in the
equatorial plane. This intrinsic singularity is the source of the axisymmetric
gravitational field of a rotating black hole. Figure 8.12 sketches the two horizons
that are separated by the ring singularity.

8.3.6 On the Conformal Structure of the Kerr Solution

Let us think about the structure of the full Kerr solution (for the basics of Penrose
diagrams, see Sect. 8.1.4). Singularities seem to appear at both ∆ = 0 and � = 0;
let us turn our attention first to∆ = 0. As in the Reissner–Nordström solution, there
are three possibilities: (i) M2 > a2, (ii) M2 = a2, and (iii) M2 < a2. The last case
features a naked singularity, and the extremal case M2 = a2 is unstable. Since these
cases are of less physical interest, we will concentrate on M2 > a2. Then there are
two radii at which ∆ vanishes, given by r = r±. Both radii are null surfaces which
will turn out to be event horizons. The analysis of these surfaces proceeds in close
analogy with the Reissner–Nordström case; it is straightforward to find coordinates
which extend through the horizons.

Before rushing to draw Penrose diagrams, we need to understand the nature of
the true curvature singularity; this does not occur at r = 0 in this spacetime, but
rather at � = 0. Since �2 = r2 + a2 cos2 θ is the sum of two manifestly nonnegative
quantities, it can only vanish when both quantities are zero, or for r = 0 and θ = π/2.
This seems like a funny result, but remember that r = 0 is not a point in space, but
a disk; the set of points r = 0, θ = π/2 is actually the ring at the edge of this
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Fig. 8.12. The conformal structure (Penrose diagramm) for rotating black holes. This is quite
similar to the Penrose diagramm for the Reissner–Nordström solution, except that one can
move beyond the singularity

disk. The rotation has “softened” the Schwarzschild singularity, spreading it out
over a ring.

What happens if you go inside the ring? A careful analytic continuation (which we
will not perform) would reveal that you exit to another asymptotically flat spacetime,
but not an identical copy of the one you came from. The new spacetime is described
by the Kerr metric with r < 0. As a result,∆ never vanishes and there are no horizons.
The Penrose diagram (Fig. 8.12) is much like that for Reissner–Nordström, except
now you can pass through the singularity.

8.3.7 Ernst’s Equations for the Kerr Geometry

As we have seen in the derivation of the Kerr solution, there are two essential
equations for the two functions χ and ω which can be written in terms of ∆(r) and
δ(θ) = sin2 θ, with χ ≡ exp(ν − Ψ),
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∆

χ
χ,2

)
,2
+

(
δ

χ
χ,3

)
,3
= 1

χ2

[
∆(ω,2)

2 + δ(ω,3)2
]

(8.198)(
∆

χ2
ω,2

)
,2
+

(
δ

χ2
ω,3

)
,3
= 0 . (8.199)

Obviously, there is a certain symmetry in these equations. The second equation can
be solved in terms of a potential Φ defined as

Φ,2 = δ

χ
ω,3 , Φ,3 = −∆

χ
ω,2 (8.200)

resulting in the Laplace-type equation(
χ2

δ
Φ,2

)
,2
+

(
χ2

∆
Φ,3

)
,3
= 0 . (8.201)

In terms of this potential, the right-hand side of the first equation can be rewritten as

[
∆(logχ),2

]
,2 +

[
δ(logχ),3

]
,3 =

χ2

∆
(Φ,2)

2 + χ
2

δ
(Φ,3)

2 . (8.202)

Introducing a function Ψ ≡ √∆δ/χ one ends up with the two equations

Ψ
[
(∆Ψ,2 + (δΨ,3),3

] = ∆ [
(Ψ,2)

2 − (Φ,2)2
]+ δ [(Ψ,3)2 − (Ψ,3)2] (8.203)

Ψ
[
(∆Ψ,2),2 + (δΦ,3),3

] = 2∆Ψ,2Φ,2 + 2δΨ,3Φ,3 . (8.204)

These two equations can be combined then into one complex equation by introducing
a complex potential E ≡ Ψ + iΦ (Ernst [145], see also Sect. 7.6)

Re(E)
[
(∆E,2),2 + (δE,3),3

] = ∆(E,2)2 + δ(E,3)2 . (8.205)

As a result, two of Einstein’s equations are merged into one single complex potential
equation. This equation has many interesting properties. So, for example, if E is
a solution, then E−1 is also a solution. In addition, the combination E/(1+ icE) is
also a solution of Ernst’s equation (this is called a Ehlers’s transformation for any
reel number c).

8.3.8 The Kerr–Schild Metric and Two-Black-Hole States

The Kerr solution has been presented in standard Boyer–Lindquist coordinates
(tBL, φBL, r, θ). Being a generalization of the Schwarzschild coordinates to the
rotating case, these coordinates are singular on the event horizon. For numeri-
cal purposes, it is quite often suitable not to use Boyer–Lindquist coordinates,
but to go to the Kerr–Schild form, which is a generalization of the Eddington–
Finkelstein coordinates. It is possible to cover all, or part, of the interior of
a single black hole with a time-independent slicing. However, doing so seems
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to require that we give up the maximal-slicing condition. To cover the inte-
rior of the black hole, we need a slicing that passes smoothly through the
event horizon. A convenient way to generate such solutions is to begin with the
metric in standard ingoing-null coordinates. If we want to consider a rotating
black hole, then we use the Kerr geometry in Kerr coordinates defined previ-
ously.

Coordinate systems attached to physical observers are generically regular at
the horizon, but lack the important practical property of stationarity. If, besides
regularity, we impose the additional requirements of a stationary metric and space-
like foliation, we obtain what we call horizon-adapted coordinates. A comprehensive
family of those systems for the Kerr spacetime can be obtained with the following
transformation from the standard Boyer–Lindquist (BL) coordinates to the new
coordinates (T, φ, r, θ)

dφ = dφBL + (a/∆) dr (8.206)

dT = dtBL +
[ 1+ Y

1+ Y − Z
− 1− Zk

1− Z

]
dr, (8.207)

where Y = a2 sin2 θ/�2, Z = 2Mr/�2, and k is a nonnegative integer that parame-
terizes the family (natural units are used throughout). All members of the family are
regular at the horizon; hence, the algebraically simplest choice (k = 1) is preferred.
This corresponds to the so-called Kerr–Schild (KS) form of the Kerr metric given
by the coordinate transformation

dφ = dφBL + (a/∆) dr (8.208)

dT = dtBL + 2Mr dr

∆
. (8.209)

With this choice, the line element becomes

ds2 = −(1− Z) dT 2 − 2aZ sin2 θ dT dφ + 2Z dT dr

+(1+ Z) dr2 − 2a(1+ Z) sin2 θ dr dΦ + �2 dθ2

+ sin2 θ[�2 + a2(1+ Z) sin2 θ] dφ2 . (8.210)

The regularity at the horizon, which is located at the largest root of the equation
(∆ = 0), is manifest.

The regularization of the horizon introduces two new nonzero metric ele-
ments, as well as a nonvanishing shift vector component βr . However, this ad-
ditional algebraic complexity should not be much of a concern for relativis-
tic integration algorithms that must be designed to handle a general metric. On
the other hand, it is a fact that considerable intuition and mathematical tools
have been obtained in the simpler frozen star form of the Kerr metric. This
background work can still be used by transforming geometric quantities back
and forth. For stationary accretion patterns, this process is entirely straightfor-
ward.
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For k = 1, the nonzero components of the lapse, shift, and three-metric are then
given by

α = �√
�2 + 2Mr

(8.211)

βr = 2Mr

�2 + 2Mr
(8.212)

γrr = 1+ 2Mr

�2
(8.213)

γrφ = −
[

1+ 2Mr

�2

]
a sin2 θ (8.214)

γθθ = �2 (8.215)

γφφ =
[

r2 + a2 + 2Mr

�2
a2 sin2 θ

]
sin2 θ . (8.216)

The inverse components are given by

βr = 2Mr/�2 (8.217)

βφ = −2aMr sin2 θ/�2 (8.218)

γ rr = Σ2

�2(�2 + 2Mr)
(8.219)

γ θθ = 1/�2 (8.220)

γ rφ = a/�2 (8.221)

γφφ = 1/�2 sin2 θ . (8.222)

Cartesian coordinate components can be obtained from these via the standard Kerr–
Schild coordinate transformations

x = (r cosφ − a sinφ) sin θ , y = (r sinφ + a cosφ) sin θ , z = r cos θ . (8.223)

This yields the implicit definition of r from

r4 − r2(x2 + y2 + z2 − a2)− a2z2 = 0 , (8.224)

with r > 0 and r = 0 on the disk described by z = 0 and x2 + y2 < a2.
The outward unit normal s on the two-surface rH = const. is obtained from

si = (α, 0, 0) with γ ik si sk = 1

si =
(
�

√
�2 + 2Mr

Σ2
, 0, 0

)
(8.225)

si =
(

1

�

√
Σ2

�2 + 2Mr
,

a

�

√
�2 + 2Mr

Σ2
, 0

)
. (8.226)
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The unit time-like normal toΣt is then deduced from the values of the lapse function
and the shift vector

nµ =
(√
�2 + 2Mr/�, 0,−2Mr/�

√
�2 + 2Mr, 0

)
(8.227)

and

nµ =
(
−�/

√
�2 + 2Mr, 0, 0, 0

)
. (8.228)

Finally, the extrinsic curvature can be calculated

Krr = 2M(a2 cos2 θ − r2)(�2 + Mr)/�5
√
�2 + 2Mr (8.229)

Krθ = 2a2 Mr sin θ cos θ/�3
√
�2 + 2Mr (8.230)

Krφ = aM(r2 − a2 cos2 θ) sin2 θ
√
�2 + 2Mr/�5 (8.231)

Kθθ = 2Mr2/�
√
�2 + 2Mr (8.232)

Kθφ = −2a3 M sin3 θ cos θ/�3
√
�2 + 2Mr (8.233)

Kφφ = r + a2 M(a2 cos2 θ − r2) sin2 θ/�4 . (8.234)

In Kerr–Schild coordinates (t, x, y, z) the metric is given by

gµν = ηµν + 2Hlµlν , (8.235)

where ηµν is the Minkowski metric, and lµ is a null-vector with respect to both the
full metric and the Minkowski metric, gµνlµlν = 0 = ηµνlµlν. From this we obtain
the lapse function, the shift vector and the spatial metric

α = 1/
√

1+ 2Hltlt (8.236)

βi = − 2Hltli

1+ 2Hltlt
(8.237)

γik = δik + 2Hlilk . (8.238)

For a black hole of mass M and angular momentum Ma at rest at the origin, H and
lµ are given by

H = Mr3

r4 + (a · x)2 (8.239)

lµ = (1, l) (8.240)

l = rx− a× x+ (a · x)a/r
r2 + a2

, (8.241)

where

r2 = x2 − a2

2
+

√
(x2 − a2)2

4
+ (a · x)2 . (8.242)

For a nonrotating black hole, a = 0, H has a pole at the origin, whereas for a rotating
black hole H has a ring singularity.
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Harmonic Coordinates

Harmonic time-slicing is integral to some hyperbolic formulations of general rela-
tivity, and a time-independent harmonic slicing of the Kerr geometry does exist. The
harmonic time-slicing condition is �t = 0, which can be written

1√−g
∂µ[√−g gtµ] = 0 . (8.243)

This equation is satisfied by using the coordinate choice

t = V − r + 2M ln

∣∣∣∣ 2M

r − r−

∣∣∣∣ , φ = Φ . (8.244)

For k = 1, the nonzero components of the lapse, shift, and three-metric are then
given by

α−2 = 1+ 2Mr

�2

(
r + r+
r − r−

)
+ r2+ + a2

�2

(
2M

r − r−

)
(8.245)

βr = α2 r2+ + a2

�2
(8.246)

βφ = −α2 a

�2

2M

r − r−
(8.247)

γrr =
[
2−

(
1− 2Mr

�2

)
r + r+
r − r−

] r + r+
r − r−

(8.248)

γrΦ = −
[
1+ 2Mr

�2

r + r+
r − r−

]
a sin2 θ (8.249)

γθθ = �2 (8.250)

γΦΦ =
[
r2 + a2 + 2Mr

�2
a2 sin2 θ

]
sin2 θ . (8.251)

For the harmonic slicing, the hypersurface is space-like only outside the Cauchy
horizon at r > r−.

8.4 Rotational Energy and the Four Laws
of Black Hole Evolution

Roger Penrose and Stephen Hawking showed 30 years ago that, according to general
relativity, any object that collapses to form a black hole will go on to collapse to
a singularity inside the black hole. This means that there are strong gravitational
effects on arbitrarily short distance scales inside a black hole. On short distance
scales, we certainly need to use a quantum theory to describe the collapsing matter.
The presence of a singularity in the classical theory also means that once we go
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Table 8.2. The four laws of black hole evolution are in strict one-to-one correspondence with
the four laws of thermodynamics

Law Thermodynamic systems Black Holes

Zero T = const surface gravity κH is const on Horizon
in thermal equilibrium of stationary BHs

First dE = T dS + dW dMH = (κH/8π) dAH +ΩH dJH

Second entropy always increases, area of BH always increases, δAH ≥ 0
δS ≥ 0 for all processes for all processes involving BHs

Third T = 0 can be never reached κH = 0 can be never reached

sufficiently far into the black hole, we can no longer predict what will happen. It is
hoped that this failure of the classical theory can be cured by quantizing gravity as
well.

Using quantum field theory, Hawking has shown that a black hole will ra-
diate thermally. That is, if we study quantum matter fields on a classical black
hole background, we find that, when the matter fields are initially in the vac-
uum (that is, there is no matter falling into the black hole), there is a steady
stream of outgoing radiation, which has a temperature determined by its mass and
charge.

This is an extremely startling discovery; classically, no radiation can escape
from a black hole, but if we quantize the matter fields, we find there is steady flux
of radiation coming out of the black hole! This outgoing radiation decreases the
mass of the black holes, so eventually the black hole will disappear. The temper-
ature goes up as the black hole gets smaller (unlike most things, which cool off
as they lose energy), so the black hole will disappear abruptly, in a final flash of
radiation.

There is an analogy between the classical laws governing black holes, and the
laws of thermodynamics. But thermodynamics is just an approximate description
of the behavior of large groups of particles, which works because the particles
obey statistical mechanics (a branch of quantum theory). Since black holes have
a nonzero temperature, the classical laws of black holes are the laws of thermo-
dynamics applied to black holes. Hence, there must be some more fundamental
description of the classical laws governing black holes in terms of statistical me-
chanics.

8.4.1 Surface Gravity and Angular Velocity of the Horizon

Near the horizon, we can Taylor expand the redshift factor

α(r+) = 0 , r+ = M +
√

M2 − a2 (8.252)

α2
H =

�2

Σ2
∆ �

(
1− a2 sin2 θ

2Mr+

)(
r+ − M

Mr+

)
(r − r+) . (8.253)
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This surface is still spherical, but the rotation slightly deforms it

ds2
H = �2

H dθ2 + R2
H dφ2 = γAB dx A dx B (8.254)

�2
H = r2

+ + a2 cos2 θ = 2MHrH − a2 sin2 θ (8.255)

RH = ΣH

�H
sin θ = 2Mr+ sin θ√

r2+ + a2 cos2 θ

. (8.256)

The circumference at the equator is given by

CH = 2π RH = 4π M (8.257)

independent of the angular momentum JH ! Consider now the two-space spanning
the null surface. The surface of the horizon can be computed

AH =
∫ π

0

∫ 2π

0

√
gθθ gφφ dφ dθ

= 2π
∫ π

0

√
sin2 θ Σ2 dθ

= 4π (r2
+ + a2) = 8π M r+ . (8.258)

Surface Gravity

Let uµ be the velocity field of a stationary observer. Then its four-acceleration is
given by

aµg = (u�∇�)uµ . (8.259)

For the static observer this yields (see the TOV equation)

agµ = ∇µα , (8.260)

where α2 = �2∆/Σ2 is the redshift factor in the Kerr geometry. With this quantity
we form a scalar acceleration

ag =
√
−agµ aµg = 1

α

√−(∇µα)(∇µα) . (8.261)

This quantity diverges for r → r+, as shown, for example, by its expression for the
Schwarzschild geometry

agµ = G M

r2(1− 2G M/r)
∇µr , (8.262)

i.e.

ag = G M

r2
√

1− 2G M/r
. (8.263)
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We therefore renormalize the acceleration by means of the redshift factor

κ = α ag . (8.264)

This quantity, which is called surface gravity of the horizon, now remains finite at
the horizon and its value is given for the Kerr geometry

κH = r+ − M

2Mr+
. (8.265)

A fiducial observer (ZAMO) would measure a diverging force in the vicinity of
the hole, ag = −∇ lnα "→ ∞. By renormalization of this force (at time basis t) one
gets the surface gravity of a black hole

gH "→ αH agH = −κH n , κH = c2 r+ − M

2Mr+
. (8.266)

n is the normal vector to the horizon, n = ∇α/|∇α| = er .

Zeroth Law: Both, surface gravity, κH , and rotation of the hole,ΩH , are constant
at the horizon (i.e. independent of the poloidal angle θ). The surface of the black
hole acts like a rigid rotator.

8.4.2 First Law of Black Hole Dynamics

The total amount of mass-energy of a black hole, MHc2, consists as in the case of
a rotating star of two parts. Therefore, we consider the surface AH = 8π MH r+,
and apply

AH = 4π(r2
+ + a2) = 4πr2

+ + 4π
J2

H

M2
H

= A2
H

16πM2
H

+ 4π
J2

H

M2
H

. (8.267)

Solving this relation for MH , we get the mass as a function of surface and angular
momentum

MH = MH(AH , JH) =
√

AH

16π
+ 4π

J2
H

AH
. (8.268)

In this way, we found a separation of the total energy into two contributions, whereas
the second term corresponds to the rotational energy. One can show that the surface
gravity, κH , and the angular velocity of the hole, ΩH , act as intensive variables,
while AH and JH are the corresponding extensive variables

κH

8π
=

(
∂MH

∂AH

)
JH

, ΩH =
(
∂MH

∂JH

)
AH

. (8.269)
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So, the First law of black hole dynamics holds

dM = κH

8π
dAH +ΩH dJH (8.270)

for the transition of a black hole from one stationary state to another. This is in
full analogy to the first law of thermodynamics if the surface of the hole can be
interpreted as an entropy and the surface gravity, κH , stands for a temperature. The
corresponding proportionality constants cannot be derived classically.

Hawking found in 1974 that a black hole indeed emits thermal radiation (called
Hawking radiation) as if the horizon would have a temperature, TH , given by

TH = �

2πkBc
κH � 6.17× 10−8 K

M�
MH

. (8.271)

This is known as the Hawking temperature. Therefore, one can assign an entropy
to black holes that is proportional to its surface

SH = kB

4�
AH = kB

4

Horizon Surface

(Plancklength, 1.6× 10−33 cm)2
(8.272)

with (ΛP =
√
�G/c3 as the Planck length). In case of a nonrotating black hole, this

leads to extremely large values for the entropy

SH = 16πkB

4�
M2

H = 1.05× 1077 kB(MH/M�)2 . (8.273)

This entropy is 1019 times S�(� 1058 kB) for stellar black holes. Supermassive
black holes have such small temperatures that the entropy cannot sufficiently de-
crease via emission of Hawking radiation. In principle, it is still possible to extract
angular momentum, i.e. rotational energy. Then, one would arrive at a hole with
the same entropy (same surface area) as the incident hole (reversible process). This
corresponds to a mass of

Mirr =
√

AH

16π
= 1

2

√
r2+ + a2 , (8.274)

called the irreducible mass of a black hole. Irreducible mass, surface area and en-
tropy, SH , are equivalent expressions for black holes. The first law can be formulated
as

dMH = TH dSH +ΩH dJH , (8.275)

with temperature, TH , and black hole angular velocity, ΩH ,as intensive variables

TH =
(
∂MH

∂SH

)
JH

, ΩH =
(
∂MH

∂JH

)
SH

. (8.276)

Hence, the total energy also satisfies

M = M(SH , JH) =
√
�

4πkB
SH + πkB

�

J2
H

SH
. (8.277)
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The Holographic Principle

Under normal circumstances, a vacuum is a space in which there is no matter. But
at the quantum level, the vacuum is full of particles and antiparticles that constantly
appear and disappear. The Heisenberg uncertainty principle allows these virtual
particles and antiparticles to emerge from the vacuum for a brief moment and
disappear back into the vacuum again without violating the energy conservation law.
According to Hawking, if a particle/antiparticle pair is created near the event horizon
of a black hole, gravity will pull one of the particles into the hole permanently, while
the other particle (or antiparticle) can escape, or be radiated, from the black hole.

The typical Hawking radiation temperature from solar-mass-sized black holes is
close to absolute zero, and radiation becomes fainter as the temperature decreases.
Though of fundamental importance in physics, Hawking radiation is very hard to
observe directly from space. One curious feature about Hawking radiation is that the
temperature is inversely proportional to the mass of the black hole. Thus, the only
black holes that might render detectable radiation would be primordial mini-holes
that may have formed shortly after the Big Bang. Such black holes would have
a mass of 1015 grams, but a size smaller than an atom. The possibility of detecting
such mini-holes, however, is uncertain.

In 1976, Bill Unruh of the University of British Columbia showed that an accel-
erated observer would experience a similar heat bath of photons around him or her,
due also to the existence of an event horizon. The temperature of the heat bath fol-
lows the same Hawking temperature formula, except that instead of the gravitational
force, it is proportional to the magnitude of the observer’s acceleration. Although
the Unruh effect induced by acceleration is not precisely the Hawking effect from
black holes, it nevertheless shares many common characteristics. It is therefore an
intriguing idea that the Hawking effect could be studied using violent acceleration
in the laboratory setting, since the temperature associated with the Unruh effect can
be much higher if the observer is intensely accelerated.

Chen at SLAC theorized that it should be possible to detect the Unruh radiation
emitted by electrons that are accelerated by ultra-intense lasers. One major challenge
with detecting Unruh radiation is that enormous accelerations are required to produce
sufficient radiation. For example, one would need to accelerate a particle over 1020

meters per second squared to generate a temperature of 1 K. It turns out that state-of-
the-art lasers can deliver pulses of less than a picosecond (one-trillionth of a second)
with petawatts (1015 watts) of power. These technologies can in principle accelerate
electrons over 1025 times the acceleration due to the gravity on Earth’s surface, or
1028 m/sec2, more than two orders of magnitude higher than previous experimental
proposals.

The Holographic Principle, yet unproven, states that there is a maximum amount
of information content held by regions adjacent to any surface. Therefore, counter-
intuitively, the information content inside a room depends not on the volume of the
room but on the area of the bounding walls. The principle derives from the idea that
the Planck length, the length-scale where quantum mechanics begins to dominate
classical gravity, is one side of an area that can hold only about one bit of information.
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The limit was first postulated by physicist Gerard ’t Hooft in 1993 [391]. It can arise
from generalizations that the information held by a black hole is determined not by its
enclosed volume but by the surface area of its event horizon. The term holographic
arises from a hologram analogy where three-dimensional images are created by
projecting light through a flat screen.

8.4.3 Rotational Energy of Astrophysical Black Holes

Consider that the total energy MHc2 is not homogeneous in first order in extensive
variables AH and JH , moreover this is true in order 1/2. Therefore, the black hole
mass holds due to the Euler theorem for homogeneous functions (Smarr formula)

MH = κH

4π
AH + 2ΩH JH = 2TH SH + 2ΩH JH . (8.278)

For a black hole embedded in a material environment, there is an additional con-
tribution by the nonvanishing energy–stress tensor, Tµν. Total mass, M∞, and total
angular momentum J∞ as measured in the asymptotical flat region satisfy

M∞ = κH

4π
AH + 2ΩH JH −

∫
Σ

(2Tµν − Tδµν ) kν dσµ , (8.279)

J∞ = JH +
∫
Σ

Tµν mν dσµ . (8.280)

The integration extends over a space-like hypersurfaceΣ that intersects the horizon
in a 2D surface.

After this considerations, the rotational energy of a rotating black hole holds

Erot/c
2 = MH − Mirr =

√
M2

irr +
J2

H

4M2
irr
− Mirr (8.281)

or

Erot = MHc2
[

1−
√

1

2
(1+

√
1− a2∗)

]
� 5× 1054 a2

∗ MH,8 watts , (8.282)

where MH,8 is the mass of the black hole in units of 100 million solar masses. The
maximum value of this rotational energy is then

Erot,max = (1−
√

1/2)MHc2 = 0.29 MHc2 , (8.283)

i.e. 29% of the total energy of an extremely fast rotating black hole sticks in rota-
tion! Only for slowly rotating objects, the summation over energies is linear, with
rotational energy

Erot � 1

2
IH Ω

2
H , IH = MHr2

+ . (8.284)
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In fast rotating black holes, there is a greater amount of energy as compared to
supermassive rotators with the same mass. Hence, a black hole disposes of a second
energy channel besides accretion energy. If this energy is extracted within the lifetime
of an AGN that harbors a central supermassive black hole, then this luminosity
is comparable to the accretion power. This process is analogous to the decay of
rotational energy in neutron star physics in the pulsar state. This analogy hints for
two classes of AGN: One class gets the luminosity from accretion, the other class
from rotation.

8.4.4 On the Second and Third Laws of Black Hole Dynamics

The analogy between surface AH and entropy SH suggests that the surface is not
allowed to decrease via any process. Of course, this is the meaning of the irre-
ducible mass. This is a consequence of a consideration of time dependent hori-
zons [107].

The FIDO velocity field UFIDO = (ξ+ωm)/α becomes a null field at the horizon

l = ξ +ΩH m , lµ = dxµ

dt
, lµ lµ = 0 , (8.285)

with a renormalization of universal time t. Then, l is a generator field of the 3D
horizon and has a geodetic property (outgoing photons on the horizon). Even a non-
stationary horizon is generated by such a null geodesics field l. The parameter t has
a similar meaning as in the Kerr geometry. The space intersection of the horizons
represents a kind of compact bubble that moves with t and changes in form. In
general, this bubble AH does not satisfy axisymmetry but there is

l = ∂t + vA ∂

∂x A
, A = 2, 3 , ∇ll = κH l . (8.286)

Generally speeking, the bubble has a time-dependent metric

ds2
|ΣH

= γAB(t) dx A dx B . (8.287)

γ = det γAB defines a surface element dΣH = √γ dx2 dx3, which has an expansion

ΘH = 1

2
γ AB dγAB

dt
(8.288)

and shear

2σH
AB =

dγAB

dt
−ΘH γAB , σ

H,A
A = 0 . (8.289)

Therefore, one arrives at the time evolution of the surface

D dΣH

dt
= ΘH dΣH . (8.290)



8.4 Rotational Energy and the Four Laws of Black Hole Evolution 407

Expansion and shear fulfill geometrical identities, the so-called Raychoudhuri equa-
tions

dΘH

dt
− κH ΘH = −8π D (8.291)

8π D = 1

2
Θ2

H + σH
AB σ

H,AB + Rαβ lα lβ (8.292)

dσH
AB

dt
− (κH −ΘH) σ

H
AB = +(2σH

AC + γACΘH) σ
H,C
B − E H

AB , (8.293)

with E H
AB as tidal forces at the horizon.

Especially, the growth of the surface elements can be computed to

ln

(
dΣ1

dΣ0

)
=

∫ t1

t0

ΘH dt . (8.294)

For a transition of two stationary state, one gets with (8.291)

δ(dΣH) = 8π

κH
dΣH

∫ t1

t0

(
1

16π
Θ2

H +
1

8π
σH

ABσ
H,AB + 1

8π
Rαβ lα lβ

)
dt .

(8.295)

Together with Einstein’s equation, the change of the horizon’s surface is given by

δAH =
∮

8π

κH
dΣH

∫ t1

t0

(
1

16π
Θ2

H +
1

8π
σH

ABσ
H,AB + Tαβ lα lβ

)
dt ≥ 0 .

(8.296)

The first term describes dissipation from expansion and shear of horizon generators.
The second term depicts the energy flow into the hole. Hence, the second law of
black hole dynamics satisfies:

In any classical accretion process and in any interaction between matter or
radiation with the black hole, the horizon area, AH , can never decrease with
time.

These relations state explicitly that a stationary horizon is not allowed to reveal
expansion and shear

ΘH = 0 = σH
ABσ

H,AB , Rαβ lα lβ = 0 . (8.297)

Besides this, the second law implies that in a possible collision of two black holes –
which may happen in the center of a galaxy – the surface area of the resulting merged
black hole always exceeds the sum of the two separate progenitor black holes. So,
the following relation can be deduced

M H

(
MH +

√
M2

H − a2
H

)
≥ M1

(
M1 +

√
M2

1 − a2
1

)
+ M2

(
M2 +

√
M2

2 − a2
2

)
. (8.298)
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The efficiency of the energy gain is then in turn

ε = M1 + M2 − MH

M1 + M2
<

1

2
. (8.299)

Two colliding nonrotating black holes with equal mass result in ε ≤ 1 − 1/
√

2 =
0.293.

The explicit form of the surface gravity κH (8.266) (temperature) suggests a third
law:

The surface gravity, κH , can never reach zero via a finite number of opera-
tions at a stationary state; the faster the black hole rotates, the harder it is to
reach the extreme Kerr solution.

8.5 Time Evolution of Black Holes

Astrophysical black holes grow by merging processes and by accretion of vast
amount of gas, for example, in the nuclei of galaxies. As a consequence, the mass
and angular momentum of black holes will change over the lifetime of the Universe.
In this section, we discuss two aspects of this problem: the growth of black holes by
accretion of mass and angular momentum, and the formation of new black holes by
means of merger processes. This latter event will produce gravitational waves which
will be detected in the near future by a new generation of laser interferometer gravita-
tional wave detectors. The coalescence and merger of binary black holes is expected
to be one of the primary gravitational radiation to be detected by interferometric
gravitational wave detectors. For large binary separations, post-Newtonian approxi-
mations can be used to model the binary inspiral with good accuracy [78]. For small
binary separations, when finite size and nonlinear effects become more important,
only numerical relativity simulations are expected to provide exact wave forms.

8.5.1 Quasistationary Evolution of Accreting Black Holes

The characteristic parameters of rotating black holes are not only mechanical vari-
ables, but at the same time thermodynamical ones. For the energy, entropy and
angular momentum are the independent quantities, it is however possible to choose
temperature and entropy, or angular velocity and angular momentum as independent
variables [313]. In this way, one can study evolutionary tracks in the state space, as,
for example, adiabatic processes, defined by

dSH = 0 , dMH = ΩH dJH , (8.300)

or processes characterized by an equilibrium between entropy production and ex-
traction of rotational energy

−dMH = TH dSH = −1

2
ΩH dJH . (8.301)
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Black holes mainly evolve through accretion and merging processes. By accretion
a black hole gains angular momentum and is speeding up [55]. This process is very
similar to the spin-up of accreting neutron stars in LMXBs, which finally produces
the millisecond pulsar. Under the assumption that gas accretes from the marginally
stable orbit, this gas will bring in a specific angular momentum and a specific internal
energy, so that mass and angular momentum of the black hole will grow by the amount

dMH = Ein dM0 , dJH = L in dM0 , rin = rms . (8.302)

This provides us an evolution for the specific angular momentum of the black hole
with increasing mass

d(a/M)

d ln MH
= 1

MH

L in

Ein
− 2a∗ ,

dMH

dM0
= Ein , (8.303)

where Ein = Ein(M, a∗), and L in = L in(M, a∗). By integrating this equation, we ob-
tain the evolution of the specific angular momentum and mass, with initial condition
a(Mi) = 0,

a∗ =
√

2

3

Mi

MH

(
4−

√
18M2

i /M2
H − 2

)
, (8.304)

M0 − M0i = 3Mi
(
sin−1(MH/3Mi)− sin−1(1/3)

)
, (8.305)

where 1 ≤ MH/Mi ≤
√

6. In particular, in the limit a∗ "→ 1 we find

M0 − M0i = 3Mi

(
sin−1(

√
2/3)− sin−1(1/3)

)
+√3

(
MH −

√
6Mi

)
,

(8.306)

for MH/Mi ≥
√

6. MH is the total mass of the hole, M0 denotes the accreted
mass, and Mi,M0i the initial value. According to this, a nonrotating black hole
with initial mass Mi and initial specific angular momentum a∗ = 0 will grow to-
wards an extreme Kerr hole, a = M, by accreting a mass ∆M0 = 1.8464 Mi , while
its total mass changes by ∆M = (

√
6 − 1)Mi = 1.4459Mi . For MH = √

6Mi ,
we find SH = 3Si with initial entropy Si , and therefore with an entropy change
∆S = 2Si . This leads to an expansion of the horizon radius by the amount√

6/2 = 1.2247. For the irreducible mass Mirr = MH/
√

2 = √
3 Mi , one finds

therefore∆Mirr = (
√

3− 1)Mi = 0.7321Mi , corresponding to a change in the rota-
tional energy ∆Erot = (

√
6−√3)Mi = 0.7174Mi . The rotational energy amounts

to 29% of the total massMH , however, 49% comes from the accreted mass ∆M.
This would obviously be in contrast to the third law of black hole mechanics,

since extreme Kerr is reached by accretion of a finite amount of mass. A more
careful analysis shows, however, that there is no contradiction. We can write the
above evolution equations as

d ln MH

dt
= Ṁacc

MH

Ein

c2
(8.307)

da∗
dt
= Ṁacc

MH

[
j0(a)− 2a∗ e0(a)

]
, (8.308)
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where j0 = c jin/G MH , e0 = Ein/c2, and a∗ = a/M is the dimensionless Kerr
parameter. This shows that both mass evolution and angular momentum evolution
are given by the accretion time-scale, called the Salpeter time,

tS = MH

Ṁacc
= 1

ṁ

MH

ṀEdd
= 4× 107 yrs

εH

0.1ṁ
. (8.309)

Accretion from the marginally stable orbit satisfies the third law of black hole
mechanics, since j0(a) − 2ae0(a) → 0 for a → 1 (i.e. in the extreme Kerr case).
Including Poynting flux losses from the ergosphere, given by P , the above equations
are then changed to

d ln MH

dt
= Ṁacc

MH

Ein

c2
− P

MHc2
(8.310)

dJH

dt
= Ṁacc L in − P

ΩF
. (8.311)

ΩF denotes the angular frequency of magnetic field lines penetrating the ergosphere.
Poynting flux emerging from the ergosphere will extract angular momentum and
therefore slow down the rotation of the black hole. In the Blandford–Znajek model
(see Sect. 8.6), the Poynting flux follows from the expression

P � 1

8

B2
Hr4

H

c
ΩF(ΩH −ΩF) , (8.312)

where BH is the magnetic field strength at the horizon. With this, the evolution of
the specific angular momentum follows from

da

dt
= Ṁacc

MH
[ j0(a)− 2a e0(a)]

+2a
P

MHc2
− ΩH

8
(1−ΩF/ΩH)

rHc2

G MH

B2
Hr3

H

MHc2
. (8.313)

The angular momentum loss is then effectively driven by the rotation time-scale,
which is, however, prolonged by a huge factor given by the the black hole energy
contained in the horizon volume compared to the total magnetic energy in this
volume. Under realistic conditions, magnetic energy is only a tiny fraction of the
total black hole energy. For this reason, accretion will always win, and the black
holes end up near the extreme Kerr state.

The above arguments, therefore, show that accreting black holes are always
driven towards rapidly rotating black holes. Black holes in interaction with magnetic
fields could indeed find an equilibrium state with a specific angular momentum near
the maximal one. For this reason, black holes found in quasars and other active
galactic nuclei are expected to be rapidly rotating objects, similar to the neutron
stars found in low-mass X-ray binary systems.
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8.5.2 Merging of Black Holes

Binary black hole systems are formed in centers of galaxies, when the cores of
two galaxies merge. Such processes are expected to occur frequently in the early
Universe, when galaxies form by merging from smaller entities. Black holes will
spiral to the common center of the newly formed galaxy by means of dynamical
friction. When they come into the range of a few hundred Schwarzschild radii, their
further evolution is triggered by the emission of gravitational waves. As a result, the
orbits of the two supermassive black holes will tighten by spiraling inwards. This
binary black hole problem is still largely unsolved.

The general interest is how the two black holes orbit each other, spiral inwards
and eventually merge to form a new black hole. In this process gravitational waves
are emitted which should be detectable with future wave detectors (LIGO, VIRGO,
GEO and LISA). In the early phase of inspiral, post-Newtonian methods can be
applied (Blanchet et al. [77]). But the final evolution has to be treated within full
general relativity. This three-dimensional two-black-hole problem has not yet been
generally solved. There are two nasty inherent problems which inhibit a simple
numerical treatment:

– gauge freedom of Einstein’s equations: gauge freedom refers to the freedom to
choose coordinates. This is in general not practicable for the entire spacetime in
advance. In the coordinate construction process, one has to avoid the formation
of coordinate singularities.

– the appearance of a singularity in the case of black hole formation.

Significant progress has been made in the last few years in the dynamical evo-
lution of binary black hole scenarios even in 3D. All these attempts are still facing
stability problems that are not completely understood. One reason for the origin of
these problems is the handling of the black hole singularities. Simulations of black
holes are severely complicated by the presence of singularities. Computers are not
built to handle singularities. One method is based on excising the black hole interior.
Black hole excision is currently considered the most promising approach to avoid
singularities in dynamical simulations. For a discussion of these aspects see, e.g.
Baumgarte and Shapiro [62].

Fundamental Equations of Black Hole Mergers

As in the stationary case, spacetime is decomposed into (3+1) dimensions, a proce-
dure which is generally called (3+1)-split of the line element

ds2 = −α2 dt2 + γik(dxi + βi dt)(dxk + βk dt) . (8.314)

This is the generalization of the axisymmetric decomposition. This foliation of four-
dimensional spacetime into hypersurfaces Σ is characterized in terms of the lapse
function α and a shift vector β . γ is now the intrinsic metric of the hypersurface Σ.
The dynamical fields are the three-metric γik and its extrinsic curvature Kik, both
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depending on space and time t. The time evolution of these fundamental quantities
is then given in terms of the Arnowitt–Deser–Misner (ADM) formalism [429] (see
Sect. 2.8)

∂tγik = −2α Kik + Diβk + Dkβi (8.315)

∂t Kik = −Di Dkα+ α(Rik − 2Kim K m
k + KKik)

+βm Dm Kik + Kim Dkβ
m + Kmk Diβ

m (8.316)

The extrinsic curvature Kik acts as a kind of momenta for the metric elements. The
lapse function α and the shift vector β have to satisfy the constraint equations on
each hypersurface

R − Kik Kik + K 2 = 0 (8.317)

Dm(Kim − gim K) = 0 . (8.318)

Rik is the Ricci tensor of the hypersurface, R its trace and K the trace of the extrinsic
curvature. Di denotes the covariant derivative derived from the three-metric γ .
Usually, one starts with conformally flat spaces [87]

γik = ψ4 δik , Kik = ψ−2 K̄ik . (8.319)

Head-on Collisions

The simplest problem which can be treated is a head-on collision of two black holes,
the so-called grazing collision of two black holes (Fig. 8.13, upper panel). In these
simulations, two black holes of different masses start from well within the ISCO and
are boosted toward each other with a certain impact parameter. The two black holes
start out with separate marginally trapped surfaces forming the apparent horizon.
In the course of the evolution, a single marginally trapped surface appears which
surround the inner trapped surfaces (Fig. 8.13, lower panel). The apparent horizon
is defined by a kind of minimal surface equation, and does not evolve continuously,
rather a new minimal surface appears at a new location. The shading of the surfaces is
a measure for the Gaussian curvature of the surfaces. Alcubierre et al. [28] were able
to achieve evolution to about 30 M. This is important since the lowest quasinormal
mode for a Schwarzschild black hole has a period of about 17 M, which sets the
approximate scale for the expected gravitational wavelengths in the ring-down phase.

8.6 Geodesics in the Kerr Geometry

Near black holes in the center of galaxies, stars move on geodesics of the Kerr
metric. Similarly, photons escaping from accretion disks near black holes propagate
along null geodesics. Such photons get redshifted by the strong gravitational field of
the black hole, undergo Doppler shifts, and their trajectories are distorted by lensing
effects. For the understanding of spectra emitted by accretion disks around neutron
stars and black holes, one needs a relativistic treatment of the photon transport on
curved spacetimes.
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Fig. 8.13. Two black holes in head-on collision (top): the merger of apparent horizons (bottom)
in the simulations of Alcubierre et al. [28]. Finally, a new horizon has been formed which
surrounds the old ones. This configuration will relax towards a Kerr black hole by means of
emission of gravitational waves. The final black hole will only have two hairs: the mass and
the spin. Image Credit: AEI Golm
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8.6.1 Direct Integration of Geodesics Equations

The geodesics equation

dxµ

dλ
= pµ (8.320)

dpµ

dλ
= −Γ µ�σ p� pσ (8.321)

can be directly integrated with the affine parameter λ. These data are assembled into
an eight-dimensional vector X = [xµ, pµ] whose evolution with the parameter λ
will be integrated with some leapfrog or Runge–Kutta scheme. As an example of this
direct integration, we show the result of shooting photons towards a Schwarzschild
black hole in Fig. 8.14 and towards a Kerr hole along the equatorial plane in
Fig. 8.15.

In contrast to the nonrotating case, the geodesics are also dragged along by the
rotation of the black hole (Fig. 8.15). Near the horizon, photon trajectories are
dragged into corotation with the horizon.

When photons start under some inclination with respect to the rotational axis,
trajectories are wound up near the horizon (Fig. 8.16).

Fig. 8.14. Direct inte-
gration of null geodesics
starting at some distance
along the equatorial plane
for a nonrotating black
hole, a = 0. Figure pro-
vided by B. Zink (LSW
Heidelberg)



8.6 Geodesics in the Kerr Geometry 415

Fig. 8.15. Direct inte-
gration of null geodesics
starting at some distance
away along the equato-
rial plane for a rotating
Kerr black hole. Frame-
dragging is so strong
near the horizon that the
photon trajectories are
dragged into the rota-
tional direction. Far away
from the horizon, frame-
dragging has no influence
on the trajectories. Fig-
ure provided by B. Zink
(LSW Heidelberg)

Fig. 8.16. Direct inte-
gration of null geodesics
starting at some distance
at a given inclination with
respect to the rotatioanal
axis for a rotating Kerr
black hole. Figure pro-
vided by B. Zink (LSW
Heidelberg)
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8.6.2 Geodesics in the Equatorial Plane

For the discussion of the motion in the equatorial plane we can rely on similar
methods as in the Schwarzschild case (Sect. 8.2.2).

Integral of Motions

The equations of motion for test particles (stars and photons) in the Kerr geom-
etry are completely integrable. Generally, energy E, angular momentum L and
the rest mass are constants of motion in any stationary and axisymmetric space-
time

E = −pαkα = −pt = −gtt pt − gtφ pφ (8.322)

L = pαmα = pφ = gtφ pt + gφφ pφ (8.323)

m2 = p2 . (8.324)

This is a consequence of the Killing equation ∇(αξβ) = 0, which means then

−(pα∇α)E = ξβ(pα∇α)pβ + pα pβ∇(αξβ) = 0 . (8.325)

The Radial Equation

As in the case of the discussion of the geodesics in the Schwarzschild geometry, we
start from the energy integral

2L = −gµν
dxµ

dλ

dxν

dλ
, (8.326)

restricted to motions in the equatorial plane

2L = −
(

1− 2M

r

)
ṫ2 − 4aM

r
ṫφ̇ + r2

∆
ṙ2 +

[
r2 + a2 + 2a2 M

r

]
φ̇2 . (8.327)

Overdots denote differentiation with respect to an affine parameter. From this ex-
pression we obtain for the momenta

−pt =
(

1− 2M

r

)
ṫ + 2aM

r
φ̇ = E (8.328)

pr = r2

∆
ṙ (8.329)

pφ = −2aM

r
ṫ +

[
r2 + a2 + 2a2 M

r

]
φ̇ = L . (8.330)
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The corresponding Hamiltonian is given by

H = pt ṫ + pr ṙ + pφ φ̇ −L

= −1

2

(
1− 2M

r

)
ṫ2 − 2aM

r
ṫφ̇ + r2

2∆
ṙ2

+1

2

[
r2 + a2 + 2a2 M

r

]
φ̇2 . (8.331)

Since H is independent of t, we find

2H = −
[(

1− 2M

r

)
ṫ + 2aM

r
φ̇

]
ṫ + r2

∆
ṙ2

+
[(

r2 + a2 + 2a2 M

r

)
φ̇ − 2aM

r
ṫ

]
φ̇ . (8.332)

This can be written as

2H = −E ṫ + L φ̇ + r2

∆
ṙ2 = −δ1 (8.333)

where δ1 is an integration constant, which can be chosen as δ1 = −1 for time-like
geodesics and δ1 = 0 for null geodesics. With these expressions we can solve for
the velocity components in terms of the conserved quantities E and L

ṫ = 1

∆

[(
r2 + a2 + 2a2 M

r

)
E − 2aM

r
L

]
(8.334)

φ̇ = 1

∆

[(
1− 2M

r

)
L + 2aM

r
E

]
. (8.335)

When we insert this into the equation (8.333), we obtain the radial equation

r3ṙ2 = r3 E2 + 2M(aE − L)2 + r(a2 E2 − L2)+ δ1r∆ . (8.336)

Time-like Geodesics and Circular Orbits

For time-like geodesics we may write this in order of decreasing powers in r
as

r3ṙ2 = r3 E2 − r∆− r(L2 − a2 E2)+ 2M(aE − L)2 . (8.337)

E is now the total energy per unit mass of a particle (or star) and L the
angular momentum per unit mass. This radial equation can directly be ob-
tained from the conservation laws and the normalization of the four momentum,
p2 = −m2.
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The radial equation reduces to the Schwarzschild form in the case a = 0
(see Sect. 8.2.2) (

dr

dτ

)2

= E2 − V 2
S (8.338)

dφ

dτ
= L

r2
, (8.339)

with the effective potential defined as

V 2
S =

(
1− 2M

r

) (
1+ L2

r2

)
. (8.340)

The possible orbits in Schwarzschild have been discussed in Sect. 8.2.3.
In the case of Kerr, we cannot transform to a simple effective potential. For this

reason, we introduce, as in the Newtonian case, the variable u = 1/r and write the
radial equation as

u−4u̇2 = 2M(L − aE)2 u3 − (L2 − a2 E2) u2 − (a2u2 − 2Mu + 1)+ E2 .

(8.341)

We are now interested in circular orbits, u̇ = 0, for given values of E and L. For
circular orbits, the above cubic polynomial will have a double root. This is easily
calculated to be the case for

2Ml2 u3 − (l2 + 2alE) u2 − (a2u2 − 2Mu + 1)+ E2 = 0 (8.342)

and

3Ml2 u2 − (l2 + 2alE) u − (a2u − M) = 0 , (8.343)

where we have introduced the reduced angular momentum

l = L − aE . (8.344)

These two equations can be combined to give

E2 = 1− Mu + Ml2u3 (8.345)

and

2alEu = l2(3Mu − 1)u − (a2u − M) . (8.346)

We can eliminate the energy E from these two equations and combine them into
a quartic equation for l2

u2[(3Mu − 1)2 − 4a2 Mu3] l4

− 2u[(3Mu − 1)(a2u − M)− 2a2u(Mu − 1)] l2

+ (a2u − M)2 = 0 . (8.347)
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The discriminant of this equation is

D = 4a2 Mu3 D2
u , Du = a2u2 − 2Mu + 1 . (8.348)

With the introduction of

R± = 1− 3Mu ± 2a
√

Mu3 (8.349)

and the identity

(3Mu − 1)2 − 4a2 Mu3 = R+R− (8.350)

we find

l2u2 = R±Du − R+R−
R+R−

= 1

R∓
(Du − R∓) . (8.351)

The last factor can be written in the form

Du − R∓ = u
(

a
√

u ±√M
)2
. (8.352)

The two solutions for l can then be written

l± = −a
√

u ±√M√
u R∓

. (8.353)

The upper sign applies to retrograde orbits, while the lower sign applies to prograde
orbits.

Inserting this solution into the energy equation (8.345), we find

E = 1− 2Mu ∓ a
√

Mu3

√
R∓

, (8.354)

and the value of L to be associated with this value for E is

L = l + aE = ∓
√

M
[
a2u2 + 1± 2a

√
Mu3

]
√

u R∓
. (8.355)

For the following it is useful to transform back to radii. The energy per unit mass of
circular orbits is given as

E = r2 − 2Mr ∓ a
√

Mr

r
√

r2 − 3Mr ∓ 2a
√

Mr
, (8.356)

and the specific angular momentum as

L = ∓
√

MHr (r2 − 2a
√

Mr + a2)

r
√

r2 − 3Mr ∓ 2a
√

Mr
. (8.357)
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As stated above, the upper sign applies to retrograde orbits, the lower sign to pro-
grade orbits. We also went back to the geometrical notation for mass and Kerr
parameter.

We also can find expressions for the angular velocity Ω of circular orbits

Ω = dφ

dt
= L − 2Mul

(r2 + a2)E − 2aMlu
(8.358)

and for the velocity v(φ) of the orbit relative to Bardeen observers

v(φ) = #(Ω − ω)
α

=
(

r2 + a2 + 2Ma2

r

)
Ω√
∆
− 2aM

r
√
∆
. (8.359)

The relativistic Keplerian angular velocity of circular orbits is therefore given by

ΩK = ∓
√

M√
r3 ∓ a

√
M
. (8.360)

These orbits reach the velocity of light, E →∞ for r = rph, called photon orbit

rph = 2M

[
1+ cos

(
2

3
cos−1(−a/M)

)]
. (8.361)

As we will see in the discussion of null geodesics, such orbits are unstable.

Innermost Stable Orbit (ISCO)

A circular orbit with reciprocal radius uc is given by some specific values of E and
L. With these values chosen, the cubic polynomial on the right-hand side of equation
(8.336) will have a double root for u = uc, so we can reduce the radial equation to
the form

u−4u̇2 = 2M(L − aE)2 (u − uc)
2
[

u + 2uc − L2 − a2 E2 + a2

2M(L − aE)2

]
. (8.362)

From the expressions for E and L, we find

L2 − a2 E2 + a2

2Ml2
=

[
1+ 3a2u2

c ± 4a
√

Mu3
c

]
1

2
(

a
√

uc ±
√

M
)2 (8.363)

and

uc − L2 − a2 E2 + a2

2Ml2
= − Du

2
(

a
√

uc ±
√

M
)2 . (8.364)
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Accordingly we arrived at the expression for the radial equation

u̇2 = 2Ml2 u4 (u − uc)
2(u − u3) , (8.365)

where

u3 = −uc + Du

2
(

a
√

uc ±
√

M
)2 (8.366)

defines the reciprocal radius of the orbit of the second kind associated with stable
circular orbits of reciprocal radius uc (see next section).

The condition for the instability of the circular orbit is that uc is a triple root
(see the Schwarzschild case), i.e. u∗ = uc. Equation (8.366) therefore leads to the
condition

4uc

(
a
√

uc ±
√

M
)2 = Du = a2u2

c − 2Muc + 1 . (8.367)

This can be expanded to the form

3a2u2
c + 6Muc ± 8a

√
Mu3 − 1 = 0 , (8.368)

or, reverting to the variable r

r2
ms − 6M rms ± 8a

√
M rms − 3a2 = 0 . (8.369)

This quartic equation for
√

r defines the radius of marginal stability (also called the
innermost stable circular orbit (ISCO)). It can be solved with standard methods in
a parametrized form

rms = MH

(
3+ Z2 ∓

√
(3− Z1)(3+ Z1 + 2Z2)

)
(8.370)

with the parameters

Z1 = 1+ (1− a2
∗)

1/3 (
(1+ a∗)1/3 + (1− a∗)1/3

)
(8.371)

Z2 =
√

3a2∗ + Z2
1 . (8.372)

These radii are plotted as a function of the Kerr parameter a in Fig. 8.11.
Besides the limiting case E2 →∞, the marginally bound orbit which satisfies

E2 = 1 is of a certain interest. This orbit is reached when a particle, at rest at infinity,
falls towards the black hole. From the solution for l and the expression for the energy
E we find

1 = l2 u2 = u

R∓

(
a
√

u ±√M
)2
, (8.373)
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or

R∓ = 1− 3Mu ∓ 2a
√

Mu3 = u
[
a2u + M ± 2a

√
Mu

]
. (8.374)

This equation simplifies to [
au ± 2

√
Mu

]2 = 1 , (8.375)

or to the expression

rmb = 2M ± a + 2
√

M2 ± aM . (8.376)

All these three radii satisfy the inequality rms > rmb > rph for all values of the
Kerr parameter a. In the limit a → M, all three radii seem to converge towards the
horizon radius r+(a = M) = M. A more careful analysis of this limit by means of

a = M(1− δ) (8.377)

leads to

r+ = M
[
1+√2δ

]
+ O

(
δ3/2) . (8.378)

Therefore, we obtain the limits given in Table 8.3.
One might expect from the fact that, since all orbital radii tend to the horizon

radius for extreme Kerr, the energy of the marginally stable orbit tends to infinity.
A direct calculation from the expression for the total energy E gives however

E(a = M) = 1− 2Mu +√Mu3

1− 3Mu + 2
√

Mu3
→ 1/

√
3 , a → M . (8.379)

This gives the maximum energy per unit mass which a stable circular orbit can
have in a Kerr geometry with a2 ≤ M2. The maximum binding energy of this orbit
is therefore Ebind = 1 − 1/

√
3 = 70% of the rest mass. For all Kerr parameters

a, the binding energy of the innermost stable orbit is given by the total energy E,
Ebind = 1 − E(a). In an accretion process, half of this energy can be liberated
in terms of radiation from the disk around the black hole. This high gravitational
binding energy is the reason why black holes can so efficiently transform accretion
streams into radiation.

Table 8.3. Limiting radii of circular orbits for Schwarzschild and extreme Kerr

Orbit a = 0 a = M (1− δ) a = −M

rphoton 3M M
(
1+√8δ/3

)
4M

rmar. bound 4M M
(

1+ 2
√
δ
) (

3+ 2
√

2
)

M

rISCO 6M M
(
1+ [4δ]1/3) 9M
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Fig. 8.17. Angular velocity for quasi-Keplerian motion in the equatorial plane for a∗ = 0.5.
The lower solid curve represents the angular velocity determined by the specific angular
momentum, the upper curve is the result of both effects, frame-dragging (dotted curve) and
angular momentum. The vertical solid line marks the position of the outer horizon
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Fig. 8.18. Angular velocity for quasi-Keplerian motion in the equatorial plane for a∗ = 0.9999.
The meaning of the curves is the same as in the previous figure. Now, frame-dragging is the
dominant contribution within three gravitational radii

Near the horizon, rotational motion is dominated by frame-dragging. Within the
marginal stable orbit, matter falls towards the horizon at constant specific angular
momentum λ. Figure 8.17 shows the resulting angular velocity for a low Kerr
parameter, a = 0.5, given by

Ω(r) = ω(r)+ α2(r)

R2(r)

λ

1− ωλ . (8.380)



424 8 Black Holes

Beyond the marginal stable orbit, the specific angular momentum is given by equation
(8.355). In the extreme Kerr limit, rotation will be completely dominated by frame-
dragging within about four gravitational radii (Fig. 8.18).

This represents an extremely important insight into the properties of rapidly
rotating black holes. While in accretion disks, the evolution of the plasma is dictated
by the shear of the Keplerian motion, near the horizon this effect is completely
negligible and shear will always be dominated by frame-dragging.

8.6.3 Geodesics Including Lateral Motion

So far, we have only discussed motion in the equatorial plane. Including lateral
motion of matter would require a fourth constant of motion in order to be able
to solve the geodesics equations. It is another miracle of the Kerr geometry that
indeed such an integral of motion exists. Carter [105] has demonstrated explicitly
the separability of the Hamilton–Jacobi equation and deduced from this the existence
of a further integral of motion.

The Fourth Integral of Motion

The above discussed three integrals of motion do not allow us to solve completely
for the momenta. In stationary and axisymmetric spacetimes, one can, however, find
two additional conserved quantities, based on the existence of a symmetric Killing
tensor [411], Kαβ = Kβα, which has the essential property ∇ (

αKβγ
) = 0, and is

defined as

Kαβ = 2�2 l
(
αnβ

)− r2gαβ . (8.381)

Here, the metric is expressed in terms of the tetrads l,n,m

−gαβ = lαnβ + lβnα − mαm̄β − mβm̄α . (8.382)

For the Kerr geometry, these tetrads have the following form

l = 1

∆
(r2 + a2,∆, 0, a) (8.383)

n = 1

2�2
(r2 + a22,−∆, 0, a) (8.384)

m = 1

�̄
√

2
(ia sin θ, 0, 1, i/ sin θ) (8.385)

with l2 = 0 = n2 (null vector),

�̄ = r + ia sin θ (8.386)

and

l · n = 1 , m · m̄ = −1 . (8.387)
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We now define two scalars

K = Kαβ pα pβ = 2�2 (p · l)(p · n)− r2p2 (8.388)

K = 2�2 (p ·m)(p · m̄)+ a2p2 cos2 θ , (8.389)

which are then conserved along geodesic motions due to the Killing equation

(pα∇α)K = 2Kβγ pβ(pα∇α)pγ + pα pβ pγ∇(αKβγ) = 0 . (8.390)

Therefore, K will have the following form

K = 1

∆

(
pt − a∆ sin2 θ pφ

)2 − �
4

∆
(pr)2 − m2r2 (8.391)

and

K = (
a sin θpt − (r2 + a2) sin θ pφ

)2 + �4 (pθ)2 + m2a2 cos2 θ . (8.392)

On the other hand, we find for E and Lz the two relations

a sin θ pt − (r2 + a2) sin θ pφ = aE sin θ − Lz/ sin θ (8.393)

and

∆ pt − a∆ sin2 θ pφ = (r2 + a2)E − aLz . (8.394)

With this, we may rewrite the expression for K

K = 1

∆

(
(r2 + a2)E − aLz

)2 − �
4

∆
(pr)2 − m2r2 (8.395)

K = (aE sin θ − Lz/ sin θ)2 + �4 (pθ)2 +m2a2 cos2 θ . (8.396)

When solved for the momenta, this leads to explicit expressions for the poloidal
momenta

�4 (pr)2 = (
(r2 + a2)E − aLz

)2 −∆(m2r2 + K) (8.397)

�4 (pθ)2 = − (aE sin θ − Lz/ sin θ)2 + K − m2a2 cos2 θ . (8.398)

Separability of the Hamilton–Jacobi Equation

As we have discussed at various places, the geodesic equations follow from a varia-
tional principle

S[τ] =
∫ τ

0
L ds , L = −1

2
gαβ

dxα[λ(s)]
ds

dxβ[λ(s)]
ds

. (8.399)
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The Euler–Lagrange equations

d

ds

(
∂L

∂ ẋα

)
− ∂L

∂xα
= 0 (8.400)

imply then the geodesic equations (see Sect. 3.5). Via Legendre transformation we
obtain the Hamiltonian

H(x, p) = −ẋα(p) pα − L(x, ẋ(p)) = −1

2
gαβ(x) pα pβ . (8.401)

We now consider the above action from the point of view that S characterizes
the true orbits. We may compare the value of the action integral for different orbits
with the same initial condition, but different end points for the proper time τ . In this
sense, the action integral is considered for real trajectories in spacetime as a function
of the end point position. This has the consequence that the partial derivatives of the
action coincide with the momenta

pα = ∂S

∂xα
. (8.402)

The derivative of the action with respect to proper time is identical to the Hamilton
function

∂S

∂τ
−H = 0 . (8.403)

When we replace the momenta we arrive at

∂S

∂τ
−H

(
xα; ∂S

∂xα

)
= 0 . (8.404)

This represents a partial differential equation of first order which is known under the
name Hamilton–Jacobi equation.

We consider the action S[τ, xα] along geodesics for fixed initial conditions in the
Kerr geometry

∂S

∂τ
= −1

2
gαβ

∂S

∂xα
∂S

∂xβ
. (8.405)

For the Kerr metric, this equation becomes

2
∂S

∂τ
= Σ2

�2∆

(
∂S

∂t

)2

+ 4aMr

�2∆

∂S

∂t

∂S

∂φ

− ∆− a2 sin2 θ

�2∆ sin2 θ

(
∂S

∂φ

)2

− ∆

�2

(
∂S

∂r

)2

− 1

�2

(
∂S

∂θ

)2

. (8.406)
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It is convenient to transform this equation into an alternative form

2
∂S

∂τ
= 1

�2∆

[
(r2 + a2)

∂S

∂t
+ a

∂S

∂φ

]2

− 1

�2 sin2 θ

[
a sin2 θ

∂S

∂t
+ ∂S

∂φ

]2

−∆
�2

(
∂S

∂r

)2

− 1

�2

(
∂S

∂θ

)2

. (8.407)

We now seek for solutions which are separable

S = 1

2
m2τ − Et + Lzφ + Sr(r)+ Sθ(θ) . (8.408)

The Hamilton–Jacobi equation (8.407) implies therefore

m2�2 = 1

∆
[(r2 + a2)E − aLz]2 − 1

sin2 θ
(aE sin2 θ − Lz)

2

−∆
(
∂Sr

∂r

)2

−
(
∂Sθ
∂θ

)2

. (8.409)

By means of the identity

(aE sin2 θ − Lz)
2 cosec2θ = (L2

z cosec2θ − a2 E) cos2 θ + (Lz − aE)2 (8.410)

we obtain{
m2r2 − 1

∆
[(r2 + a2)E − a Lz]2 + (Lz − aE)2 +∆

(
∂Sr

∂r

)2}
+
{
[a2m2 + (L2

z cosec2θ − a2 E2)] cos2 θ +
(
∂Sθ
∂θ

)2}
= 0 . (8.411)

The expressions in the curly brackets are mere functions of r and θ, respectively.
Both brackets have to be constant, and this common constant C corresponds to the
existence of a fourth constant of motion. The separability leads therefore to the two
relations

∆

(
∂Sr

∂r

)2

= 1

∆
[(r2 + a2)E − a Lz]2

−[C + (Lz − aE)2 +m2r2] (8.412)(
∂Sθ
∂θ

)2

= C − (L2
z cosec2θ − a2 E2 + m2a2) cos2 θ . (8.413)

With the notions of

P ≡ (r2 + a2)E − Lz (8.414)

R ≡ P2 −∆[m2r2 + (Lz − aE)2 + C] (8.415)

Θ ≡ C − [a2(m2 − E2)+ L2
z cosec2θ] cos2 θ , (8.416)
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the solutions can be written as

S = 1

2
m2τ − Et + Lzφ +

∫ r
√

R

∆
dr +

∫ θ √
Θ dθ (8.417)

with the corresponding momenta

pr = dSr

dr
=
√

R

∆
, pθ = dSθ

dθ
= √Θ . (8.418)

The equations of motion follow from derivatives with respect to the conserved
quantities C, m2, E and Lz

∂S

∂C
= 1

2

∫
1

∆
√

R

∂R

∂C
dr + 1

2

∫
1

Θ

∂Θ

∂C
dθ = 0 , (8.419)

or explicitly ∫ r dr√
R
=

∫ θ dθ√
Θ
. (8.420)

Similarly, we find

τ =
∫ r r2

√
R

dr + a2
∫ θ cos2 θ√

Θ
dθ (8.421)

t = 1

2

1

∆
√

R

∂R

∂E
dr + 1

2

∫ θ 1

Θ

∂Θ

∂E
dθ

=
∫ r (r2 + a2)P

∆
√

R
dr + a

∫ θ Lz − aE sin2 θ√
Θ

dθ (8.422)

φ = −1

2

∫ r 1

∆
√

R

∂R

∂Lz
dr − 1

2

∫ θ 1√
Θ

∂Θ

∂Lz
dθ

= a
∫ r P

∆
√

R
dr +

∫ θ Lzcosec2θ − aE√
Θ

dθ. (8.423)

The constant C is uniquely given by the Killing constant K as follows

C = K − (Lz − aE)2 . (8.424)

The above functions R and Θ, respectively, are identical to the expressions found
here. In addition, null geodesics can be treated in the same manner just by setting
m2 = 0.

On the basis of these relations, the velocities of the geodesics in the Kerr geometry
are explicitly given by the following relations, (the constants of integration are
normalized per unit mass, m2 = {1, 0})
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�2 dr

dτ
= √R (8.425)

=
√[

E(r2 + a2)− Lza
]2 −∆ [

m2r2 + (Lz − aE)2 + C
]

�2 dθ

dτ
= √Θ =

√
C − cos2 θ

(
a2(m2 − E2)+ L2

z

sin2 θ

)
(8.426)

∆
dφ

dτ
= Lz

sin2 θ

(
1− 2Mr

�2

)
+ 2Mr

�2
aE (8.427)

α2 dt

dτ
= E − ωLz . (8.428)

τ is the proper time along the geodesic. Null geodesics just follow from m "→ 0.
We may summarize the results we obtained for the momenta of geodetic particles

pr = �2

∆
pr =

√
R

∆
(8.429)

pθ = �2 pθ = √Θ (8.430)

−pt = = E (8.431)

pφ = = Lz . (8.432)

Similarly, we obtain for the momenta with respect to Bardeen observers

−p(t) = p(t) = 1

α
(E − ωLz) = α pt (8.433)

p(φ) = p(φ) = # pφ = pφ/# = Lz/# (8.434)

p(r) = p(r) = exp(−µ2) pr (8.435)

p(θ) = p(θ) = exp(−µ3) pθ . (8.436)

Features of the Lateral Motion

The θ motion can be characterized by means of the equation

�2θ̇2 = f(µ) = C + Aµ2 + Bµ4 (8.437)

for µ = cos θ and

A = −(C + L2 − a2[E2 − 1]) , B = −a2(E2 − 1) . (8.438)

This function obviously satisfies

f(0) = C , f(1) = −L2 ,

f ′(0) = 2A , f ′(1) = 2(2B + A) . (8.439)

Motion is only possible for f(µ) ≥ 0, a trajectory can reach the axis µ2 = 1, if and
only if C = 0.
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If C > 0, we see from f(0) > 0 that f has a zero µ0 in the range 0 < µ ≤ 1.
For C > 0, a particle moves in an oscillatory way, repeatedly crossing the equatorial
plane with θ in the range θ0 ≤ θ ≤ π − θ0, where cos θ0 = µ0. If C = 0, there is
a trivial case with E2 − 1 = 0 = L. Then θ may take a constant value. In general,
a motion in the equatorial plane, C = 0, is only stable against small θ motions if
L2 > a2(E2 − 1).

In the case C < 0, then f(0) < 0 and f(1) ≤ 0. When A > 0, we find a maximum
of f at some µm with f(µm) ≥ 0. This maximum can occur if 4BC ≥ A2 (which
requires E2 > 1), or

[C + L2 − a2(E2 − 1)]2 + 4a2(E2 − 1)C ≤ 0 . (8.440)

A necessary condition for this inequality to be satisfied is L2 + a2(E2 − 1) > 0 for
E2 − 1 > 0. The equality occurs if there is a double root at µm (corresponding to
a conical motion). In general the motion is also oscillatory with 0 < µ1 ≤ µ ≤
µ0 ≤ 1. In this case, the trajectory never crosses the equatorial plane.

These considerations are important for accretion processes. Here one studies
only motions in the equatorial plane, at least for cool disks. One has then to show
that these motions are stable and that a typical motion always tends to evolve towards
the equatorial plane.

Radial Motions

The radial function R is a polynomial of fourth order in the radius

R = (E2 − m2) r4 + 2Mm2 r3 + [a2(E2 − m2)− L2
z − C] r2

+ 2M [C + (a E − Lz)
2] r − a2C . (8.441)

It reduces to the polynomial of third order we have found for radial motions in the
equatorial plane, equation (8.336), since the fourth integral of motion vanishes in
this case, pθ = 0.

Positions, where R vanishes, mark the turning points in radial direction. Since
∆ vanishes on the horizon r+, we find R(r+) ≥ 0 and R(r) → (E2 − 1)r4 for
r → ∞. Therefore, we can distinguish between four different cases depending on
the signs of E2 − 1 and C. As an example we may think in terms of the motion of
compact stars (e.g. neutron stars) around supermassive black holes.

1. E > 1 and C > 0: For sufficiently large energies all the coefficients in the
polynomial R(r) of equation (8.441), except the constant, are nonnegative.
From a sketch of this function one can derive the following properties. Since
R(0) < 0 and R(r+) ≥ 0, there must be a zero at r = r1, in or on the horizon.
Increasing the angular momentum L for fiexed energy and Carter constant will
change the shape of the curve to a second zero at r = r2 � 2M and a third
one at r3 > 2M. For a star moving inwards from infinity, this means that it will
cross the horizon for low angular momentum and will be reflected. However, it
cannot recross the horizon – such a star will be trapped within the horizon. For
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sufficiently high angular momentum, stars will be reflected outside the horizon
to infinity. Any star with r < r2 is trapped and will ultimately cross the horizon.
Circular orbits with r2 = r3 are unstable.

2. E < 1 and C > 0: Since R(0) < 0, R(M) ≥ 0 and R(r)→ +∞ for r →∞,
there must be at least two real zeros of R. In the case of two zeros, stars move
along trapped orbits. In the case of four zeros, any star with r3 < r < r4 will
be oscillating and move on a bound orbit. The case r3 = r4 corresponds stable
circular orbits discussed previously. Particles in the range r1 < r < r2 are
trapped. A close inspection of the form of R(r) reveals that spherical orbits
with negative angular momentum (retrograde orbits) are at larger radii than for
positive angular momenta (prograde orbits). This is the effect of the spin-angular
momentum interaction mediated by the gravitomagnetic field.

3. E > 1 and C < 0: This case is very similar to case (1). All trapped particles
will reach r = 0.

4. E < 1 and C < 0: In this case we find trapped and bound orbits, but all trapped
particles will reach r = 0.

In summary, we have found that for E > 1 all stars that are initially far from the
black hole will be reflected back to infinity. Particles very close to the horizon will
be trapped. For E < 1, no star can reach infinity – any star is either trapped or bound.
For the latter case, stable circular orbits can exist. A negative angular momentum
represents a repelling force.

8.6.4 Null Geodesics and Ray-Tracing in Kerr Geometry

Ray-tracing in the Kerr Geometry

The observed spectrum of an accretion disk or the spectrum of emission lines from the
inner disk (e.g. Fe lines) is essentially influenced by gravitational redshift, Doppler
beaming and lensing effects. While in earlier days, these effects have been taken into
account via a transfer function [127], modern approaches use directly ray-tracing
in the Kerr geometry based on null geodesics. There are essentially two ways to
achieve this goal: (i) by means of direct integration of the geodesics equations; (ii)
by implementing fast solvers for the elliptical integrals involved in the solutions of
the integrals of motion as discussed above (see, e.g. Fanton et al. [153]). The former
method is easily implemented using some leapfrog scheme, the shooting of at least
one million photons towards the central object is still very time-consuming and
requires implementation on supercomputers (Martocchia, Karas and Matt [272]).
The imaging of a radiating torus around a Kerr black hole is shown in Fig. 8.20.
The second method is very elegant, however restricted to applications on the Kerr
geometry only. It is not known, whether null geodesics are integrable on a general
axisymmetric spacetime. We discuss in the following the second method following
essentially the pioneering paper by Fanton et al. [95, 153].

The principle of ray-tracing is simple (Fig. 8.19). One shoots about a million
photons towards the black hole from an observer’s position given by (r0, θ0, φ0),
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Fig. 8.19. Principle of ray-tracing in the Kerr geometry. The spinning black hole is in the
center of the coordinate system, surrounded by an accretion disk with outer radius rout and
inner radius ending at the horizon. Photon paths are integrated along geodesic trajectories
from a distant observer to the region around the black hole. The positions and momenta are
tabulated along the photon path and used to integrate the radiative transfer equation through
the accretion disk towards the observer. The photons either terminate at the black hole horizon,
or escape to infinity. In the case of optically thick disks, they always terminate at the disk
surface located near the equatorial plane. Figure adapted from Schnittman et al. [357]

until they hit an obstacle, e.g. the central accretion disk. The difference between
normal ray-tracing and ray-tracing in the Kerr geometry consists in the fact that
the light paths are curved geodesics, determined by means of the geodesic rela-
tion ∫ r0

rem

dr√
R(r; λ, q) =

∫ θ0

θem

dθ√
Θ(θ; λ, q) (8.442)

with the expressions

R(r; λ, q) = r4 + (a2 − λ2 − q)r2 + 2[q + (λ− a)2] r − a2q (8.443)

Θ(θ; λ, q) = q + (a cos θ)2 − (λ cot θ)2 . (8.444)

For null geodesics, the energy E can be absorbed into the scaling so that

λ = Lz

E
, q = C

E2
. (8.445)

For ray-tracing, the two parameters λ and q are related to the impact parameters, or
to angles α and β on the celestial sphere

α =
(

r p(φ)

−p(t)

)
r→∞

= λ cosecθ0 (8.446)
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Fig. 8.20. Images formed by Kerr geometry. The top panel shows the image of a torus located
near the marginal stable orbit of a rapidly rotating black hole. The lower panel shows the
image of the same torus at an inclination of 60 degrees. At higher inclination, the torus is
visible as a bright spot due to Doppler beaming together with some enhanced emission near
the horizon (secondary images). Images provided by B. Zink (ZAH, LSW Heidelberg)
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and

β =
(

r p(θ)

−p(t)

)
r→∞

= pθ0 =
√

q + a2 cos2 θ0 − λ2 cot2 θ0 . (8.447)

α is the apparent perpendicular distance of the image from the axis of symmetry,
and β is the apparent perpendicular distance of the image from its projection on the
equatorial plane. Since photon rays are determined by two integrals of motion, the
two impact parameters determine them uniquely.

With µ = cos θ the second equation assumes the form

Iµ =
∫

dµ√
Θµ

(8.448)

with

Θµ = q − (λ2 + q − a2)µ2 − a2µ4 . (8.449)

On the equatorial plane we findΘµ = q, while on the rotational axisΘµ = −λ2 ≤ 0.
We have to distinguish therefore the two cases q > 0 and q < 0. Only in the former
case, q > 0, the trajectories can cross the equatorial plane, and they may oscillate
around the equatorial plane. This is therefore the case relevant for rays starting from
the disk in the equatorial plane. When q = 0 the trajectories stay in the equatorial
plane and eventually fall into the singularity. In the opposite case, q < 0, the
trajectories are confined within a cone around the axis, but never cross the equatorial
plane. So for the ray-tracing case, we can factorize

Θµ = a2(µ2 + µ2
−)(µ

2
+ − µ2) (8.450)

with 0 ≤ µ2 ≤ µ2+ and

µ2
± =

1

2a2

[√
(λ2 + q − a2)2 + 4a2q ∓ (λ2 + q − a2)

]
. (8.451)

In this case, the integral can be written in terms of Jacobian integrals of the first
kind

Iµ = − 1

a
√
µ2+ + µ2−

F(arccos(µ/µ+),mθ)

= − 1

a
√
µ2+ + µ2−

cn−1(µ/µ+,mθ) , (8.452)

where

mθ ≡ µ2+
µ2+ + µ2−

. (8.453)
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Similarly, we consider the integration over r. The equation R = 0 has in general
four complex solutions. These roots are associated with the turning points of the
geodetic motion. Since R(r = 0) < 0 and R(r) > 0 for r → ∞, we find at least
two real roots, or four of them. One has then the following important cases (Fanton
et al. [153]):

1. Four simple roots with r1 > r2 > r3 > r4 with the integral given as∫ r

r1

dr ′√
R
= 2√

(r1 − r3)(r2 − r4)
sn−1

(√
(r2 − r4)(r − r1)

(r1 − r4)(r − r2)
,m4

)
(8.454)

with

m4 = (r2 − r3)(r1 − r4)

(r2 − r4)(r1 − r3)
. (8.455)

2. Two real solutions r1 and r2 < r1 and a double root r3 = −(r1 + r2)/2:∫
dr

(r1 − r2)
√
(r − r1)(r − r2)

= − 1√
(r1 − r3)(r2 − r3)

×

ln

[√
(r − r1)(r − r2)

r3 − r
+ r2

3 + r1r2 + 2r3r

(r3 − r)
√
(r1 − r3)(r2 − r3)

]
(8.456)

3. Two complex solutions and two real roots (one positive and the other one
negative)

ra = u − iw (8.457)

rb = u + iw (8.458)

rc = −u − v (8.459)

rd = −u + v . (8.460)

Then the integral can be written as∫ ∞

r

dr√
Q1 Q2

= 1

w
√
λ1 − λ2

×
[

sn−1(
√

1− 1/λ1,m2) − sn−1

(√
1− 1/λ1

Q1(r)
B1(r),m2

)]
(8.461)

with the following abbreviations

Q1(r) = r2 − 2ur + u2 +w2 (8.462)

Q2(r) = r2 + 2ur + u2 − v2 (8.463)

m2 = λ1

λ1 − λ2
(8.464)
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λ1,2 = 1

2w2

(
±
√
(4u2 +w2 − v2)2 + 4v2w2 + (4u2 +w2 − v2)

)
(8.465)

Q2 − λ1 Q1 = (1− λ1)B
2
1 (8.466)

B1(r) = r + u
1+ λ1

1− λ1
(8.467)

B2(r) = r + u
1+ λ2

1− λ2
(8.468)

In order to avoid the calculation of the inverse of the Jacobian integrals, the
geodetic integral will be written in terms of a trace parameter P∫ r0

r

dr√
R(r; λ, q) = P =

∫ θ0

θ

dµ√
Θµ(µ; λ, q)

(8.469)

with

µ = µ+ cn

(
a
√
µ2+ + µ2− P ± Ψ0,mθ

)
. (8.470)

The quantity Ψ0 is defined as follows

Ψ0 = cn−1
(
µin

µ+
,mθ

)
. (8.471)

Similarly, the r-integrals are expressed in terms of the trace parameter P

r = r(P; r1, r2, r3, r4) , (8.472)

so, e.g. in case (i)

r = r1(r2 − r4)− r2(r1 − r4) sn2(P
√
(r2 − r4)(r1 − r3)/2− ξ0,m4)

r2 − r4 − (r1 − r2) sn2(P
√
(r2 − r4)(r1 − r3)/2− ξ0,m4)

(8.473)

where

ξ0 = sn−1
(√

r2 − r4

r1 − r4
,m4

)
. (8.474)

In addition, one can also calculate the azimuthal angle φ of the emitting point on
the disk which follows from the integral (8.423). Similar expressions follow for the
other cases (see Fanton et al. [153]).

A given pixel of the camera determines the two parameters λ and q, and therefore
µ±, as well as the four roots of the radial equation. We then calculate the value Pem for
the disk θ = θem � π/2 and get the value rem for each pixel of the camera, depending
on the number of roots for the radial equation. Since the emitter is assumed to be
axisymmetric, all the physical quantities only depend on θem and rem.
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The Doppler Factor

An important quantity is the redshift factor (or Doppler factor)

D = νobs

νem
= p̂t

obs

p̂t
em

(8.475)

with p̂a as the photon momenta in the plasma frame. They are related to the photon
momenta p(a) in the ZAMO frame over a Lorentz transformation

p̂t = γ [
p(t) − v(i) p(i)

]
(8.476)

p̂i = p(i) + 1

v2

[
(γ − 1)v( j) p( j) v

(i) − γ p(t) v(i)
]
. (8.477)

γ is the Lorentz factor of the plasma motion and v the corresponding three-velocity
in the ZAMO frame

v(r) = expµr

α
vr (8.478)

v(θ) = expµθ
α

vθ (8.479)

v(φ) = R

α
(Ω − ω) . (8.480)

The ZAMO photon momenta are all proportional to the total energy E, p(a) = Ena,

p(t) = E

α
(1− λω) (8.481)

p(φ) = Eλ

R
(8.482)

p(r) = ± E

�∆

√
Rλ,q/E2 (8.483)

p(θ) = ± E

�

√
Θλ,q/E2 (8.484)

with

Rλ,q/E2 = r4 + (a2 − λ2 − q)r2 + 2[q + (λ− a)2]r − a2q (8.485)

Θλ,q/E2 = q + a2 cos2 θ − λ2 cot2 θ . (8.486)

By introducing these quantities into the energy of the photon we get

p̂t = γ [
p(t) − v(r) p(r) − v(θ) p(θ) − v(φ) p(φ)

]
= γ

[
1− λω
α

− v(r)
√

R

�
√
∆
− v(θ)

√
Θ

�
− v(φ) λ

#

]
. (8.487)
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With this we obtain for the Doppler factor the general expression for any flow field
at the position (r, θ)

D = p(t)obs

γE[p(t) − v(r) p(r) − v(θ) p(θ) − v(φ) p(φ)]E . (8.488)

The photon propagation only depends on the parameters λ = Lz/E and q = C/E2,
the energy of the photons drops out. Since p(t) and v(φ) are proportional to 1/α, we
multiply the expression with the redshift factor α and cancel the energy

D(r, θ) = α(rE, θE)

γE [1− αv(r)nr − αv(θ)nθ − λΩ]E . (8.489)

Obviously, the Doppler factor has to vanish at the horizon, since α(rH , θ) = 0.
The gravitational redshift α will therefore suppress considerably the Doppler factor
immediately inside the marginal stable orbit. The Doppler factor will also depend
on the poloidal motion of the emitting plasma [303].

In this way, the ray-tracing procedure determines the Doppler factor for each
point on the disk surface. The Doppler factor also determines the emission observed
by the camera

FPixel
ν =

∫
Pixel

dΩ Iobs
ν (8.490)

Fig. 8.21. Redshift distribution for geometrically thin disks. Near the horizon gravitational
redshift is dominant, D < 1. On the left flank, the emission is blueshifted by the Doppler
effect, D > 1. The white line denotes positions on the disk, where the observed emission is
not shifted, D = 1



8.6 Geodesics in the Kerr Geometry 439

and over the Liouville theorem we obtain

FPixel
ν =

∫
Pixel

dΩ D3 I em
ν . (8.491)

In particular for line emission we can make the approximation

I em
ν = ε(r) δ(νem − ν0) , (8.492)

where ν0 represents the rest frame frequency of the line. The line emissivity ε(r) has
to be prescribed by some suitable physical model. This is usually chosen as some
power law, ε(r) ∝ r−p for some range rin ≤ r ≤ rout, since all physical quantities of
a standard disk have some scaling behavior.

The numerical procedure for calculating an image of an axisymmetric disk is
therefore straightforward [303]:

– specify the Kerr parameter a, disk parameters rin, rout, as well as the velocity
profiles for the emitting plasma vr , vθ andΩ, and the parameters for the location
of the screen;

– specify an emissivity law ε(r);
– specify the impact parameters (α, β);
– calculate λ and q;
– evaluate (rE, θE) for given rays;
– evaluate the Doppler factor D(rE, θE; λ, q);
– sum over all pixels to evaluate the flux Fobs

ν .

In this way one can construct redshift images of the disk (Fig. 8.21), as well as
temperature images for standard accretion disks.

Profiles of Broad Iron Lines

The iron K line is intrinsically a rather narrow line. Hence, we can use broad-
ening of the line to study the dynamics of the accretion disk. The line profiles
is shaped by the effects of Doppler shifts and gravitational redshifting. Figure
8.22 demonstrates these effects at work in a schematic way. In a nonrelativistic
disk, each radius of the disk produces a symmetric double-horned line profile cor-
responding to emission from material on both the approaching (blueshifted) and
receding (redshifted) side. The inner regions of the disk, where the material is mov-
ing the fastest, produce the broadest parts of the line. Near a black hole, where
the orbital velocities of the disk are mildly relativistic, special relativistic beam-
ing enhances the blue peak of the line from each radius. Finally, the comparable
influences of the transverse Doppler effect (i.e. moving clocks run slowly) and
gravitational redshifting (i.e. clocks near black holes run slowly) shifts the con-
tribution from each radius to a lower energy. Summing the line emission from
all radii of the relativistic disk gives a skewed and highly broadened line pro-
file. Turbulence in the accretion disk may also significantly affect the line pro-
file [39].
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Fig. 8.22. The profile of the broad iron line emitted in the immediate vicinity of the
ISCO around a black hole is caused by the interplay of Doppler and transverse Doppler
shifts, relativistic beaming and gravitational redshifting. g = νobs/νem is the Doppler
factor for line emission, g = 1 means unshifted line. The redshifted and blueshifted
wings are classical effects due to the Doppler effect from the outer disk rim, whereby
the blue wing is amplified by Doppler beaming. Gravitational redshift is responsible for
the large extension of the red wing. Credits: Figure provided by A. Müller (MPIE Garch-
ing)

Some fully relativistic model line profiles are plotted in Fig. 8.23, where we
show the line profile from an accretion disk in orbit around a moderately rotating
black hole with spin parameter a = 0.5 (described by the Kerr metric). The line is
assumed to be emitted from an annulus of the disk extending between 6 rg and 15
rg from the black hole, where rg = G M/c2 is the standard gravitational radius. It
is seen that the high-energy bluewards extent of the line is a strong function of the
inclination of the disk. In fact, the blue extent of the line is almost entirely a function
of the inclination, thereby providing a robust way to measure the inclination of the
disk. On the other hand, the redward extent of the line is a sensitive function of the
inner radius of the line emitting annulus. In Fig. 8.24, we show model iron lines
from a Schwarzschild black hole and a rapidly rotating black hole (described by
a near extremal Kerr metric). In this figure, we have made the assumption that the
line emission extends down to the innermost stable orbit of the accretion disk. For
these purposes, the principal difference between these two spacetime geometries
is the location of the innermost stable orbit (and hence the inner edge of the line
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Fig. 8.23. Relativistic line profiles for the case of an accretion disk around a moderately
rotating black hole a = 0.5. It is assumed that the fluorescing region of the disk extends
from 6 rg (i.e. the radius of marginal stability) to 15 rg with uniform emissivity. Inclinations
are shown from pole-on to edge-on view. The main effect of increasing the inclination is to
broaden the line by increasing its high-energy extent

Fig. 8.24. Relativistic iron line profiles for the case of increasing Kerr parameter and a fixed
inclination angle of 40 degrees. The disk is assumed to extend down to the radius of marginal
stability with an emissivity index p = 3. Figure adapted from Müller and Camenzind [303]
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emission) – this critical radius is at 6 rg in the Schwarzschild case, and rg in the
extremal Kerr case.

The comparison with an observed line profile is shown in Fig. 1.1.

8.7 Dark Energy Stars

The dark energy star (often called gravastar) picture is an alternative model to the
concept of a black hole, where there is an effective phase transition at or near where
the event horizon is expected to form, and the interior is replaced by a de Sitter
condensate. The main motivation for implementing this generalization arises from
the fact that recent observations have confirmed an accelerated cosmic expansion,
for which dark energy is a possible candidate.

8.7.1 Why Dark energy Stars?

Oppenheimer and Snyder [318] provided in 1939 the first insights of the gravi-
tational collapse into a black hole. However, it was only in 1965 that marked an
era of intensive research into black hole physics. Although evidence for the ex-
istence of black holes is very convincing (see next chapter), it has recently been
argued that the observational data can provide very strong arguments in favor of
the existence of event horizons, but cannot fundamentally prove it [23]. This scep-
ticism has inspired new and fascinating ideas. In this line of thought, it is inter-
esting to note that a new final state of gravitational collapse has been proposed
by Mazur and Mottola [277–280]. In this model, and in the related picture devel-
oped by Laughlin et al. [117], the quantum vacuum undergoes a phase transition
at or near the location where the event horizon is expected to form. The model
denoted as a gravastar (gravitational vacuum star), consists of a compact object
with an interior de Sitter condensate, governed by an equation of state given by
P = −�, matched to a shell of finite thickness with an equation of state P = �.
The latter is then matched to an exterior Schwarzschild vacuum solution. The
thick shell replaces both the de Sitter and the Schwarzschild horizons, therefore,
this gravastar model has no singularity at the origin and no event horizon, as its
rigid surface is located at a radius slightly greater than the Schwarzschild radius.
It has been argued that there is no way of distinguishing a Schwarzschild black
hole from a gravastar from observational data [23]. It was also further shown by
Mazur and Mottola that gravastars are thermodynamically stable. It has also been
recently proposed by Chapline that this new emerging picture consisting of a com-
pact object resembling ordinary spacetime, in which the vacuum energy is much
larger than the cosmological vacuum energy, has been denoted as a dark energy
star.

Instead of a star collapsing into a pinpoint of space with virtually infinite den-
sity, the gravastar theory proposes that as an object gravitationally collapses, space
itself undergoes a phase transition preventing further collapse, being transformed
into a spherical void surrounded by a form of superdense matter. In the gravastar
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picture, the quantum vacuum undergoes a phase transition near the Schwarzschild
radius where the event hroizon would be expected to form. Externally, a gravastar
appears similar to a black hole: it is visible only by the high-energy emissions it
creates while consuming matter. Astronomers observe the sky for X-rays emitted
by infalling matter to detect black holes, and a gravastar would produce an identical
signature.

Inside a gravastar, spacetime would be totally warped by the extreme conditions
there and the inner space would exert an outward force, like dark energy in the
Universe. Around this vacuum region would be a shell of incredibly dense and
durable matter. The phase of this matter is theorized to be similar to an extreme form
of Bose–Einstein condensate in which all matter (protons, neutrons, electrons, etc.)
goes into what is called a quantum state creating a kind of superatom.

In the Mazur–Mottola model, a suitable segment of the de Sitter space with
an equation of state � = −P > 0 is chosen for the interior of the compact
object, while the outer region of a gravastar consists of a thin finite-thickness
shell of stiff matter (P = �) that is surrounded by a Schwarzschild vacuum
(P = 0 = �). Apart from these three layers, the Mazur–Mottola star requires
two additional infinitesimally thin shells with surface densities σ± and surface ten-
sions that compensate the discontinuities in the pressure profile and stabilize this
five-layer onion structure. Infinitesimal shells are a mathematical abstraction, phys-
ically one would like to replace the thin shells with a continuum layer of finite
thickness. A clear description of this model has recently been provided by Catteon
et al. [109].

In a simplified model of the Mazur–Mottola picture, Visser and Wiltshire [416]
constructed a model by matching an interior solution with P = −� to an exterior
Schwarzschild solution at a junction interface, comprising of a thin shell. The dy-
namic stability was then analyzed, and it was found that some physically reasonable
stable equations of state for the transition layer exist. In Ref. [109,257], a generalized
class of similar gravastar models that exhibit a continuous pressure profile, without
the presence of thin shells was analyzed. It was found that the presence of anisotropic
pressures are unavoidable, and the TOV equation was used to place constraints on
the anisotropic parameter.

8.7.2 Structure of Gravastars

Since a gravastar is a static spherical symmetric object, its structure can easily be
derived by just using the EoS for vacuum energy in the interior and a normal EoS
for the shell together with the TOV equation. We adopt Schwarzschild coordinates
to write the line element in the form

ds2 = − exp[2Φ(r)] dt2 + 1

1− 2m(r)/r
dr2 + r2 dΩ2 . (8.493)

The field equations are then those of spherical stars, except that we allow for an
anisotropic pressure, P⊥ �= Pr ,
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dm

dr
= 4π�r2 (8.494)

dPr

dr
= − (�+ Pr)(m + 4πr3 Pr)

r(r − 2m)
+ 2(P⊥ − Pr)

r
(8.495)

dΦ

dr
= m + 4πr3 Pr

r(r − 2m)
, r < R∗ (8.496)

Φ(r) = 1

2
ln

(
1− 2M

r

)
, r ≥ R∗ , (8.497)

with the boundary conditions m(r = 0) = 0 and �(r = 0) = �c. Additionally to
the core density �c, we have another free parameter here, namely the position of the
crust r0, where the EoS changes from vacuum energy to the relativistic shell matter.

Physically, it is reasonable to consider static spherically symmetric geometries
that satisfy:

– Inside the gravastar, r < R∗, the density is everywhere positive and finite.
– The central pressure is negative, Pc < 0, and given by Pc = −�c, or by the EoS

of dark energy P = w� with w � −1.
– The spacetime should not possess an event horizon, i.e. 2m(r) < r for all radii.

In distinction to black holes, the Schwarzschild coordinates therefore cover the
entire manifold from the center to infinity.

The pressure will roughly have a profile shown in Fig. 8.25. It naturally defines a vac-
uum core surrounded by a crust and some normal atmosphere. Other characteristic
features of a gravastar are:
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Fig. 8.25. Schematic pressure profile of a gravastar. Such a profile defines in a natural way
a core, crust and atmosphere
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– There should be a pressure maximum in the vicinity of the Schwarzschild radius,
satisfying Pr(rmax) > 0, and P′r(rmax) = 0.

– There are exactly two radii where the radial pressure vanishes, Pr(r0) = 0 =
Pr(R). Clearly, R > rmax, and R is called radius of the gravastar.

– The pressure profile P⊥ may be discontinuous, while Pr should be continuous
and of the form shown in Fig. 8.25.

– The strong energy condition � + Pr + 2P⊥ ≥ 0 is definitely violated, at least
near the center of the star.

The Mazur–Mottola model can then be viewed as a limiting case where rmax → r0

and where an additional thin shell is placed at the surface.

8.7.3 The Necessity of an Anisotropic Crust

Assuming an isotropic EoS, P = Pr = P⊥, we find for the pressure gradient at the
first zero

dP

dr
|r=r0 = −

4πr0

3

��̄

1− 2m/r0
, (8.498)

where we have introduced the mean density �̄ = m(r)/(4πr3/3). While the left-
hand side is positive, the right-hand side is negative. Therefore, we conclude that the
isotropic TOV equation cannot hold at the point r0. The same argument holds for
the location of the pressure maximum

dP

dr
|r=rmax = −

4πrmax

3

(�+ P)(�̄+ 3P)

1− 2m/rmax
. (8.499)

Here, the left-hand side vanishes by definition, while the right-hand side is nega-
tive. Therefore, we also need here an anisotropic EoS. At pressure maximum, the
anisotropic pressure has to compensate the inertia terms

2(P⊥ − Pr)|r=rmax =
4πr2

max

3

(�+ Pr)(�̄+ 3Pr)

1− 2m/rmax
. (8.500)

Nearly all mass-energy is located in the interior vacuum energy core. The density
undergoes a rapid decline in the crust region and tends asymptotically to zero. The
radial component of the metric is shown in Fig. 8.26. It can be seen, that neither
here, nor in the redshift factor a singularity appears. Both functions reach instead
a minimum value at the position of the crust. Since the time component does also
determine the redshift, a maximal redshift can be chosen by rmax.

It seems that the degree of anisotropy in the crust determines the compactness
2m(r)/r in the crust. This would mean that the EoS of the crust is a function of the
local compactness. This is certainly an unusual statement.



446 8 Black Holes

Fig. 8.26. Metric function exp(2λ) of a gravastar. Data provided by M. Vigelius (LSW
Heidelberg)

Problems

8.1. Bound Orbits in Schwarzschild Spacetime: Investigate numerically the func-
tion f(u), defined in equation (8.75) for bound orbital motion and illustrate the five
different cases for the roots of f(u).

Study the orbital motion of stars on the gravitational background of a Schwarz-
schild metric by using the closed expressions derived in Sect. 8.2 for given values
of e and l.

Give closed expressions for the proper time τ and Schwarzschild time t along
bound orbits. Express them in units of the Newtonian Kepler time.

Consider the special case, when e = 0, i.e. two roots of f(u) coincide (corre-
sponding to circular orbits). Express the proper period in terms of the Keplerian
one.

8.2. Dark Energy: Find arguments in the literature, why dark energy is needed for
modern cosmological models. Use the EoS of the form P = w� to discuss the
influence in the Friedman equation for the expanding Universe.

8.3. Gravastars: Use the Riemann tensors of spherically symmetric spacetimes
(8.493) in Schwarzschild observers derived in Sect. 4.2.1 to discuss the tidal forces
at the surface of a gravastar.

8.4. Kerr Solution for µ2+µ3: The equation for the surface element of the merid-
ional plane also results from the Einstein tensors G22 = 0 = G33, since the operator
∆(µ2, µ3) cancels out, when the trace of the Ricci tensor is added. Show that they
can be reduced to the following form, δ = sin2 θ,

−µ
δ
(µ2 + µ3),2 + r − M

∆
(µ2 + µ3),3 = µ

�2∆δ

[
(r − M)(�2 + 2a2δ)− 2r∆

]
(8.501)
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and

(r − M)
∂

∂r
(µ2 + µ3)+ µ ∂

∂µ
(µ2 + µ3) = 2− (r − M)2

∆
− 2

rM

�2
. (8.502)

These two equations are solved by means of the ansatz

exp(µ2 + µ3) = �2

√
∆
. (8.503)

The solutions for the two meridional metric functions are therefore

exp(2µ2) = �2/∆ , exp(2µ3) = �2 . (8.504)

8.5. Komar Integrals: Use the Komar integrals,

M = 1

16πG

∮
∞

dSµν Dµξν (8.505)

and

J = 1

16πG

∮
∞

dSµν Dµmν (8.506)

for the total mass M and total angular momentum J of an asymptotically flat
spacetime (with Killing vector ξ and m) to show that M is the mass of the gravitational
source and J = Ma the angular momentum of the Kerr solution.

8.6. Surface Gravity: Show that the surface gravity of the event horizon of a Kerr
black hole of mass M and angular momentum J is given by

κ =
√

M4 − J2

2M(M2 +√M4 − J2)
. (8.507)

8.7. Riemann Tensors of the Kerr Geometry: By using the general expressions
derived in Sect. 7.2, one can compute all components of the Riemann tensor as given
by means of Bardeen observers.

8.8. Kerr Ray-Tracer: Derive the Christoffel symbols for the Kerr solution in BL
coordinates. Integrate the null geodesics equations by some Runge–Kutta method
and investigate the shooting of photons towards the horizon of a rotating black hole.
Develop a ray-tracer for geometrically thin disks in the Kerr geometry, by applying
the methods discussed in Sect. 8.6.4.

8.9. ISCO of Gravastar: Calculate the effective potential for equatorial motion in
the gravitational field of a gravastar and derive the conditions for the ISCO.
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Black holes are objects so dense that not even light can escape their gravity, and
since nothing can travel faster than light, nothing can escape from inside a black
hole. On the other hand, a black hole exerts the same force on something far away
from it as any other object of the same mass would do. For example, if our Sun were
magically crushed until it were about 3 km in size, it would become a black hole,
but the Earth would remain in its same orbit.

The first type of black holes have measured masses ranging from 3 to 30 solar
masses, and are believed to be formed during supernova explosions. The after-effects
are observed in some X-ray binaries known as black hole candidates. On the other
hand, galaxy-mass black holes are found in nearby galaxies and active galactic
nuclei (AGN). These are thought to have the mass of about a few million to 10
billion solar masses. The masses of these supermassive black holes have recently
been measured using various kinematic methods. X-ray observations of iron lines in
the accretion disks may actually be showing the effects of such a massive black hole
as well.

Additionally, there is some evidence for intermediate-mass black holes (IMBHs),
those with masses of a few hundred to a few thousand times that of the Sun. These
black holes may be responsible for the emission from ultraluminous X-ray sources
(ULXs).

Candidates for stellar-mass black holes were identified mainly by the presence
of accretion disks of the right size and speed, without the irregular flare-ups that are
expected from disks around other compact objects. Stellar-mass black holes may
be involved in gamma-ray bursts (GRBs); short duration GRBs are believed to be
caused by colliding neutron stars, which form a black hole on merging. Observations
of long GRBs in association with supernovae suggest that long GRBs are caused by
collapsars – a massive star whose core collapses to form a black hole, drawing in
the surrounding material. Therefore, a GRB could possibly signal the birth of a new
black hole.

From observations in the 1980s of motions of stars around the Galactic center,
it is now believed that such supermassive black holes exist in the center of most
galaxies, including our own Milky Way. Sagittarius A* is now generally agreed to
be the location of a supermassive black hole at the center of the Milky Way galaxy.
The orbits of stars within a few AU of Sagittarius A* rule out any object other than
a black hole at the center of the Milky Way assuming the current standard laws of
physics are correct.
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The current picture is that all galaxies may have a supermassive black hole in
their center and that this black hole accretes gas and dust in the middle of the galaxies
generating huge amounts of radiation – until all the nearby gas has been swallowed
or dispersed and the process shuts off. This picture also nicely explains why there
are no nearby quasars.

9.1 Classes of Astrophysical Black Holes

Black holes in the Universe are naturally subdivided into five classes according to
their masses (see Fig. 1.9)

– Primordial black holes with masses in the range between an Earth mass and
a solar mass. They could result from the early Universe, but their formation

Fig. 9.1. Evolution of X-ray states during the nova outburst of GRO J1655–40 detected with
ASM on RXTE. Top panel shows the ASM light-curve. Bottom panel shows fluxes from
pointed observations. The symbol type denotes the X-ray state: crosses mark thermal states
(black-body spectra), squares hard states, triangles steep power laws, and circles intermediate
states. Data from Remillard [340]
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is completely unclear. Primordial black holes could provide a unique probe
of the early Universe, gravitational collapse, high-energy physics and quantum
gravity [104].

– Stellar black holes with masses 2.5 M� ≤ MH ≤ 50 M�. These objects are
formed in evolution of massive stars and accretion onto neutron stars. As of
2005, about 20 stellar black holes have been found in X-ray binary systems. No
stellar black hole has so far been detected as companion of a radio pulsar.

– Intermediate mass black holes with masses 50 M� < MH < 105 M�. It is
presently unclear whether objects are formed in this intermediate mass range.
Ultraluminous X-ray sources (ULXs) are a distinctive class of objects, because
they radiate 10 to 1000 times more X-ray power than neutron stars and stellar
mass black holes.

– High-redshift black holes with masses 105 M� < MH < 106 M�. They could
be formed at redshifts of � 26 by direct collapse of supermassive clouds in
massive dark halos.

– Supermassive black holes with masses 106 M� ≤ MH ≤ 1010 M�. These
objects are formed in the center of spheroidal galaxies, and they have been
proven to exist in almost all galaxies. In large galaxy surveys (2dF and SDSS),
more than 100,000 supermassive black holes have been detected in quasars.

Candidates for supermassive black holes were first provided by the active galactic
nuclei and quasars, discovered by radioastronomers in the 1960s. The efficient
conversion of mass into energy by friction in the accretion disk of a black hole
seems to be the only explanation for the copious amounts of energy generated by
such objects. Indeed the introduction of this theory in the 1970s removed a major
objection to the belief that quasars were distant galaxies – namely, that no physical
mechanism could generate that much energy.

9.2 Measuring Black Hole Masses

The most accurate mass measurements in astrophysics are obtained via dynamical
methods.

9.2.1 BHs in X-Ray Binaries

In the case of BHs in X-ray binary systems (XRBs), it is a standard method to measure
the orbital period Pb and the maximum line-of-sight Doppler velocity Kc = v sin i
of the companion star, where i is the inclination angle of the binary orbit. From this
information, one calculates the mass function

f(MH , i) = K 3
c Pb

2πG
= MH sin3 i

(1+ MH/Mc)2
. (9.1)

MH is the mass of the BH candidate, and Mc the mass of the companion star. Often,
one has an independent estimate for the inclination angle i. In addition, one requires
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an independent estimate for the mass Mc, e.g. from spectral type (see Table 9.1).
In Cyg X-1, Mc is large (the companion is a blue supergiant) and seriously affects
the estimate for MH . In low-mass type binary systems, such as A0620–00 and other
X-ray novae (see Table 9.1), the companion mass is often less than 10 percent of MH .

By combining measurements of Kc and Pb with estimates for i and Mc, the masses
of the compact X-ray emitting stars in a number of XRBs have been measured [283].
The confirmed stellar BH candidates are listed in Table 9.1. Most of the sources are
LMXB transients.

Cygnus X-1 is an X-ray binary that was one of the first X-ray sources discovered
when it was detected in 1962. The visible object HDE226868 is a ninth magnitude
blue O9 supergiant star whose radial velocity curve shows an orbital period of 5.6
days. The fact that the object is a strong X-ray emitter and that the optical and
X-ray emission varies on very short time-scales (as short as one one-thousandth
of a second) suggests that the companion might be a black hole. Analysis of the
radial velocity variation of the primary under the assumption that it is a normal star
suggests that the mass of the companion is about 10 solar masses.

LMC X-3 is a powerful source of X-rays located in the Large Magellanic Cloud.
The X-ray source is associated with a binary system with an orbital period of 1.7 days.
The visible component is a main sequence B3 star whose shape has been severely

Table 9.1. Confirmed stellar black hole candidates. All masses are given in solar-mass units.
Data adapted from McClintock and Remillard [283], and Casares [108]. µQ indicates that
these sources are pronounced microquasars

Object Pb [d]
M3

H sin3 i

(MH+Mc)2
Donor MH Classification

GRS 1915+105 33.5 9.5± 3 K/M III 14± 4 LMXB Transient µQ
V404 Cyg 6.470 6.08± 0.06 K0 IV 12± 2 LMXB Transient
Cyg X-1 5.600 0.244± 0.005 O9.7Iab 14± 4 HMXB Persistent µQ
LMC X-1 4.229 0.14± 0.05 O7 III > 4 HMXB Persistent
LMC X-3 1.704 2.3± 0.3 B3 V 7.6± 1.3 HMXB Persistent
GRO J1655–40 2.620 2.73± 0.09 F3 IV 6.3± 0.3 LMXB Transient µQ
XTE J1819–254 2.816 3.13± 0.13 B9 III 7.1± 0.3 LMXB Transient
GX 399–4 1.754 5.8± 0.5 – – LMXB Transient µQ
XTE J1550–564 1.542 6.86± 0.71 G8 IV 9.6± 1.2 LMXB Transient
4U 1543–47 1.125 0.25± 0.01 A2 V 9.4± 1.0 LMXB Transient
H 1705–250 0.520 4.86± 0.13 K3 V 6± 2 LMXB Transient
GS 1124–168 0.433 3.01± 0.15 K3 V 7.0± 0.6 LMXB Transient
XTE 1859+226 0.382 7.4± 1.1 – – LMXB Transient
GS 2000+25 0.345 5.01± 0.12 K3 V 7.5± 0.3 LMXB Transient
A 0620–00 0.325 2.72± 0.06 K4 V 11± 2 LMXB Transient
XTE J1650–500 0.321 2.73± 0.56 K4 V – LMXB Transient
GRS 1009–45 0.283 3.17± 0.12 K7 V 5.2± 0.6 LMXB Transient
GRO J0422+32 0.212 1.19± 0.02 M2 V 4± 1 LMXB Transient
XTE J1118+480 0.171 6.3± 0.2 K5 V 6.8± 0.4 LMXB Transient
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distorted by the gravitational field of its companion. Although not unambiguous,
the mass of the compact object is estimated to be at least four solar masses and
more likely is considerably higher, making this one of the best black hole candidates
(Fig. 9.4).

In recent years, XRBs have been found which show jets in the radio regime,
similar to extragalactic jet sources. For this reason, they have been called micro-
quasars [297]. Previously identified as a source of variable X-ray emission, the
source known as GRS 1915+105 recently and suddenly showed a rapid increase in
its radio flux (Fig. 9.2). Radio astronomers mapping the source have shown that two
clumps of high-energy particles are being ejected simultaneously from the source at
velocities close to the speed of light. The object is probably a collapsed star, a neu-
tron star or black hole formed in a supernova explosion, in orbit with a more normal
companion. Material from the companion spirals toward the collapsed remnant, is
heated, and thus emits X-rays. Jets of subatomic particles are ejected in opposite
directions away from the compact object; high-velocity electrons emit synchrotron
radiation, detected at radio wavelengths.

By observing the radio emission over several months, Mirabel and Rodriguez [296]
were able to see that the radio emitting plasma blobs were moving. Their apparent
motion (change of position with time) implies that they are travelling with velocities
greater than the speed of light – an impossibility according to Einstein’s theory – and
are thus superluminal. However, the apparent motion can also be understood as the
result of an illusion caused by the combination of their high velocity (close to but

Fig. 9.2. Light-curves of the microquasar GRO 1915+105. Figure adapted from [297]
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less than the speed of light) and the orientation of the jets along the direction close
to the line-of-sight.

Microquasars are X-ray binary stars which exhibit jets of relativistic matter
ejected perpendicularly to both sides of an accretion disk (Fig. 9.3). The jets con-
tain relativistic electrons that produce the synchrotron radiation detected at radio
wavelengths. GRO J1655–40 is the second so-called “microquasar” discovered
in our Galaxy. Microquasars are black holes of about the same mass as a star.
They behave as scaled-down versions of much more massive black holes that
are at the cores of extremely active galaxies, called quasars (Fig. 9.3). Its re-
cent outburst detected with the ASM monitor onboard of RXTE shows a com-
plicated time structure (Fig. 9.1). This surprising result showed that the supermas-
sive black holes at the centers of galaxies – black holes millions of times more

Fig. 9.3. Microquasars are scaled-down versions of quasars. Figure adapted from Mirabel and
Rodriguez [297]
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massive than the Sun – have smaller counterparts capable of producing similar
jet ejections. GRS 1915+105 is thought to be a double star system, in which
one of the components is a black hole about 14 times the mass of the Sun. The
more massive object is pulling material from its stellar companion. The mate-
rial circles the massive object in an accretion disk before being pulled into it.
Friction in the accretion disk creates temperatures hot enough that the material
emits X-rays, and magnetic processes are believed to accelerate the material in the
jets.

The small size of microquasars makes them especially easy to monitor in time.
Considering that the characteristic time of matter accretion onto the compact object
is proportional to its mass, the variations observed in a microquasar in time-scales
of minutes (easy to follow by a human observer) correspond to similar phenom-
ena that would take thousands of years in a quasar with, say, one billion solar
masses.

Using a new technique astronomers have recently found 10 apparent black holes
near the center of the Andromeda Galaxy, the nearest large spiral galaxy to our
own. The search method might be employed to uncover more black holes in our
Milky Way and in other, more distant galaxies. Andromeda is 2.5 million lightyears
away. The newfound black hole candidates are of the stellar variety, meaning they
are several times the mass of the Sun and are the collapsed remains of dead stars.
Each has a companion object, an orbiting normal star that feeds material to the black
hole.

Fig. 9.4. This is
a schematic diagram
of 17 dynamically con-
firmed black hole bi-
naries. Fourteen have
low mass companions
(i.e. stars with masses
less than about 3 solar
masses), and the three on
the top have high mass
companions. Credit: with
permission by Orosz
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9.2.2 Intermediate-Mass Black Holes

Mysterious, powerful X-ray sources found in nearby galaxies may represent a new
class of objects, according to data from NASA’s Chandra X-ray Observatory (see
Miller and Colbert [295]). These sources, which are not as hot as typical neutron
star or black hole X-ray sources, could be a large new population of black holes with
masses several hundred times that of the Sun. Until a few years ago, astronomers
only knew of two sizes of black holes: stellar black holes, with masses about 10
times the Sun, and supermassive black holes located at the centers of galaxies, with
masses ranging from millions to billions times the Sun. Recent evidence suggests
a class of intermediate-mass black holes (IMBHs) may also exist.

However, it is not clear how such a black hole would form. On the one hand,
they are too massive to be formed by the collapse of a single star, which is how the
stellar black holes are thought to form. On the other hand, their environments lack
the extreme conditions, i.e. high density and velocities observed at the centers of
galaxies, which seemingly lead to the formation of supermassive black holes. There
are two popular formation scenarios for IMBHs. The first is the merging of stellar
mass black holes and other compact objects by means of gravitational radiation. The
second one is the runaway collision of massive stars in dense stellar clusters and the
collapse of the collision product into an IMBH.

9.2.3 Supermassive Black Holes in Nearby Galaxies

Black holes with masses of a million to a few billion times the mass of the Sun are
believed to be the engines that power nuclear activity in galaxies. Active nuclei range
from faint, compact radio sources like that in M31 to quasars like 3C 273 that are
brighter than the whole galaxy in which they live (see Fig. 10.25). Some nuclei fire
jets of energetic particles millions of lightyears into space. Almost all astronomers
believe that this enormous outpouring of energy comes from the death throes of
stars and gas that are falling into the central black hole. This is a very successful
explanation of the observations, but until recently, it was seriously incomplete: we
had no direct evidence that supermassive black holes exist.

For the past 20 years, astronomers have looked for supermassive black holes by
measuring rotation and random velocities of stars and gas near galactic centers. If the
velocities are large enough, as in the Sombrero Galaxy, then they imply more mass
than we see in stars. The most probable explanation is a black hole. About 50 have
been found as of 2005. Their masses are in the range expected for nuclear engines,
and their numbers are consistent with predictions based on the energy output of
quasars (see Table 9.2).

A giant black hole in a galactic nucleus exerts a powerful gravitational force
on nearby gas and stars, causing them to move at high speeds. This is hard to see
in quasars, because they are far away and because the dazzling light of the active
nucleus swamps the light from the host galaxy. In a radio galaxy with a fainter
nucleus, the stars and gas are more visible. The giant elliptical galaxy Messier 87,
one of the two brightest objects in the Virgo cluster of galaxies, is a radio galaxy
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Table 9.2. Black holes masses in nearby galaxies, data adapted from [189] and references
therein

Galaxy Type σ∗ LBulge [L�] MBulge MH [M�]
[km/s] [M�]

GC SBc 75 – 1.1× 1010 (3.7± 1.5)× 106

M31 Sb 160 7.3× 109 3.7× 1010 (4.5± 3.0)× 107

M32 E2 75 3.8× 108 8.0× 108 (2.5± 0.5)× 106

M87 E0 375 2.0× 1011 6.0× 1011 (3.0± 1.0)× 109

N1068 Sb 151 1.5× 1011 2.3× 1011 (1.4± 1.0)× 107

N3379 E1 206 1.7× 1010 6.8× 1010 (1.0± 0.5)× 108

N4374 E1 296 6.0× 1010 3.6× 1011 (4.3± 2.0)× 108

N4261 E2 315 4.5× 1010 3.6× 1010 (5.2± 1.1)× 108

N6251 E2 290 9.3× 1010 5.6× 1011 (5.3± 3.0)× 108

N7052 E4 266 8.3× 1010 2.9× 1011 (3.3± 2.0)× 108

N4742 E4 90 6.2× 109 6.2× 109 (1.4± 0.4)× 107

N821 E4 209 2.9× 109 1.3× 1011 (3.7± 1.5)× 107

IC459 E3 323 6.9× 1010 2.9× 1011 (2.5± 0.5)× 109

N1023 SB0 205 1.2× 1010 6.9× 1010 (4.4± 0.4)× 107

N2778 E2 175 1.2× 1010 7.6× 1010 (1.4± 1.2)× 107

N3115 S0 230 1.7× 1010 1.2× 1011 (1.0± 0.8)× 109

N3245 S0 205 1.7× 1010 6.8× 1010 (2.1± 0.8)× 108

N3377 E5 145 6.4× 109 1.6× 1010 (1.0± 0.9)× 108

N3384 S0 143 7.1× 109 2.0× 1010 (1.6± 0.2)× 107

N3608 E2 182 1.9× 1010 9.7× 1010 (1.9± 0.8)× 108

N4291 E2 242 1.9× 1010 1.3× 1011 (31.± 1.2)× 108

N4342 S0 225 1.9× 109 1.2× 1010 (3.0± 1.4)× 108

N4473 E5 190 1.8× 1010 9.2× 1010 (1.1± 0.8)× 108

N4564 E3 162 8.1× 109 4.4× 1010 (5.6± 0.5)× 107

N4594 Sa 240 4.4× 1010 2.7× 1011 (1.0± 0.8)× 109

N4649 E1 376 6.1× 1010 4.9× 1011 (2.0± 0.8)× 109

N4697 E4 177 2.3× 1010 1.1× 1011 (1.7± 0.2)× 108

N5845 E3 234 6.7× 109 3.7× 1010 (2.4± 1.0)× 108

N7332 S0 122 7.9× 109 1.5× 1010 (1.3± 0.6)× 107

N7457 S0 67 2.1× 109 7.0× 109 (3.5± 1.2)× 106

with a bright jet emerging from its nucleus (Fig. 10.22). It has long been thought
to contain a black hole. Recent observations of Messier 87 with the Hubble Space
Telescope (HST) revealed a disk of gas 500 lightyears in diameter, whose orbital
speeds imply a central mass of three billion solar masses. The ratio of this mass to
the central light output is more than 100 times the solar value. No normal population
of stars has such a high mass-to-light ratio. This is consistent with the presence of
a black hole, but it does not rule out some other concentration of underluminous
matter.

To get a sense of how stellar dynamics are used to measure BH masses, consider
the idealized case of spherical symmetry. Then the first velocity moment of the
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collisionless Boltzman equation will give the mass of the system as a function of
radius (called the Jeans equation)

M(r) = V 2r
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+ σ
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r r
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. (9.2)

The rotation velocity V , the velocity dispersions σ2
i , and the density �∗ are, in

principle, all measurable, and so a mass can be found down to the resolution limit
of the instrument. There are, however, several immediate problems. First is that
we observe these quantities projected on the sky, and de-projecting these quantities
to compare with observations is a difficult process. Second, as mentioned above,
most galaxies are at least axisymmetric; spherical symmetry is unlikely. Anisotropy
must be explored, usually for example by using the “maximum entropy” method.
The state-of-the-art in using stellar dynamical analysis to get BH masses is thus
to do the following. High quality observations of spectra are required (HST) and
the line-of-sight velocity dispersion (LOSVD) must be extracted from the data. The
LOSVD is fitted with three-integral models of the galaxy, using an orbit based
approach, known as Schwarzschild’s method. Maximum entropy models are used
to account for axisymmetry, and the potential is derived from the surface brightness
profile.

A more compelling argument is possible in the Seyfert galaxy NGC 4258, where
orbiting gas in the nucleus emits microwave maser emission from water molecules
(Fig. 9.5). The location and velocity of this gas can be mapped with amazing
precision by making coordinated observations with radio telescopes separated by
large distances. The angular resolution given by this technique is 100 times better
than that of HST. The measurements imply that 40 million solar masses lie within
half a lightyear of the center. Could this material be a cluster of dark stars? The
answer is no.

There are two possibilities, failed stars or dead stars. Failed stars are ones that are
too low in mass; their insides never get hot enough to ignite the nuclear reactions that
power stars. They are called brown dwarfs. But brown dwarfs are light – less than
0.08 solar masses – so there would have to be many of them to explain the dark mass
in NGC 4258. Then they would have to live very close together. As a result, most
of them would collide with other brown dwarfs. Stars that collide generally stick
together. But if two brown dwarfs of almost 0.08 solar masses merge, they become
a luminous star, and then the dark cluster would light up. The other alternative is
dead stars, that is, white dwarf stars, neutron stars, or stellar-mass black holes. But
these are more massive than brown dwarfs, so there would be fewer of them. The
gravitational evolution of clusters of stars is well understood: individual stars get
ejected from the cluster, the remaining cluster contracts, and the evolution speeds
up. Calculations show that a cluster of dead stars in NGC 4258 would evaporate
completely in about 100 million years. From a cosmic perspective, this is almost no
time at all. It is much less than the age of the galaxy. So the most astrophysically
plausible alternatives to a black hole can be excluded. It is difficult to escape the
conclusion that NGC 4258 contains a supermassive black hole.
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Fig. 9.5. Upper panel: The spots show the relative positions of maser emitting clouds in the
gas disk at the center of NGC 4258, determined by radio interferometry. The black dot is
the position of the central supermassive BH. Bottom panel: The dots show the line-of-sight
velocities of the maser spots as a function of distance from the BH along the major axis of
the disk. These dots follow perfectly the velocities of Keplerian motion. The mass inferred
from these measurements is MH = (3.5± 0.1)× 107 M�. Figures adapted from Greenhill et
al. [183]; Herrnstein et al. [201]

NGC 3115 is a nearby S0 galaxy, an intermediate type between spirals and el-
lipticals in Edwin Hubble’s classification scheme. Spectroscopic observations made
in 1992 with the Canada–France–Hawaii telescope revealed rapid rotation from
an edge-on disk and large random velocities in the surrounding bulge stars. These
implied a black hole mass of one billion suns. In 1996, observations with HST
confirmed this result and showed a velocity dispersion as high as 600 km/s in the
nucleus. This was the highest measured in any galactic center. NGC 3115 contains
a tiny nuclear star cluster, exactly the sort of density cusp that astronomers have long
expected to find around black holes. This nucleus would fly apart in a few tens of
thousands of years unless there is a dark mass equivalent to a billion suns holding it
together.
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Fig. 9.6. The Galactic center and its black hole. Top: This 400 × 900 lightyear mosaic of
several Chandra images of the central region of our Milky Way galaxy reveals hundreds of
white dwarf stars, neutron stars, and black holes bathed in an incandescent fog of multimillion-
degree gas (Credit: image credit Chandra (NASA)). The supermassive black hole at the center
of the Galaxy is located inside the bright white patch in the center of the image. Credits:
Chandra X-Ray Observatory. Bottom: A HKL color composite of the Galactic center region.
The central black hole is located in the center of the box. This image has kindly been provided
by A. Eckart
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The BH in the Galactic Center

Is there a black hole in our own galaxy, the Milky Way? The center of our Galaxy
is only 25,000 lightyears away, but its visible light is completely absorbed by
intervening dust. Fortunately, infrared light penetrates the dust (Fig. 9.6). Early
infrared measurements suggested that we have a black hole of about a million solar
masses. It is coincident with a weak radio source called Sgr A* that is exceptionally
tiny – radio observations show that it is about the size of Saturn’s orbit around the
Sun. In a dramatic breakthrough, two groups of astronomers led by Reinhard Genzel
in Munich, Germany, and Andrea Ghez at UCLA, have measured the motions of
individual stars near the Galactic center as projected on the plane of the sky (Fig. 9.7).
They used a technique called speckle imaging to reduce the blurring effect of the
Earth’s atmosphere. The velocity dispersion increases to 400 km/s at a distance of

Fig. 9.7. Astrometric positions and orbital fits for eight stars, within the central 0.8×0.8 arcsec
of the Galaxy, that show significant deviation from linear motion. The proper motion mea-
surements were obtained at the Keck telescopes between 1995 and 2003, have uncertainties
that are comparable to the size of the points, and are plotted in the reference frame in which
the central dark mass is at rest. Overlaid are the best fitting simultaneous orbital solutions,
which assume that all the stars are orbiting the same central point mass. The orbital solutions
for the three stars that constrain the properties of the central dark object are delineated by
solid lines and the joint orbital solutions for the remaining stars are shown with dashed lines.
These orbits provide the best evidence yet for a supermassive black hole, which has a mass
of 3.7 million times the mass of the Sun. Figure adapted from Ghez et al. [173]



462 9 Astrophysical Black Holes

0.03 lightyears from Sgr A*. Here stars have such small orbits that they revolve
around the Galactic center in a few decades. We can look forward to seeing the
Galactic center rotate once in our lifetimes! Motions in the plane of the sky have
been measured for these stars for several years, and such velocity measurements
have strengthened the case for a 3.6 million solar mass black hole at the center
of our Galaxy. The new observations for the first time allow the measurement of
accelerations (and not just velocities) for three of the stars. The acceleration vectors
intersect, to within errors, at Sgr A*, confirming the identification of the black hole
with the radio source. The rapid motions show that there is a mass of three million
solar masses centered on Sgr A* (Fig. 9.8). Notice how the mass enclosed inside
a particular distance from Sgr A* stops dropping toward the center at a distance
of about 1 pc. This means that the mass in stars inside three lightyears has become
negligible compared to the dark mass at the center. As in NGC 4258, the implied
density of matter is too high to allow a cluster of dark stars or stellar remnants.
Because of this work, the most compelling example of a supermassive black hole is
in our own Galaxy.

The spectrum of Sgr A* in the radio can be described by a power law with index
0.3 between gigahertz and millimeter wavelengths. The most interesting feature is
the existence of a bump in the submillimeter regime, which is probably polarized
(Fig. 9.9). This submillimeter excess in the spectrum may be the first evidence for gas
falling towards the black hole on scales of only a few gravitational radii. Since Sgr
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Fig. 9.8. Central mass distribution in our Galaxy implied by the observed velocities measured
on the parsec and subparsec scale. The solid curve represents the stars plus a point mass
of 3.2 million suns. The dashed curve gives the contribution from the star cluster on the
parsec-scale which has a central density �c = 3 × 106 M� pc−3 and a core radius rc = 0.3
pc. A corresponding star cluster to explain the data point S2 would require a central density
�c = 2×1017 M� pc−3 and a core radius of only 0.0002 pc. This is excluded on astrophysical
grounds
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A* is embedded into a nuclear star cluster including He stars with high mass losses,
Bondi accretion would result from the innermost region with low angular momentum
(Melia et al. [289]). A disk is however formed at a distance of a few gravitational radii.
Coker and Melia [121] concluded that the accreted specific angular momentum j =
λRSc has an average equilibrium value for λ � 30 or less. As a result of this, the flow
would circularize at a radius of about 5–50 gravitational radii, but no extended disk
would form in the Galactic center. The bump in the spectrum would result as thermal
cyclotron emission from hot relativistic electrons in the innermost part of the disk
with magnetic fields of the order of 100 gauss. The main contribution results from
cyclotron emission with peak frequency at about 100 GHz and strong self-absorption
below this frequency (due the extreme compactness of the emission region). A second
peak results from Comptonization of the cyclotron emission by the hot electrons with

Fig. 9.9. Overall spectrum emitted by hot electrons in the inner disk around Sgr A*. The
data are compiled by Liu et al. [256] for different epochs, the instruments are indicated.
Continuous lines are some model fits. Acceleration of electrons by plasma wave turbulence in
hot gases near the black hole’s event horizon can account both for Sagittarius A*’s millimeter
and shorter wavelengths emission in the quiescent state, and for the infrared and X-ray flares,
induced either via an enhancement of the mass accretion rate onto the black hole or by
a reorganization of the magnetic field coupled to the accretion gas. Figure adapted from Liu
et al. [256]
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a temperature of � 100 MeV. The Chandra spectrum is formed by this part of the
emission. The disk around Sgr A* would emit asymmetrically (Fig. 9.10).

A swarm of 10,000 or more black holes may be orbiting the Milky Way’s
supermassive black hole, according to new results from NASA’s Chandra X-ray
Observatory. This would represent the highest concentration of black holes anywhere
in the Galaxy [306]. These images (see Fig. 9.6) are part of an ongoing Chandra
program that monitors a region around the Milky Way’s supermassive black hole,
Sagittarius A* (Sgr A*). Four bright, variable X-ray sources were discovered within
3 lightyears of Sgr A*. Strong variability, which is present in all the sources, is
indicative of an X-ray binary system where a black hole or neutron star is pulling
matter from a nearby companion star. These relatively small, stellar-mass black
holes, along with neutron stars, appear to have migrated into the Galactic center over
the course of several billion years. Such a dense stellar graveyard has been predicted
for years, and this represents the best evidence to date of its existence. Among the
thousands of X-ray sources detected within 70 lightyears of Sgr A*, Muno et al. [306]
searched for those most likely to be active black holes and neutron stars by selecting
only the brightest sources that also exhibited large variations in their X-ray output.

Fig. 9.10. Asymmetric cyclotron emission from an optically thin inner disk around Sgr A*.
Depending on the inclination angle between the disk and the line-of-sight, only emission from
the approaching side of the disk is boosted by the Doppler effect. To a distant observer, the event
horizon casts a relatively large shadow with an apparent diameter of � 10 gravitational radii
that is due to the bending of light by the black hole, and this shadow is nearly independent
of the black hole spin or orientation [151]. The predicted size (� 30µas) of this shadow
for Sgr A* approaches the resolution of future radio interferometers. If the black hole is
maximally spinning and viewed edge-on, then the shadow will be offset by � 8µas from the
center-of-mass and will be slightly flattened on one side. Image provided by A. Müller (LSW
Heidelberg)
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BH-Bulge Correlations in Nearby Galaxies

There is now good evidence for supermassive black holes in at least 50 nearby
galaxies (Table 9.2). This is enough for a quantum improvement in what one can
learn about black holes and galaxy formation. First, the amount of mass, that is found
in black holes, is consistent with predictions of the waste mass left behind by quasars.
Also, the individual masses of the black holes are consistent with predictions from
quasar energies.

Two new results are fundamental correlations between black hole masses and the
properties of their host galaxies. Galaxies come in two basic types, flat spinning disks
and more nearly spherical bulges that rotate a little but that mostly are supported by
random motions of stars. Many galaxies, like our own and the Andromeda Galaxy,
consist of a bulge in the middle of a disk. When a galaxy contains only a bulge and
not a disk, it is called an elliptical galaxy. In the following discussion, use of the term
“bulge” includes elliptical galaxies. Supermassive black holes have now been found
in elliptical galaxies and in galaxies that contain both a bulge and a disk, but not in
galaxies that consist only of a disk. In 1993, John Kormendy found that black hole
mass is roughly proportional to the luminosity of the bulge component of the host
galaxy, which is a measure for the mass of the bulge. This is confirmed by the new
black hole detections (Fig. 9.11). It implies that the mass of a black hole is always
about 0.2% of the mass of the bulge

log(MH/M�) = (8.20± 0.1)+ (1.12± 0.06) log(MBulge/1011 M�) . (9.3)

Bulge Mass [solar mass]
910 1010 1110 1210 1310

Bulge Mass [solar mass]
910 1010 1110 1210 1310

B
H

 M
as

s 
[s

o
la

r 
m

as
s]

610

710

810

910

1010
BH Bulge-Mass Correlation

Fig. 9.11. Correlation between the bulge mass and black hole mass. For a total of 30 galaxies
bulge masses were derived through Jeans equation modelling or adopted from dynamical
models in the literature. The solid line gives the linear regression fit to the data with a slope
of 1.12± 0.06. This figure is based on data given in Table 9.2
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The cause of this correlation is not known, but it implies that, as galaxies form, an
approximately standard fraction of the mass ends up in the black hole. The correlation
contains important clues to the origin and growth of galaxies.

In the last few years, a new and more fundamental correlation has been found.
More massive black holes live in galaxies whose stars move faster (Fig. 9.12). This is
often called the Magorrian relation, based on a sample of 26 galaxies, including 13
galaxies with new determinations of black hole masses from Hubble Space Telescope
measurements of stellar kinematics [167]

log(MH/M�) = α+ β log(σe/200 km s−1) . (9.4)

The two parameters based on the data of Table 9.2 have the values α = 8.06± 0.13
and β = 3.67 ± 0.70, while the original data lead to a steeper correlation with
β = 4.2. Of course, the stars near the center must have high velocities; they are
the ones that are used to find the black holes. Concluding that black holes correlate
with these stars would be circular reasoning. Instead, the new correlation involves
the stars in the main bodies of the galaxies. These stars do not feel the black holes.
But they, too, move more rapidly than do stars in galaxies with less massive black
holes. The scatter in the new correlation is almost zero. That is, it is almost the
same as the measurement errors. Tight correlations in astronomy have always led to
fundamental advances in our understanding of how things work. They tell us that
there is an underlying astrophysical constraint that we did not know about before. In
the present case, we do not yet have an explanation of why the correlation is so tight.

Fig. 9.12. Correlation between the bulge stellar dispersion and black hole mass, based on the
data given in Table 9.2. The solid line corresponds to a scaling MH ∝ σ4

e , normalized to the
mass of M32. Note that the bulge of the Galactic center (GC) and the compact elliptical M32,
a companion of M31, have identical bulge properties
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But it implies that there is something almost magically regular about the process by
which black holes are fed and grown.

In Fig. 9.13 we extend this diagram towards smaller masses to include objects
such as globular clusters and dwarf ellipticals. If the Magorrian relation were to
apply also for these objects, one would expect black hole masses in globular clusters
of the order of at least a few hundred solar masses. Do dwarf elliptical and dwarf
spiral galaxies contain central black holes with masses below 106 solar masses?
Beyond the Local Group, dynamical searches for black holes in this mass range are
very difficult, but the detection of accretion-powered nuclear activity could be used
to infer the presence of a black hole. The nearby dwarf spiral galaxy NGC 4395
hosts a faint Seyfert 1 nucleus with a likely black hole mass in the range 104–105

solar masses, and for more than a decade it has been the only known example of
a Seyfert 1 nucleus in a dwarf galaxy. Its velocity dispersion is 37 km/s, suggesting
a possible black hole mass of order 105 solar masses. Another example is POX 52.
While POX 52 was originally thought to be a Seyfert 2 galaxy, new data reveal
an emission-line spectrum very similar to that of the dwarf Seyfert 1 galaxy NGC
4395, with clear broad components to the permitted line profiles. The host galaxy
appears to be a dwarf elliptical. Applying scaling relations to estimate the black
hole mass from the broad Hβ linewidth and continuum luminosity, Barth et al. [60]
find MH � 1.6 × 105 M�. The stellar velocity dispersion in the host galaxy is 36
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Fig. 9.13. Correlation between the bulge stellar dispersion and black hole mass, based on
the data given in Table 9.2, extended towards smaller masses. The solid line corresponds to
a scaling MH ∝ σ4

e , normalized to the mass of M32. Based on this scaling, globular clusters
should have black hole masses in the range of at least a few hundred solar masses. SDSS Sy1
denote Seyferts, which were selected from the Sloan Digital Sky Survey to have estimated
black hole masses around 106 solar masses [60]
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km/s, also suggestive of a black hole mass of order 105 M�. On the other hand, in
M33 and NGC 205 only upper limits of 4× 104 M� to black hole masses have been
found.

9.2.4 Black Holes in Quasars

Since the pioneering works by Salpeter (1964), Lynden-Bell (1969) and Blandford
and Rees (1974), the standard model for the nuclear activity in galaxies has envisaged
a supermassive compact object, usually a black hole with mass 106–1010 M�, which
acts as a central engine in the production of radio emission. In this picture, the
radio power is derived from twin collimated beams of relativistic material which
are ejected along the black hole spin axis. The total energy output is related to both
the mass MH of the central object and the accretion rate Ṁ. The maximum source
luminosity is set by the Eddington limit,

LEd = 1.3× 1047 erg s−1 MH

109 M�
(9.5)

and the required accretion rate

ṀEd � 20 M� yr−1 0.1

εH

L

1047 erg s−1
. (9.6)

εH is the efficiency of mass–energy conversion. To produce powerful 3C radio
galaxies and quasars with luminosities L � 1046–1047 erg s−1 requires minimum
black hole masses of 109 M� and accretion rates of a few M� yr−1 of infalling gas.
The total amount of gas accreted in the lifetime of the quasar is similar to the black
hole mass itself. This amount of gas is indeed available on the parsec scale of the
host galaxies. The total amount of gas assembled in the core of these giant elliptical
galaxies can be an appreciable fraction of the core mass itself.

The mass of a dead quasar can also be estimated from the total dissipation

MH = L Qτ

εHc2
= 7× 108 M�

L Q

1012 L�
τ

109 yr

0.1

εH
, (9.7)

where L Q is the quasar luminosity and τ its lifetime. 109 years is an upper limit
to the lifetime. The density of such remnants follows from the integrated comoving
energy density in quasar light

u � 1.3× 10−15 erg cm−3 . (9.8)

The corresponding mass density is then a question of efficiency

�H = u

εHc2
= 2.2× 105 M� Mpc−3 0.1

εH
. (9.9)

On the other hand, the luminosity density of galaxies is j � 1.5× 108 L� Mpc−3,
and a typical bright hot component contributes 8.5× 109 L�, depending somewhat
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Fig. 9.14. Black hole masses for AGNs vs. luminosity as obtained by reverberation mapping.
The luminosity scale on the lower axis is the bolometric luminosity Lbol � 9λLλ. The
diagonal lines show the Eddington limit LEdd, 0.1 LEdd, and 0.01 LEdd. This figure is based
on data from [328]

on the Hubble constant. This provides us with a number density of 2 × 10−2 hot
galaxies Mpc−3. The mean black hole mass required per hot galaxy is only 107 M�,
which is in accordance with the observations.

If the emitting gas in the broad-line region of a quasar is assumed to be gravita-
tionally confined, then reverberation mapping permits a simple dynamical determi-
nation of central mass. Correlated variability between the continuum and emission
lines determines the radius of the broad-line region and the width of the line provides
a measure of its velocity dispersion. This technique has been successfully used to
determine BLR sizes for 17 Seyfert I galaxies, but quasar samples have been more
difficult to monitor.

In Fig. 9.14, we present improved black hole masses for 35 active galactic
nuclei (AGNs) based on a complete and consistent reanalysis of broad emission-line
reverberation-mapping data [328]. From objects with multiple line measurements,
one finds that the highest precision measure of the virial product is obtained by
using the cross-correlation function centroid (as opposed to the cross-correlation
function peak) for the time delay and the line dispersion (as opposed to full width
half maximum) for the linewidth and by measuring the linewidth in the variable
part of the spectrum. The scatter about the mass–luminosity relationship for these
AGNs appears to be real and could be correlated with the Eddington ratio and object
inclination. Typically, AGNs are not detectable as broadline objects for luminosities
less than about 0.01 the Eddington luminosity.
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9.3 Estimating Black Hole Spin

According to the two-hair theorem (Fig. 1.9), astrophysical black holes are given
by two independent parameters: the mass MH and the angular momentum JH . As
with neutron stars, we expect that accreting black holes are fast spinning objects.
Rotating objects have in general an additional source of energy. The rotational energy
of neutron stars is behind the powerful pair winds which are injected into surrounding
nebulae (e.g. the Crab Nebula, Fig. 1.8). As we have seen, for black holes, energies
add quadratically

MH =
√

M2
irr +

(
JH

2G Mirr/c

)2

. (9.10)

The irreducible mass Mirr is a kind of rest mass for a rotating black hole that
cannot be further reduced by any physical processes, except Hawking radiation –
which is however unimportant for macroscopic black holes. The second term is
due to the rotational energy of black holes and is given in terms of the angular
momentum JH of the black hole. Therefore, each black hole contains a rotational
energy

Erot = (MH − Mirr)c
2 = MHc2

(
1−

√
1

2
(1+

√
1− a2∗)

)
, (9.11)

which could be extracted by means of some electrodynamic processes. aH denotes
the specific angular momentum (Kerr parameter). Since Erot ≤ 0.29 MHc2, the ro-
tational energy stored in the black hole of a quasar is a considerable amount of
energy

Erot < 5× 1055 watt s
MH

109 M�
. (9.12)

No other object can approach this upper limit for the rotational energy. The mass
MH of black holes residing in giant elliptical galaxies can easily exceed 109 M�.
If this rotational energy could be dissipated in a kind of pulsar process, this would
represent a considerable luminosity

L rot � Erot

tdiss
� 1.6× 1040 watt

MH

109 M�
109 yr

tdiss
, (9.13)

essentially comparable to the mean luminosity of radio quasars at redshift of 2 – pro-
vided the system is able to dissipate the energy on a time-scale of a few billion years.
This process could be behind the energetization of bright quasars, such as 3C 273
and 3C 345. In fact, Rees et al. had already suggested in 1982 that the nonthermal
power of radio-loud objects (quasars and radio galaxies) could be accounted for by
this rotational energy.
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9.3.1 Black Hole Spin and Radio Galaxies

This energy-loss rate is an interesting number which can be compared to the bulk
kinetic power Q j in jets of radio galaxies and radio-loud quasars, estimated from
the by-products of the jets, the large-scale radio lobes

Q j = k U

τ j
. (9.14)

Here U is the energy stored in the lobes, taken from equipartition energy Ueq, k � 2
allows for P dV work expended by the jet on pushing back and warming up the
extended medium. τ j is the age of the jet, estimated, e.g. from the spectral age of
the radio lobes. This amounts to a maximal jet power � 1040 watt for bright radio
quasars and narrow-line radio galaxies for 0.5 < z < 1.0. On the other hand, material
radiatively excited by an AGN cools by line emission. Radio galaxies are usually
only narrow-line emitters and one can therefore easily estimate the total narrow-line
luminosity LNLR in all narrow lines. Rawlings and Saunders (1991) obtained for an
unbiased sample of FR II radio galaxies and low-power FR Is a correlation between
the jet power and LNLR:

– Q j ∝ LNLR for FR I and FR II radio galaxies, as well as for radio quasars;
– Q j � 100 LNLR � 1036–1040 watt;
– radio-quiet quasars do not satisfy the Q j − LNLR correlation.

The last point strongly indicates that the jet power is some extra power provided,
e.g. by the rotational energy of the central source. But also radio-loud objects do
have photoionizers which by virtue of Q j ∝ LNLR are controlled by the jet driving
mechanism. It is also interesting that jet sources with given Q j have a higher low-
frequency luminosity when the sources are in a dense cluster environment. This
probably indicates that the narrow line emission is due to the interaction of the
jets with the ambient medium. Since the above correlation extends over more than
four orders of magnitude, this could reflect the scaling of the central mass from
� 106 M� in faint ellipticals to � 1010 M� in giant ellipticals. If jet power were
related to rotational energy of the black hole, then its essentially only the mass and
the angular momentum that dictate the jet power.

9.3.2 Spectral Fitting of Accretion Disks

When a black hole has a large accretion rate exceeding about a few percent of
the Eddington rate, the accreting gas tends to be optically thick and to radiate
approximately as a black-body (see Sect. 10.4). If the disk radiates as a true black-
body at each radius, the total spectrum can easily be calculated and compared to the
spectral fluxes observed at Earth. This flux will depend on R2

in cos i/d2, where i is
the inclination angle, d the distance and Rin the inner edge of the disk. If the inner
edge were at the ISCO, then one could get an estimate for the Kerr parameter a.
These sources have to be in the high state. There is a major drawback in this method,
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since a number of effects (opacity, Thomson scattering, etc.) will cause the spectrum
of an accretion disk to deviate from a black-body. Therefore, spin estimates based
on this method should be treated with caution.

9.3.3 Relativistic Iron Lines

Tanaka et al. [386] discovered for the first time a strong broad spectral line in the
X-ray spectrum of the Seyfert galaxy MCG–6–30–15. They interpreted the line as
fluorescent iron Kα emission from cool gas in the accretion disk. Similar broad
lines have been seen in various AGN and XRBs [341]. The rest energy of this iron
line is at 6.4 keV, but the observed line profile extends from 4 to 7 keV (Fig. 1.1),
which is the result from Doppler broadening and from gravitational redshifts (see
Sect. 8.6.4). The line profile depends on several factors, such as the inner radius of
the emitting region, the disk inclination, the emissivity of the disk material, and the
motion of the emitting gas [303]. As the BH spin increases, the inner edge of the disk
moves closer to the horizon and the velocity of the gas increases. As a result, the line
extends down to very low energies (below 4 keV). This large redshift could be used
as evidence for a high spin of the black hole. In the case of MCG–6–30–15, the line
profile turned out to be highly time-variable. This is probably a sign that the inner
edge of the standard disk is wobbling around with time, and the X-ray emission is
highly turbulent due to the high level of turbulence in the inner hot disk. Among the
XRBs, the source GX 339–4 shows a broad iron line with indication for a high spin,
a > 0.8.

9.3.4 Quasiperiodic Oscillations

The power spectrum of intensity variations shows one or two peaks at frequencies
around a few hundred Hz in the case of several BH XRBs [283] (e.g. as in Cyg
X-1). The observed high frequency suggests that these oscillations arise in gas
that is close to the horizon. This gas is probably strongly influenced by relativistic
effects. However, there is at present no clear understanding for the origin of these
oscillations.

9.4 Black Holes and Galaxy Formation

So far, astronomers have found a supermassive black hole in every galaxy observed
that contains a bulge component. Therefore, the observed correlations say that black
hole mass is intimately connected with bulge formation. Alternative theories come
in two extremes:

– Black holes came first in a standard size, namely 0.2% of the mass of the first
galaxy fragments. Then mergers of small galaxies made big galaxies, and the
big galaxies still contained 0.2% mass black holes because, when two galaxies
merge, their black holes merge, too.
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– Black holes started out small and then grew during galaxy formation. If 0.2% of
the gas that makes stars always gets fed to the central black hole, then the black
hole mass fraction is always 0.2%.

Both theories include an explanation of quasars, but they differ in how they use
quasars. In theory (i), the black holes come first and then regulate galaxy formation,
while in theory (ii) black holes and galaxies grow together. Two arguments are in
favor of the second scenario.

Observations show that there are two kinds of bulge-like components and that
both contain black holes. One kind, called a pseudobulge, is believed to form in
a bulgeless pure disk galaxy when gas flows inward toward the center. One observes
that disks do not contain supermassive black holes in nearly the same proportion
(0.2% of the mass) as do bulges. But seven galaxies contain pseudobulges and all of
them contain standard black holes with about 0.2% of the pseudobulge mass. So the
black holes must have grown during the process that made the pseudobulges.

The second argument comes from a comparison of the two correlations of black
hole mass with host galaxy properties. The first correlation says that bigger bulges
contain bigger black holes, with exceptions: a few galaxies contain anomalously
big black holes. But the stars in these galaxies move faster, too, and they do so
by precisely the right amount so that the scatter in the black hole mass – random
velocity correlation is small. What does this mean? The reason why the stars move
so rapidly is that the galaxy collapsed to an unusually small size when it formed.
Then stars are closer together, so their gravitational forces on each other are bigger,
so they must move faster. But, if black holes are unusually massive, whenever
galaxies are unusually collapsed, then black hole masses were probably fixed by
the collapse process. The alternative – that bigger black holes cause a galaxy to be
more collapsed – is less likely, because bigger black holes would power brighter
quasars; their radiation would push on the protogalactic gas and would tend to make
it collapse less, not more.

Based on these arguments, one can conclude that the major events that made
the bulge and the major periods of black hole growth were the same events. Galaxy
formation directly results in the black hole feeding that makes quasars shine.

9.5 Black Hole Magnetospheres

Magnetic fields are essential ingredients in the physics of accretion disks around
rapidly rotating black holes. Seed fields advected inwards from the ambient medium
will be sheared into helical fields. Once these fields are advected into the neighbor-
hood of the horizon, additional forces appear which are related to the spin of the
black hole. These effects could amplify the fields and produce a dynamo action in
a boundary layer between the horizon and the disk (Khanna and Camenzind [222]).
In this way, the black hole could be immersed into a rotating magnetosphere.

The physics of black hole magnetospheres goes back to the pioneering work of
Blandford and Znajek in 1977 [80]. These authors investigated the interaction of



474 9 Astrophysical Black Holes

a horizon with an external force-free magnetosphere and came to the conclusion that
by means of this interaction rotational energy could be extracted out of the immense
energy reservoir of a supermassive black hole. In the last 20 years, many authors
worked on this problem which could be important for the launch of energetic jets in
quasars, radio galaxies and microquasars. Most of these investigations were based
on the force-free approximation, where plasma inertia is neglected in the Lorentz
force. This force-free approximation is, however, not suitable for the discussion of
plasma processes that are relevant in accretion and outflows. For this reason, we will
present an introduction into the complete magnetohydrodynamics of rotating black
holes including currents and plasma motion. This theory is quite complicated, when
working however in the 3+1 split of Kerr spacetime the equations can be formulated
in a way familiar to astrophysicists.

9.5.1 The 3+1 Formalism for Maxwell’s Equations

The 3+1 formalism is of special importance for the discussion of electromagnetic
fields in general relativity. This technique is based on a slicing of the spacetime such
that the slices are space-like. This defines a vector field ∂t which can be decomposed
into normal and parallel components relative to the slicing

∂t = αn+ β . (9.15)

Here n is the unit normal field and β is tangent to the slices. α is the lapse function
(or redshift factor) and β the shift vector field. The line element of the Kerr geometry
is a special decomposition of the general expression

ds2 = −α2 dt2 + γij
(
dxi + βidt

) (
dx j + β jdt

)
. (9.16)

The four one-forms Θ0 = α dt and Θi = θ i + βidt (i = 1, 2, 3) are therefore
orthonormal and form a natural basis for one-forms. θ i are normalized one-forms in
the spatial slice. In Kerr space, α is explicitly known, and due to axisymmetry the
shift vector has only one nonvanishing component βφ = −ω. In the case of rapidly
rotating neutron stars, these two functions are only given numerically.

The derivation of Maxwell’s equations adapted to the slicing is quite complicated
when usual techniques are involved. There is a very elegant derivation based on
the technique of differential forms, the electromagnetic potential A = Aµ dxµ is
essentially a one-form and the Faraday tensor F a two-form. Instead of using the
coordinate basis, the Faraday tensor is now decomposed with respect to this natural
basis of one-forms

F = E ∧Θ0 + B (9.17)

with the definition of the two fields

E = Ei Θ
i , B = 1

2
Bij Θ

i ∧Θ j . (9.18)
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On the other hand, it is useful to decompose these quantities also into components
adapted to the slicing

E = E + (Eiβ
i) dt = E + iβE dt . (9.19)

E = Ei θ
i is now the horizontal electric field. Similarly, we have for the magnetic

two-form

B = 1

2
Bij θ

i ∧ θ j . (9.20)

We obtain therefore the following decomposition of the Faraday two-form

F = B + (αE − iβB) ∧ dt . (9.21)

Since the homogeneous Maxwell’s equations are given as dF = 0, this means

dB + ∂tB ∧ dt + d(αE) ∧ dt − d(iβB) ∧ dt = 0 . (9.22)

This splits into the two equations

dB = 0 , d(αE)+ ∂tB = d(iβB) . (9.23)

Using the Cartan formula for the Lie derivative, Lβ = diβ + iβd, the homogeneous
Maxwell’s equations can also be written as

dB = 0 , d(αE)+ ∂tB = LβB . (9.24)

The inhomogeneous equations follow from the Hodge dual one-forms

H = ∗B , E = ∗D . (9.25)

(∗ denotes the three-dimensional Hodge dual). The dual of the Faraday two-form is
therefore

∗F = D − (αH + iβD) ∧ dt . (9.26)

In the same sense we can also decompose the current density

J = �e θ
0 + jk θ

k , (9.27)

where �e is the electric charge density with respect to this basis. We also introduce
the horizontal forms

� = �e θ
1 ∧ θ2 ∧ θ3 , j = jk θ

k , J = ∗j . (9.28)

From this we find for the current three-form

∗J = � + (iβ� − αJ) ∧ dt . (9.29)
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With this, the inhomogeneous Maxwell’s equations can be written

d ∗ F = dD + ∂tD ∧ dt − d(αH) ∧ dt − d(iβD) ∧ dt

= 4π� + 4π(iβ� − αJ) ∧ dt . (9.30)

This once again splits into two equations

dD = 4π� , d(αH) = (∂t −Lβ)D + 4παJ . (9.31)

The first equation is Gauss’ law, and the second one Ampère’s law modified by a Lie
derivative along the shift vector field. These are Maxwell’s equations adapted to the
slicing of any geometry.

This equation also implies charge conservation in the form of

(∂t −Lβ)� + d(αJ) = 0 . (9.32)

The Hodge dual of this form is equivalent to the usual form of charge conservation

(∂t −Lβ)�e +∇ · (α ∗ J)− α�e Tr(K) = 0 . (9.33)

K denotes the second fundamental form of the slices defined as

Kij = 1

2α
(βi| j + β j|i) . (9.34)

Due to axisymmetry, we have in Kerr space Tr(K) = 0. This corresponds in fact to
the charge conservation law discussed in Thorne et al. [392]

α
d�e

dτ
= (∂t − β · ∇) �e = −∇ · (αj) . (9.35)

Maxwell’s Equations under Axisymmetry

In the following, we will not work with forms, but with the corresponding vector
fields. E and B denote the electric and magnetic fields, respectively, as measured by
ZAMOs, which are special observers having a four-velocity U perpendicular to the
absolute space

U = 1

α
(∂t − βi ei) . (9.36)

Together with the orthonormal tetrad in Boyer–Lindquist coordinates er , eθ and
eφ = (1/ω̃) ∂φ this forms a physical basis in the tangential space. This is the basis
that is dual to the above natural one-form basis. The circumference of a circle around
the rotational axis is measured by ω̃ = √gφφ. The four-velocity of the plasma u is
then expressed as

u = γ(U + v) , (9.37)

where v is now the three-velocity of the plasma with respect to ZAMOs.



9.5 Black Hole Magnetospheres 477

Instead of using the forms, Maxwell’s equations (9.24) and (9.31) are expressed
for the vector fields E and B, which live on the slice,

∇ · E = 4π�e , ∇ · B = 0 (9.38)

∇ × (αE) = −(∂t −Lβ)B (9.39)

∇ × (αB) = (∂t −Lβ)E+ 4πα j . (9.40)

The current density j is given by Ohm’s law,

j = σγ (E+ v× B)+ �′e γv , (9.41)

where σ denotes the conductivity, v the bulk velocity of the plasma, γ the corre-
sponding Lorentz factor, and �′e the charge density in the rest frame of the plasma.
As compared to flat spacetimes, there are two important additional terms related to
the shift vector of the slicing (or the frame-dragging effect in Kerr space).

For axisymmetric fields, Maxwell’s equations assume the simple form

∇ × (αE) = −∂B
∂t
+ (B · ∇ω) ω̃eφ (9.42)

∇ × (αB) = ∂E
∂t
− (E · ∇ω) ω̃eφ + 4παj . (9.43)

On an axisymmetric spacetime, it is now useful to split all the vector fields into
poloidal and toroidal components, B = Bp + BT with BT = Bφ̂ eφ and Bp =
Br̂er + Bθ̂eθ , and Bp = ∇ × (Aφ̂eφ). The induction and Ampère’s equations give
the following relations, when decomposed into poloidal and toroidal components

∂Aφ̂

∂t
= −α Eφ̂ (9.44)

∂Bφ̂

∂t
= ω̃Bp · ∇ω− eφ · (∇ × αEp) (9.45)

∂Eφ̂

∂t
= ω̃Ep · ∇ω− G2[Aφ̂] − 4πα j φ̂ (9.46)

∂Ep

∂t
= ∇ × (αBφ̂)− 4παjp . (9.47)

G2[A] ≡ −eφ · [∇ × αBp] is the Grad–Shafranov operator for the poloidal flux

function Ψ ≡ ω̃Aφ̂ = Aαmα, explicitly given by divergence operator

G2[Ψ ] ≡ ω̃Div
[ α
ω̃2
∇Ψ

]
, (9.48)

where Div is the divergence operator on three-space. In terms of this flux function
Ψ , the poloidal magnetic field is given in the standard form

Bp = 1

ω̃
∇Ψ × eφ . (9.49)
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In addition, Ohm’s law has the two components

jp = σγ
[
Ep + vT × Bp + vp × BT

]
(9.50)

j φ̂ = σγ
[

Eφ̂ + eφ · (vp × Bp)
]
, (9.51)

provided the charge density in the plasma frame vanishes. This formulation of
Maxwell’s equations is suitable for implementing in a code. Due to the potential
formulation, Div(B) = 0 is automatically satisfied. We will discuss in the following
some consequences of the above equations.

The Event Horizon as a Membrane

Similar to neutron stars, boundary conditions must also be specified at the event
horizon, at least in the vacuum case. In contrast to a neutron star, a black hole has
no material surface. One can think of the black hole as having a fictitious surface
charge density σH that compensates for the flux of electric field across the surface,
and a fictitious surface current density jH that closes tangential components of the
magnetic fields. This interpretation is the basis of the membrane formalism (Thorne
et al. [392]).

Gauss’ law implies for the electric field perpendicular to the horizon

E H
⊥ → 4πσH , (9.52)

and Ampère’s law for the field parallel to the horizon

αB‖ → BH
‖ = 4πjH × n . (9.53)

In addition, Ohm’s law implies

αE‖ → EH
‖ = RH jH (9.54)

with RH = 4π/c = 377 Ohm as the effective surface resistance of the horizon.
The fields E⊥ and B⊥ are finite at the horizon, E‖ and B‖ generally diverge as 1/α,
but

|E‖ − n× B‖| ∝ α→ 0 (9.55)

at the horizon. This signifies that for a locally nonrotating observer the electromag-
netic field at the horizon looks like a wave sinking into the black hole (ingoing
wave conditions). This formalism is now superseded by using Kerr–Schild coordi-
nates.

9.5.2 Plasma Equations in the 3+1 Split

Besides the time evolution of magnetic fields we also need a description of the
time evolution of the plasma part. We decompose theenergy–momentum tensor
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T into horizontal and vertical components (one-component description for the
plasma)

T = εU ⊗U +U ⊗ S+ ↔
t . (9.56)

ε is the energy–density with respect to ZAMOs, S the momentum flux and
↔
t the

stress tensor. For a one-component nonviscous plasma the energy–momentum tensor
has the form

T = (�+ P) u ⊗ u + Pg+ Tem (9.57)

With the decomposition of u = γ(U+v)we find the following components with
respect to ZAMOs

ε = γ 2 (�+ Pv2)+ εem (9.58)

S = (�+ P) γ 2v+ Sem = �0hγ 2 v+ Sem (9.59)
↔
t = (�+ P) γ 2 v⊗ v+ P

↔
g + ↔

t em= S⊗ v+ P
↔
g + ↔

t em . (9.60)

�0 is the rest-mass density and h = (� + P)/n the relativistic specific enthalpy.

Sem represents the Poynting flux measured by ZAMOs and
↔
t em the Maxwell

stresses

εem = 1

8π

(
E2 + B2) (9.61)

Sem = 1

4π
E× B (9.62)

↔
t em = 1

4π

(
−E⊗ E− B⊗ B+ 1

2
↔
g
(
E2 + B2)) . (9.63)

Using the 3+1 split of the connection of Kerr space, one can now derive the 3+1
split of the hydrodynamic equations ∇ · T = 0 (for more details, see Durrer and
Straumann 1988 [139]). Energy conservation, given by U · (∇ · T) = 0, can be
written as

dε

dτ
= 1

α
(∂t −Lβ)ε = − 1

α2
Div(α2S)+ ε Tr

(↔
K

)
+ Tr

(↔
K · ↔t

)
. (9.64)

The first term in the energy conservation is the familiar divergence of the en-
ergy flux, with one factor of α inside the divergence to account for the gravi-
tational redshift of the energy and the other to convert the per unit proper time
in the definition of the flux into to a per unit universal time. The last term is
interesting and can be written in terms of the shear σK

ik ≡ −Kik of adjacent ob-
servers

1

α
(∂t − β · ∇)ε = − 1

α2
Div(α2S)− ε Tr

(↔
σ
)
− σK

ik tik . (9.65)
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Similarly, Euler’s equations, given by h · (∇ · T) = 0, assume the form

dS
dτ
= 1

α
(∂t −Lβ)S = −ε∇(lnα)− 1

α
Div

(
α
↔
t
)
+ Tr

(↔
K

)
S+ 2

↔
K ·S .

(9.66)

This can be brought into the form

1

α
(∂t −Lβ)S = −ε∇(lnα)− 1

α
Div

(
α
↔
t
)
+ Tr

(↔
K

)
S− σ · S− 1

2
H× S .

(9.67)

−∇ lnα represents the local gravitational force measured by ZAMOs. For slicings
with nonvanishing fundamental form, additional couplings occur between the cur-
vature of the absolute space and the momentum flux. The term −(1/2)H × S is
familiar from the precession law for gyroscopes; the momentum density S will
precess relative to absolute space.

For stationary flows on Kerr space this implies the two equations

Div(α2S) = α2 σK
ik tik (9.68)

1

α
∇k(αtk

i ) = −ε∇i(lnα)− 1

α
Sφ ∇iω . (9.69)

In contrast to flat spaces, the energy flow is no longer conserved; the gravitomagnetic
field, represented by the shear σK

ik , changes energy conservation. Even in the case of
pure hydrodynamic disk accretion, this coupling between the plasma stress tensor,
trφ (angular momentum flow vector), and the gravitomagnetic field introduces a work
done on the disk plasma, which is very similar to viscous dissipation, σK

rφtrφ, except
that here we have a coupling between the shear of absolute space and the momentum
flux. This term can be very important if strong magnetic fields occur near the horizon
of a rapidly rotating black hole.

9.5.3 Time Evolution of Magnetic and Current Flux in Turbulent Disks

The above formulation can now be used to investigate the time evolution of magnetic
flux in accretion disks around rapidly rotating objects. This is a fundamental topic for
the understanding of the formation of magnetospheres around rotating black holes.

The Grad–Shafranov Equation

When we combine Eq. (9.46) with the first equation (9.44) of Maxwell’s equations,
this provides us a kind of wave equation for the poloidal flux Ψ

∂2Ψ

∂t2
− αω̃G2[Ψ ] = −αω̃2Ep · ∇ω+ 4πω̃ j φ̂ . (9.70)



9.5 Black Hole Magnetospheres 481

This shows explicitly that the equation is hyperbolic, as required by Maxwell’s the-
ory. There are two source terms: (i) External toroidal currents provide a source
for poloidal magnetic fluxes, as we already know from flat space electrody-
namics. (ii) Differential rotation of absolute space, represented by ∇ω, shears
poloidal electric fields which act then as an additional source for poloidal fluxes.
This is especially interesting for stationary configurations where we find the
Grad–Shafranov equation for the poloidal magnetic flux in axisymmetric space-
times

αG2[Ψ ] = αω̃Ep · ∇ω− 4π j φ̂ . (9.71)

This represents the general relativistic form of the flat Grad–Shafranov equation,
α = 1,

Div
(

1

ω̃2
∇Ψ

)
= −4π jφ . (9.72)

Using Ohm’s law, equation (9.70) can be rewritten as

∂2Ψ

∂t2
+ 4πγσ α

∂Ψ

∂t
− αω̃G2[Ψ ]

= −ω̃2αEp · ∇ω+ 4πα2γσω̃eφ · (vp × Bp) . (9.73)

Using the expression for the poloidal magnetic field and the definition of the magnetic
diffusivity η = c2/4πσ , we obtain the equation

η
∂2Ψ

c2∂t2
+ αγ ∂Ψ

∂t
+ αγ (αvp · ∇)Ψ
− η αω̃G2[Ψ ] = −η ω̃2 αEp · ∇ω . (9.74)

The relevance of the first two terms in a time-dependent evolution of magnetic
flux can be estimated by the ansatz Ψ(t, r, θ) = exp(Γt) Ψ̃ (r, θ). This yields the
eigenvalue equation(

Γ 2

4πσ
+ αγΓ

)
Ψ̃ +αγ (αvp · ∇)Ψ̃

−η αω̃G2[Ψ̃ ] = −η ω̃2 exp(−Γt) αEp · ∇ω . (9.75)

The second derivative in time is in general Γ/4πσ times the second term,
which is first order in the time derivative. We can neglect second-order time
derivatives, whenever the growth rates Γ are much less than the microscopic
scales given by the conductivity σ = 3.2 MHz T 3/2

e . In a turbulent plasma,
the effective conductivity is, however, much less, and the corresponding growth
times 1/Γ are of the order of the Alfvén transit time R/vA at the radius R in
a disk.
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Causality requires that the second derivative is present in this transport equation
for the poloidal magnetic flux. This term regulates the relaxation. For long term
evolution we may neglect this part and end up with a parabolic diffusion type equation
used in some simulations of the time evolution of magnetic fields in turbulent disks
(Khanna and Camenzind [222])

γ
∂Ψ

∂t
+γ (αvp · ∇)Ψ
−η ω̃G2[Ψ ] = −η ω̃2 Ep · ∇ω . (9.76)

Except for the term on the right-hand side, this is the standard equation for the
evolution of magnetic flux in Newtonian magnetohydrodynamics.

The Current Flux Equation

The second equation determines the time evolution of the current function T(t, r, θ) =
2
∫
αjp · dA = αω̃Bφ̂(t, r, θ). From equation (9.45) we get

∂T

∂t
= αω̃2 Bp · ∇ω− αω̃eφ ·

[
∇ × α

(
1

σγ
jp − vT × Bp − vp × BT

)]
, (9.77)

when Ohm’s law is used. Together with the poloidal component of Ampère’s law
this can be written as

∂T

∂t
− αω̃eφ ·

[
∇ × η

γ
(∇ × αBT )

]
= αω̃2 Bp · ∇ω

+ αω̃eφ · ∇ ×
[
η

γ

∂Ep

∂t
− eφ ·

(
vT × Bp − vp × BT

)]
. (9.78)

This finally leads to a diffusion type equation for the current function

∂T

∂t
+ α(vp · ∇)T − αω̃2 ∇ ·

(
T

ω̃2
vp

)
− αω̃2 ∇ ·

(
η

γ ω̃2
∇T

)
= αω̃2 Bp · ∇Ω + αω̃ eφ · ∇ ×

(
η

γ

∂Ep

∂t

)
. (9.79)

The left-hand side of this equation is nothing than the flat space expression, which
tells us that toroidal magnetic fields change with time by means of advection,
compression and diffusion. As in flat space, the main driving source for toroidal
fields is the shearing of poloidal magnetic fields by the differential rotation of
the plasma motion. The only new source term is due to induction by electric
fields.

In contrast to equation (9.70), differential rotation of absolute space is only
an indirect source for toroidal magnetic fields. Even for vanishing specific angular
momentum of the plasma, λ = 0, an effective shear is produced by the differential
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Fig. 9.15. Quadrupolar field topology for the toroidal field around a rapidly rotating black
hole for aH = 0.998MH . This poloidal current flux distribution is generated by poloidal
dipolar magnetic fields accreted onto a black hole. In this simulation, differential rotation is
only driven by absolute space, i.e. the specific angular momentum of the plasma vanishes.
The dashed lines indicate the scale-height of the disk. This topology leads to current loops
which can power disk winds from the inner part of the accretion disk. In this way, rotational
energy stored in the spacetime of a black hole is drained into Poynting flux which further out
accelerates plasma to high Lorentz factors. Figure adapted from [99]
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rotation of absolute space. A solution of this equation is shown in Fig. 9.15 for
a dipolar poloidal field structure around a rapidly rotating black hole for a rotation
law of the form (Camenzind and Khanna [99])

Ω = ω+ α2

R2

λ

1− λω . (9.80)

Since the hyperbolic nature of this equation is not obvious, it can be written in
an alternative way by starting with the time derivative of the toroidal component BT

of the induction equation (9.46)

∂2 BT

∂t2
− αG2[BT ] = ω̃ ∂Bp

∂t
· ∇ω+ 4πeφ ·

[∇ × (
α2jp

)]
. (9.81)

This shows explicitly the hyperbolic nature of the equation. Similar to the discussion
of the transport of poloidal flux we may neglect the current displacement term in
equation (9.79) which then yields a parabolic equation for the time evolution of the
current function.

On the Validity of Cowling’s Theorem in Kerr Geometry

Axisymmetric magnetic fields can generally be decomposed into a poloidal field
and an azimuthal component. As we have seen, differential rotation can stretch
the poloidal field and convert it into an azimuthal field. This gives an efficient
amplification of the magnetic field, but it requires the poloidal field as a source. In
strictly two-dimensional geometry, there is no corresponding source for the poloidal
field, which must eventually decay. The flow can only advect the poloidal field
around, but, because of axisymmetry, it cannot stretch or amplify the poloidal field.
This is known as Cowling’s antidynamo theorem.

Cowling’s theorem therefore states that stationary axisymmetric magnetic fields
cannot be maintained by purely axisymmetric plasma motions. In the Kerr geome-
try, near a rotating black hole, the situation is different. The hole’s rotation drags all
physical objects near it into orbital motion in the same direction as the hole rotates.
Physical quantities, such as electric and magnetic fields, are measured by fiducial ob-
servers (ZAMOs), who are orbiting with angular velocity ω(r). This frame-dragging
effect acts in a similar way as ordinary differential rotation in nonrelativistic hy-
dromagnetics and leads to field-line stretching. The gravitomagnetic effect in the
induction equation changes this conclusion of classical electrodynamics (Khanna
and Camenzind [99,222]). The reason is that in Kerr space the coupling between the
gravitomagnetic shear ∇ω and the poloidal electric field Ep is a potential source for
the poloidal magnetic fluxΨ (see equation (9.70)). This term is absent in nonrotating
space and leads to the usual formulation of Cowling’s theorem. In order to see this
effect, one has to simulate the two equations, there are no analytical results known.

The kinematic evolution of axisymmetric magnetic fields in rotating magneto-
spheres of relativistic compact objects has also been analytically studied by Tomi-
matsu [395], based on relativistic Ohm’s law in stationary axisymmetric geometry.
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The first process is caused by the help of a background uniform magnetic field
in addition to the dragging of inertial frames. It is shown that excited multipolar
components of poloidal and azimuthal fields are sustained as stationary modes, and
outgoing Poynting flux converges toward the rotation axis. The second process is
a self-excited dynamo through azimuthal convection current, which is found to be
effective if plasma rotation becomes highly relativistic with a sharp gradient in the
angular velocity. In this case, no frame-dragging effect is needed, and the coupling
between charge separation and plasma rotation becomes important.

Magnetic Engulfment of Black Holes

As discussed above, one can neglect for the long-term time evolution of magnetic
fields in accretion disks the influence of the displacement current in the two equations
(9.76) and (9.79). This leads then to a coupled parabolic system of equations for the
poloidal magnetic flux Ψ(t, r, θ) and the poloidal current function T(t, r, θ) (Khanna
and Camenzind [222]). The accretion profile with plasma rotationΩ(r) and accretion
drift vr(r) must be given by some reasonable approximation, as following from the
accretion disk solutions. Similarly, the magnetic diffusivity η is given by some
characteristic turbulent diffusivity η0.

The two equations for Ψ and T are brought to dimensionless form by scaling
radii in units of MH , velocities in units of the speed of light, and time in units of
the diffusion time tdiff = M2

H/η0. The advective terms are then scaled by a magnetic
Reynolds number defined as

Rm = MHc

η0
= tdiffc

MH
� M2

H

αT H2
� 1 , (9.82)

where H is the disk scale-height at the horizon and αT ≤ 1 the standard turbulence
parameter of accretion disks. This Reynolds number is the only free parameter
involved in the equations. The solutions shown in Fig. 9.15 (aH = 0.998 and
Rm = 25) were calculated from an initial dipolar disk configuration based on
advection and diffusion alone. After many diffusion times, a closed quadrupole for
the toroidal field evolves around the horizon, which extends beyond the ergosphere.
These poloidal current loops are mainly driven by the differential rotation of absolute
space, ∇ω. They escape into an open structure at distances of a few gravitational
radii. In the region, where these current loops cross the poloidal field lines, Lorentz
forces jp×Bp can accelerate plasma filled into the magnetosphere. This is the basic
process which leads to high plasma acceleration in open magnetospheres around
rapidly rotating black holes.

Quadrupolar magnetic configurations are the naturally excited magnetic struc-
tures in geometrically thin accretion disks. Disk outflows driven by quadrupolar
structures cannot be efficiently accelerated, leading probably only to moderate disk
winds, such as observed in the microquasars (typical speed is 0.9c). For efficient
plasma acceleration with Lorentz factors Γ � 10–20, as observed in quasars, dipolar
structures are needed, which, for some reasons, are preferably built up in elliptical
galaxies.
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9.5.4 Stationary Magnetospheres on Kerr Black Holes

The theory of stationary and axisymmetric MHD flows is now complete and can be
used for any investigation of such flows in the gravitational field of rotating compact
objects. The basic features have been derived by the present author [96,97]. A recent
review can be found in [98, 100, 101]. Here, we just make a few comments on the
jet formation process. These developments will be superseeded by time-dependent
MHD simulations which will be discussed in Sect. 10.5.

Force-Free Magnetospheres

As we have demonstrated in Fig. 9.15, the differential rotation of absolute space,
∇ω, produces current loops over the current flux equation (9.79). In this way, a black
hole will be embedded into a rotating magnetosphere filled up with currents. This
reminds us of the pulsar problem.

Goldreich and Julian [176] analyzed, already in 1970, the vacuum solution for
a rotating neutron star with a dipolar magnetic field aligned with the rotational axis.
They argued that the rotationally induced electric field was strong enough to pull
charged particles from the stellar surface and, thus, fill the surrounding space with
plasma. Using the force-free approximation to describe the produced magnetosphere
they argued that an electromagnetically driven wind would carry away rotational
energy and angular momentum of the star.

Wald found in 1974 [409] a rather interesting particular solution of the vacuum
Maxwell equations in the Kerr spacetime. Far away from the hole this solution
described a uniform magnetic field aligned with the rotational axis of a black hole.
However, near the black hole it described a strong electric field as well.

Finally, Blandford and Znajek [80] realized in 1977 that the similarity between
the vacuum solution for a Kerr black hole and the vacuum solution for a rotating
neutron star meant the possibility of electromagnetically driven wind from a rotating
black hole, provided the space around the black hole could be filled with plasma.
Moreover, they argued that, under the typical astrophysical conditions, the vacuum
solutions were, in fact, unstable to cascade pair production, ensuring a plentiful
supply of charged particles. Then they developed a general theory of force-free
steady-state axisymmetric magnetospheres of black holes and found a perturbative
solution for a slowly rotating black hole with monopole magnetic field. The key
element of this solution was Znajek’s “boundary condition” imposed on the event
horizon. As expected, this solution exhibited outgoing electromagnetic fluxes of
energy and angular momentum. Moreover, the electromagnetic mechanism seemed
to be very robust and the estimated power of the wind was high enough to explain
the energetics of radio galaxies and quasars.

The electrodynamic mechanism together with the horizon theory is now widely
accepted by the astrophysical community. In great contrast to this mainstream trend,
Punsly and Coroniti [335,336] and later Punsly (see [337]) completely rejected both
these theories. They argued that the event horizon cannot be regarded as a unipolar
inductor because it is causally disconnected from the outgoing wind. Indeed, both the
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fast and the Alfvén waves generated at the event horizon can propagate only inwards
and cannot effect the events in the outer space. The apparent lack of a proper unipolar
inductor in the Blandford–Znajek solution and its reliance on Znajek’s boundary
condition made Punsly and Coroniti to conclude that this solution is nonphysical
and structurally unstable. They developed completely different MHD models which
seemed to be based on clearer physical ideas [337]. In brief, they argue that gravity
forces magnetospheric plasma to rotate inside the black hole ergosphere in the same
sense as the black hole and that the magnetic field exhibits a similar rotation because
it is “frozen” into this plasma.

Advection of magnetic flux by the accretion process will immerse the black hole
into an axisymmetric magnetosphere with a flux distribution given by

Ψd(r, θ) = Ψ∞
2
√
πΓ(r)

exp

(
− ξ2

4Γ(r)

)
. (9.83)

Γ(r) is a slowly varying covariance function for the Gaussian flux distribution along
spherical surfaces ξ = (π/2 − θ)/ΘD. Ψ∞ is a measure for the asymptotic flux
advected inwards along the disk. In elliptical galaxies we expect Ψ0 � 1033 gauss
cm2, corresponding to field strengths of the order of a milligauss on the parsec-scale.
Near the horizon, the covariance function stays nearly constant so that the total flux
advected inwards towards the horizon is

ΨH = Ψ0

2
√
πΓ(rH)

. (9.84)

Near the horizon, the field in the disk is practically only radial, since Ψd = Ψd(θ). It
decays as a Gaussian distribution in vertical direction. Beyond the scale-height ΘD,
depending on the accretion process, this magnetosphere is largely force-free since it
is filled up with a sparse plasma density. In the disk itself, the magnetic structure is
far from being force-free, turbulent conductivity is necessary to provide the diffusion
of the plasma against magnetic fields. Electromagnetic fields in the region between
the disk surface and the rotational axis satisfy therefore the force-free condition
(Fig. 9.19)

�eE⊥ + 1

c
j× B � 0 . (9.85)

The Grad–Shafranov Equation

The structure of the resulting magnetosphere is then a solution of the stationary and
axisymmetric Maxwell’s equations

∇ · E = 4π�e , ∇ · B = 0 (9.86)

∇ × (αE) = (B · ∇ω)m (9.87)

∇ × (αB) = 4παj− (E · ∇ω)m . (9.88)
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Under axisymmetry we decompose the fields into poloidal and toroidal components,
B = Bp + BT . The force-free condition (9.85) then implies E · B = 0, i.e. parallel
electric fields must vanish. Charged particles are forced to flow along magnetic field
lines. Hence, the angular velocity of the field linesΩF is given relative to the ZAMO
by

vF = ΩF − ω
α

ω̃eφ = ΩF − ω
α

m . (9.89)

The toroidal current density is therefore jT = vF�e. The force-free condition (9.85)
then implies

E = E⊥ = − 1

�e
jT × Bp . (9.90)

The poloidal magnetic field can be expressed in terms of the magnetic flux Ψ
covered by a rotationally symmetric flux surface A

Ψ =
∫

A
B · dS . (9.91)

This means that

Bp = ∇Ψ × eφ
2πω̃

= ∇Ψ ×m
2πω̃2

, (9.92)

where we used m ·m = gφφ = ω̃2. Hence

Ep = −vF × Bp = −ΩF − ω
2πα

∇Ψ . (9.93)

We can also consider the currents enclosed by the surface A

I = −
∫

A
αj · dS . (9.94)

Then, similarly to the magnetic flux, ∇ I = −2πω̃eφ × (αjp), we obtain

αjp = −∇ I × eφ
2πω̃

= −∇ I ×m
2πω̃2

. (9.95)

Since I = I(Ψ), we finally get the expression for the poloidal current density

jp = − 1

α

dI

dΨ
Bp . (9.96)

Next, we consider Ampère’s law∫
A ∇ × (αB) · dS

= 4π
∫

A
αj · dS−

∫
A
(E · ∇ω)m · dS . (9.97)



9.5 Black Hole Magnetospheres 489

Upon using Stokes’ theorem and m · dS = m · (dr × 2πm) = 0, we derive the
equality

BT = − 2I

αω̃
eφ = − 2I

αω̃2
m . (9.98)

Finally, we use Gauss’ law to derive an expression for the charge density

�e = 1

4π
∇ · E⊥ = − 1

8π2
∇ ·

[ωF − ω
α

∇Ψ
]
, (9.99)

while Ampère’s law yields

jT = 1

4πα
{[∇ × B]T + ω̃(E · ∇ω)}

= − ω̃

8π2α

[
∇ ·

( α
ω̃2
∇Ψ

)
+ ΩF − ω

α
∇Ψ · ∇ω

]
. (9.100)

We now consider the poloidal component of the force-free condition

−�e(vF × B)p + (j× B)p = 0 . (9.101)

This is equivalent to

−�e
ΩF − ω
α

ω̃+ jT + 1

α

dI

dΨ
BT = 0 . (9.102)

By replacing the two expressions for �e and jT , we obtain the famous Grad–
Shafranov equation (GSS) for relativistic magnetospheres

∇ ·
[
αD

ω̃2
∇Ψ

]
+ ΩF − ω

α

dΩF

dΨ
|∇Ψ |2 + 16π2 I

αω̃2

dI

dΨ
= 0 . (9.103)

The structure of the magnetosphere depends on the field line rotation law ΩF(Ψ)

and the current distribution I(Ψ) in the magnetosphere. In total, the GSS equation
is a highly nonlinear partial differential equation, and only very special analytic
solutions have been found, essentially for a linear current function, I(Ψ) ∝ Ψ .

The Role of the Light Cylinder Surfaces

The function D is defined as

D = 1− (ΩF − ω)2ω̃2

c2α2
(9.104)

and is called the light cylinder function. In the special relativistic case, where ω = 0
and α = 1, D = 0 defines the light cylinder surface with the light cylinder radius
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given by RL = c/ΩF . In Kerr, the light cylinder surfaces are located at the two
positions

ω̃ILC = αc

ω−ΩF
, ω̃OLC = αc

ΩF − ω . (9.105)

They are called inner light cylinder surface (ILC) and outer light cylinder surface.
This is the greatest distinction between a pulsar magnetosphere, which only has the
outer light cylinder surface, and black hole magnetospheres.

The GSS equation has a singular behavior at the light cylinder, or in other
words, the light cylinder surface is a critical surface for the GSS equation. Be-
sides the light cylinder function, the structure of the resulting magnetosphere
is determined by the current system flowing in the magnetosphere, I = I(Ψ),
and by the differential rotation of the field lines. When field lines are an-
chored into a disk, their rotation is determined by the disk rotation (e.g. Kep-
lerian). For field lines entering the horizon, their rotation is a priori not deter-
mined.

Since the light cylinder function depends quadratically on the cylinder radius,
a magnetosphere around black holes has two light cylinder surfaces, given by the
condition

D = 1− (ΩF − ω)2#2
L

c2α2
= 0 (9.106)

for given rotation ΩF . The outer light cylinder surface (OLC) replaces the special
relativistic one and is slightly modified by gravitational effects near the equator. In
addition, we find an inner light cylinder surface (ILC) which always is located within
the ergosphere (Fig. 9.16).

Fig. 9.16. Light cylinder surfaces in
Kerr for a constant ΩF . Coordinates
are given in units of gravitational radii,
G M/c2. The thick line denotes the er-
gosphere, the inner light cylinder is
always between the horizon and the
static limit surface. The outer light
cylinder is slightly deformed by grav-
ity near the equatorial plane
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We can get closed expressions for the charge density and the toroidal current
density [314]

�e = ΩF − ω
4πα2

(8π2 I/α2)(dI/dΨ)−N · ∇Ψ
D

(9.107)

jT = 1

4π2#

(8π2 I/α2)(dI/dΨ)− [(ΩF − ω)2#2/α2]N · ∇Ψ
D

, (9.108)

where

N = 1

2

[
∇ ln

(ΩF − ω)#2

α2
− (ΩF − ω)#2

α2
∇ω

]
. (9.109)

On the light cylinder surfaces, where D = 0, the numerators in these expressions
should also vanish in order to have a finite charge density and toroidal current density.
This requires a boundary condition

N · ∇Ψ = 4π

α2

(
dI2

dΨ

)
LC
, (9.110)

which is called a critical condition. According to this, the magnetosphere of a black
hole subdivides into three regions: (i) the magnetosphere beyond the outer light
cylinder surface, (ii) the region between the inner and outer light cylinder surface,
and (iii) the magnetosphere between the horizon and the inner light cylinder surface.

As was first pointed out by Goldreich and Julian, the original source of the
plasma that will fill the magnetosphere of a pulsar is the surface of the pulsar itself.
Strong electric fields on the pulsar surface rip off charged particles from the star, and
they fill the whole magnetosphere. In fact, this charge density is only a tiny fraction
of the total population of particles of the magnetosphere which consist of electron
positron pairs created in the polar cap region.

In the case of rotating black holes, the source of the charged particles that will
populate the magnetosphere is rather different. As one moves from the inner light
cylinder toward the outer one, the angular velocity of the field lines grows from
ΩF < ω to ΩF > ω (Fig. 9.17). Thus somewhere between the two light surfaces,
there should be a null surface, where ΩF = ω, i.e. vF = 0. On this surface, the
electric field will vanish, E⊥ = 0 (in Fig. 9.17 this occurs near the radius of the
marginal stable orbit). This null surface could be a spark gap, or a particle creation
zone for nearly neutral particles. This could also be the zone, where plasma from the
surrounding disk is injected. Plasma outside the null surface will be blown away by
centrifugal forces, plasma inside the null surface will accrete towards the horizon.
The null zone subdivides the magnetosphere of a black hole into the accretion zone
near the horizon, and the wind zone beyond the null surface.

The pulsar equation is a special example of the GSS equation in flat Minkowski
space, i.e. for α = 1 and ω = 0. Numerical solutions for a dipolar magnetosphere
of rotating neutron stars have been constructed by Contopoulos et al. [122], and
recently by Timokhin [390] (Fig. 9.18).
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Fig. 9.17. Field line rotation of the magnetosphere around a rapidly rotating black hole
(a = 0.98). The dashed vertical line gives the position of the horizon. The solid curve shows
the rotation of field lines anchored in the disk. Near the horizon, maximum rotation is not
reached, so thatΩF < ΩH (here given forΩF � Ω(rms)). Note that within three gravitational
radii, field line rotation around a rapidly rotating black hole is completely dominated by frame-
dragging (dotted curve)

Fig. 9.18. Axisymmetric magnetosphere of rotating neutron stars (the Goldreich–Julian prob-
lem). Coordinates are given in units of light cylinder radii. Part of the dipolar magnetosphere
is closed within the light cylinder. An equatorial current sheet with the return current is in-
cluded. The equatorial current sheet can be excluded from the numerical treatment by setting
appropriate boundary conditions at the equatorial plane. Figure adapted from [390]
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Fig. 9.19. The distribution of magnetic flux in the meridional plane of a black hole. A finite
accretion disk carries some dipolar magnetic flux which is stretched by a disk wind into the
upper hemisphere. In this approximation, the magnetosphere is assumed to be force-free for
simplification. The contour levels of the magnetic flux are given by Ψ = 10a with a = 0.1n2.
R0 is the asymptotic light cylinder, while the light cylinder increases for flux surfaces anchored
at larger disk radii due to differential rotation in the disk (vertical line). Figures adapted from
Fendt and Memola [157]

Fendt [156, 157] discussed solutions of the GSS equation obtained in a general
relativistic context applying the 3+1 formalism for Kerr geometry. These solutions
extend from the inner light surface around the Kerr black hole to the asymptotic
regime of a cylindrically collimated jet with a finite radius (Fig. 9.19).

As asymptotic boundary condition, the analytical special relativistic 1D GSS
solution of Appl and Camenzind [37] is implemented. Since I = I(Ψ), this
asymptotic solution provides the GSS source term also for the collimation re-
gion. The disk magnetic field distribution is parameterized as, x = R/RL ,
Ψ ∼ (x/b)m/(1 + (x/b)m) + ΨH , Here, the magnetic flux covered by the black
hole is ΨH = 0.5 with m = 3 and a core radius b. The asymptotic jet radius can
be parameterized in terms of the light cylinder radius RL or the gravitational radius
M. For a = 0.8, (ΩF/ΩH) = 0.4, the jet radius is 3 RL corresponding to 30 M.
The main features of the calculated jet magnetosphere are the following (Fig. 9.19,
left). The field lines originate near the inner light surface close to the rotating black
hole and collimate to an asymptotic jet of finite radius of several (asymptotic) light
cylinder radii. The solution is defined on a global scale, satisfying the regularity
condition (9.110) along the light surfaces. A rapid field collimation occurs within
20 M distance from the source. The near-disk solution has three different regimes.
Here, the magnetic flux is either outgoing towards the asymptotic jet or in-going
towards the black hole. But there exist also flux surfaces near the axis which are not
connected to the disk.
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The field structure is governed by I(Ψ) and ΩF(Ψ). In combination with the
disk magnetic flux distribution, this allows us to determine the magnetic angular
momentum loss from the disk in the jet and the toroidal magnetic field along the
disk. The angular momentum flux per unit time per unit radius is d J̇/dx = −xBz I(x)
along the disk. In this solutions, most of the magnetic angular momentum is lost in
the outer part of the disk.

Beyond the Force-Free Approximation

In a black hole magnetosphere, because of the strong gravity of the black hole and
the rapid rotation of the magnetic field, both an ingoing plasma flow (accretion)
and an accelerated outgoing plasma (wind/jet) should be created. The plasma would
be provided from the disk surface and its corona. When the plasma density in the
magnetosphere is somewhat large, the plasma inertia effects should be important.
In this case, the plasma would be nearly neutral and should be treated by the
ideal magnetohydrodynamic (MHD) approximation, so the plasma streams along
a magnetic field line, where the magnetic field line could extend from the disk
surface to the event horizon or a far distant region [96]. The outgoing flow effectively
carries the angular momentum from the plasma source, and then the accretion would
continue to be stationary, releasing its gravitational energy. The magnetic field lines
connecting the black hole with the disk, which are mainly generated by the disk
current, may not connect directly to the distant region, but via the disk’s interior
the energy and angular momentum of the black hole can be carried to the distant
region; the energy and angular momentum transport inside the disk is not discussed
here.

We treat a stationary and axisymmetric magnetosphere, and consider ideal MHD
flows along a magnetic field line. The initial velocity can be at most less than the
slow magnetosonic wave speed. To accrete onto the black hole, the ejected inflows
from the the plasma source must pass through the slow magnetosonic point (S),
the Alfvén point (A) and the fast magnetosonic point (F) in this order. At these
points, A, F and S, the poloidal velocity equals one of the Alfvén wave and fast and
slow magnetosonic wave speeds, respectively. In the case of accretion onto a star,
because the accreting plasma is stopped at the stellar surface, a shock front would
be formed somewhere on the way to the stellar surface and the accretion becomes
subfast magnetosonic. However, for accretion onto a black hole, the flow must be
superfast magnetosonic at the event horizon (H). If not so, the fast magnetosonic
wave can extract information from the interior of the black hole to the exterior;
this fact obviously contradicts with the definition of the event horizon. In fact, an
ideal MHD accretion solution which keeps subfast magnetosonic has zero poloidal
velocity at the event horizon and the density of the plasma diverges – this solution
would be unphysical.

Because the magnetic field lines would rigidly rotate under the ideal MHD
assumption, there are two light surfaces (LC) in the black hole magnetosphere. The
plasma source must be located between these two surfaces. Further, one or two
Alfvén surfaces lie between the two light surfaces, and for accretion there must be
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Fig. 9.20. A negative energy trans-magnetosonic MHD accretion solution in the Kerr geometry
(thick curves, a = 0.8 and ΩF = 0.6ΩH ). Top panel: radial four-velocity; lower panel: the
ratio of the electromagnetic energy to the total energy, Xem = −ΩF Bφ/4πη|E|. The accretion
flow starts near the marginal stable orbit, passes the slow magnetosonic point (S) and the Alfvén
point (A) within the ergosphere, and goes through the fast magnetosonic point (F) just outside
the horizon. Figure adapted from [385]

a fast-magnetosonic surface between the Alfvén surface and the event horizon. Here,
we should note that the physical mechanism to determine the angular velocity of the
field lines is controversial. A time-dependent determination of it has been discussed;
the torsional Alfvén wave originated from the plasma source and propagated up and
down the magnetic flux tube forces to minimize the magnetic stresses in the system.

The stationary relativistic hot MHD flow equations have been formulated
by [96–98]. For the details see Problem 9.8. Stationary and axisymmetric plasma
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flows are determined by five integrals of motion (constants on magnetic sur-
faces)

{ΩF(Ψ), η(Ψ), s(Ψ), E(Ψ), L(Ψ)} . (9.111)

ΩF(Ψ) is the angular velocity of field lines, as in the force-free case, η(Ψ) de-
notes the plasma load per magnetic flux tube, E(Ψ) and L(Ψ) are the total en-
ergy and angular momentum, respectively, carried by the plasma flow, and s(Ψ)
is the entropy per flux tube, which is constant in adiabatic plasma flows. By us-
ing these conserved quantities, the equation of motion projected onto the direction
of a poloidal magnetic field, which is called the poloidal equation (and is often
referred to as the relativistic Bernoulli or wind equation), can be expressed as fol-
lows [385]

1+ u2
p = (E/µ)2

[
(αg − 2M2) f 2 − k

]
. (9.112)

Here we use the following abbreviations

αg = gtt + 2gtφΩF + gφφΩ
2
F (9.113)

k = (gφφ + 2gtφ L̃ + gtt L̃
2)/�2

w (9.114)

f = − (gtφ + gφφΩF)+ (gtt + gtφΩF)L̃

�w(M2 − αg)
, (9.115)

where L̃ = L/E and�2
w ≡ g2

tφ−gtt gφφ. In addition, we use R = ẽ2αg−2̃e2 M2−kM4

and ẽ = 1−ΩF L/E.
The relativistic Alfvén Mach number M is defined by

M2 ≡ 4πµnu2
p

B2
p

= 4πµηu p

Bp
. (9.116)

The wind equation is essentially an equation for the Mach number along the flux tube

M2 = M2(r;B2
p,ΩF(Ψ), η(Ψ), E(Ψ), L(Ψ), s(Ψ)) . (9.117)

The locations of the Alfvén points (rA, θA) along a magnetic field line, where
θ = θ(r;Ψ), are defined by M2 = αg. A solution for the Mach number is shown in
Fig. 9.21.

The differential form of the poloidal equation (9.112) is written as

(ln u p)
′ = N

D
, (9.118)

where

N =
(

E

µ

)2 {[
R(M2 − αg)C

2
sw + M4A2] (ln Bp)

′

+1

2
(1+ C2

sw)
[
M4(M2 − αg)k

′ −Qα′g
]}

(9.119)

D = (M2 − αg)
2 [(C2

sw − u2
p)(M

2 − αg)+ (1+ u2
p)M

4A2R−1] . (9.120)
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Fig. 9.21. Solution for a cold wind in a collimating magnetosphere as a function of radii in
units of light cylinder radii, x = R/RL . The solution passes smoothly through the Alfvén point
(A) inside the light cylinder and the fast magnetosonic point (F) outside the light cylinder.
Figure adapted from [385]

Here we used the quantities A2 = ẽ2 + αgk = f 2(M2 − αg)
2 and Q = αg̃e2 −

3̃e2 M2 − 2kM4. The prime (· · · )′ denotes [(∂θΨ)∂r − (∂rΨ)∂θ]/(√−gBp) which is
a derivative along a stream line. The relativistic sound velocity asw is given by

a2
sw ≡

(
∂ lnµ

∂ ln n

)
ad
= (Γ − 1)

µ−mp

µ
, (9.121)

and the sound four-velocity is given by C2
sw = a2

sw/(1− a2
sw).

The denominator in the above equation can be reduced to the form

D ∝ (
u2

p − u2
AW

)2 (
u2

p − u2
FM

) (
u2

p − u2
SM

)
, (9.122)

where the relativistic Alfvén wave speed uAW, the fast magnetosonic wave speed
uFM and the slow magnetosonic wave speed uSM are defined by

u2
AW(r;Ψ) ≡

B2
p

4πµn
α (9.123)

u2
FM(r;Ψ) ≡

1

2

(
Z+

√
Z2 − 4C2

swu2
AW

)
(9.124)

u2
SM(r;Ψ) ≡

1

2

(
Z−

√
Z2 − 4C2

swu2
AW

)
(9.125)

with

Z ≡ u2
AW +

B2
φ

4πµn�2
w

+ C2
sw , (9.126)

Bφ = −4πηE�w f . (9.127)
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When u2
p = u2

AW, u2
p = u2

FM or u2
p = u2

SM, the denominator in equation (9.118)
becomes zero. Therefore, at these singular points, we must require N = 0 to obtain
physical accretion solutions which pass through these points smoothly. The location
of u2

p = u2
A [≡ u2

AW(rA;Ψ)] is the Alfvén point discussed in the previous section.
Similarly, the locations of u2

p = u2
F [≡ u2

FM(rF;Ψ)] and u2
p = u2

S [≡ u2
SM(rS;Ψ)]

correspond to the fast magnetosonic point r = rF and the slow magnetosonic point
r = rS, respectively. We should mention that, to calculate the Alfvén velocity, we
need to solve a polynomial of high degree, while in the cold limit it is simply
obtained as ucold

A = (αBp)A/(4πµcη); the Alfvén velocity of a hot MHD flow is
always smaller than ucold

A .
Figure 9.20 shows a negative energy accretion solution (forΩF L/E > 1). We see

that the Alfvén point is located inside the ergosphere. The outgoing electromagnetic
energy flux is always greater than the ingoing plasma energy flux (Xem < −1 and
Xplasma = −1 − Xem > 0). The magnetic field lines are trailed (Bφ/Bp < 0)
everywhere due to the black hole rotation. A Poynting flux flows away from the
horizon into the disk plasma.

For accretion with ΩF L/E < 1 and 0 < ΩF < ΩH , the electromagnetic
energy flux also streams outward everywhere, but at least near the event horizon the
ingoing plasma energy flux dominates (i.e. −1 < Xem(rH) < 0). For magnetically

Fig. 9.22. Structure of the magnetosphere formed in accretion processes (a = 0.98). The
inner thick line denotes the ergosphere, the outer ones the outer light cylinder surfaces (OLC)
and the Alfvén surfaces (A). Near the horizon, a kind of neutral surface is formed in the
equatorial plane. Plasma accretion occurs along radial flux tubes, and plasma is injected into
the magnetosphere near the marginal stable orbit (thick half circle)
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dominated accretion, we see that Xem � −1. The Poynting flux passing through
the event horizon is not modified by the plasma inertia effect. This is because the
toroidal magnetic field at the event horizon becomes

Bφ,H =
√
(gφφ/Σ)H (ΩH −ΩF)(∂θΨ)H (9.128)

for any ideal MHD accretion flows, which is the same expression as that of the
force-free case (i.e. the Znajek horizon condition). This expression can be written in
the form [72]

4πI(Ψ) = [ΩF −ΩH ] M2 + a2

M2 + a2 cos2 θ
sin θ

(
dΨ

dθ

)
H

. (9.129)

This condition is automatically true for any solution of the Grad–Shafranov equation,
which can be extended up to the horizon.

The Blandford–Znajek process becomes more evident, when the finite inertia
of plasma is included in the discussion. The total energy accreted by a black hole
consists of two parts, the plasma part and the electromagnetic part (the latter is
the only energy in the force-free approximation). Rapid rotation of magnetic fields
near the horizon can produce then a negative Poynting flux, which is dominating
for sufficiently strong magnetic fields [98]. Since the field lines are dragged radially
toward the horizon (Fig. 9.22), the source term ∂t T ∝ α#2(Bp · ∇)Ω in the current
flux equation (9.79) is quite strong near the horizon. This effect will drive currents
across the magnetosphere near the inner Alfvén surface, which is located near the
inner light cylinder surface. When plasma conductivities are included in the treatment
of the magnetospheric flows, it should be possible to show that the current system
is closed not on the horizon, but within the ergosphere (see Fig. 9.15). The neutron
star surface, which acts as the medium to close the magnetospheric current system
in the Goldreich–Julian problem, is replaced in the case of rotating black holes by
the ergospheric region. A method to treat time-dependent electrodynamics in the
conservative formulation is discussed in the next section.

9.5.5 Relaxation of Black Hole Magnetospheres
and the Blandford–Znajek Process

The boundary conditions at the horizon are crucial for understanding stationary
magnetospheres around black holes. The horizon is however not a true boundary,
but only a critical surface in the force-free approximation. It is identical with the inner
light cylinder of the magnetosphere. Another technique to solve the magnetospheric
problem is then to consider the time relaxation of a given initial magnetosphere by
solving the time-dependent Maxwell’s equations. This technique has been developed
by Komissarov [238] quite recently.

Driven by the need to write the equations of black hole electrodynamics in a form
convenient for numerical applications, Komissarov [238] has recently constructed
a new system of 3+1 equations, which not only has a more traditional form than the
now classic 3+1 system of Thorne and MacDonald, but also is more general. To deal
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with the magnetospheric current sheets, he also developed a simple model of radia-
tive resistivity based on the inverse Compton scattering of background photons. The
results of numerical simulations combined with simple analytical arguments allow
us to make a number of important conclusions on the nature of the Blandford–Znajek
mechanism. Just like in the Penrose mechanism, the key role in this mechanism is
played by the black hole ergosphere. The poloidal currents are driven by the gravi-
tationally induced electric field, which cannot be screened within the ergosphere by
any static distribution of the electric charge of locally created pair plasma. Contrary
to what is expected in the membrane paradigm, the energy and angular momentum
are extracted not only along the magnetic field lines penetrating the event horizon but
also along all field lines penetrating the ergosphere. In dipolar magnetic configura-
tions symmetric relative to the equatorial plane, the force-free approximation breaks
down within the ergosphere, where a strong current sheet develops along the equa-
torial plane. This current sheet supplies energy and angular momentum at infinity to
the surrounding force-free magnetosphere. The Blandford–Znajek monopole solu-
tion is found to be asymptotically stable and causal. The Znajek horizon boundary
condition is shown to be a regularity condition at fast critical surface.

Maxwell’s Equations in Conservative Form

The covariant Maxwell equations are

∇β ∗Fαβ = 0 (9.130)

and

∇βFαβ = 4πIα , (9.131)

where Fαβ is the Maxwell tensor of the electromagnetic field, ∗Fαβ is the Faraday
tensor and Iα is the four-vector of the electric current. The most direct way of 3+1
splitting of the covariant Maxwell equations is to write them down in components and
then to introduce such spatial vectors that these equations have a particularly simple
and familiar form. For example, when equation (9.130) is written in components it
splits into two parts:

– The time part

1√
γ
∂i
(
α
√
γ ∗Fti) = 0 . (9.132)

– The spatial part

1√
γ
∂t
(
α
√
γ ∗F jt)+ 1√

γ
∂i
(
α
√
γ ∗F ji) = 0 . (9.133)
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If we now introduce the spatial vectors B and E via

Bi = α ∗Fit (9.134)

and

Ei = γ ij E j, Ei = α

2
ηijk

∗F jk , (9.135)

where ηijk = √
γεijk is the Levi-Civita pseudotensor of the absolute space, then

equations (9.132) and (9.133) read

∇ · B = 0 , (9.136)

∂tB+∇ × E = 0 , (9.137)

where∇ is the covariant derivative of the absolute space. Similarly, equation (9.131)
splits into

∇ · D = 4π�e , (9.138)

−∂tD+∇ ×H = 4πJ , (9.139)

where

Di = αFti (9.140)

Hi = γ ij Hj, Hi = α

2
ηijk F jk (9.141)

and

�e = αI t, Jk = αI k . (9.142)

As one can see, these 3+1 equations have exactly the same form as the classical
Maxwell equations for the electromagnetic field in matter. Applying ∇ to equation
(9.139) and then using equation (9.138) one obtains the electric charge conservation
law

∂t�e +∇ · J = 0 . (9.143)

With the definition of these fields, Maxwell’s equations in this formulation can
be written in closed conservative form

∂tUM + ∂ j[√γF j
M] = SM , (9.144)
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where UM is a seven-dimensional state vector consisting of the components UM =
(Ψ/α, Bi + Ψβi/α, Di)T and corresponding fluxes

F j
M = (B j − Ψβ j/α, ηijk Ek + αΨ gij,−ηijk Hk)

T . (9.145)

The corresponding source terms are as follows

SM =
(
− Ψ√

γ
∂k(
√
γβk/α),

Ψ√
γ
∂k(
√
γαgik), �(−αvi

d + βi)

)T

. (9.146)

Ψ is a pseudopotential introduced to clean the divergence of the magnetic fields, i.e.
to numerically guarantee ∇ · B = 0 for all time-steps.

In Boyer–Lindquist coordinates, where ∇ · β = 0, these equations reduce to the
corresponding equations we derived for the membrane formalism. For example, one
finds that

∇ × E = ∇ × αE−LβB , (9.147)

where

LβB = (β · ∇)B− (B · ∇)β (9.148)

is the Lie derivative of B along β . Thus, equation (9.137) reads

∂tB−LβB+∇ × (αE) = 0 , (9.149)

which is the standard induction equation in the membrane paradigm (see Sect. 8.6.1).
However, in other coordinate systems, e.g. the Kerr–Schild system, ∇ · β �= 0.

Maxwell’s equations are completed by means of Ohm’s law in the form

J = σ‖E‖ + σ⊥E⊥ + jd , (9.150)

where E‖ is the electric field parallel to the magnetic field and E⊥ the perpendicular
component, and jd is a drift current which is perpendicular to both electric and
magnetic fields. A particular model for the conductivities is discussed in [238]. The
effect of the finite conductivity shows up in Fig. 9.23, where a split monopole has
been relaxed.

The Relaxation of the Wald Magnetosphere

As an application of this technique we consider the relaxation of the Wald magneto-
sphere. Wald [409] obtained the following vacuum solution for a rotating black hole
immersed into a uniform magnetic field aligned with the rotation axis

Fµν = B∞ (m[µ,ν] + 2ak[µ,ν]) , (9.151)

where k = ∂t and m = ∂φ are the Killing fields of the Kerr solution. Outside the
horizon, this solution satisfies the vacuum field equations with
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D = − 1

α
β × B . (9.152)

Thus D‖ = 0, and no electric current is driven along the magnetic field. Outside the
horizon, B2 − D2 is strictly positive.

The Blandford–Znajek solution is the only global analytical solution for mag-
netospheres of rotating black holes found so far and for this reason it has been
playing a key role in the development of the black hole electrodynamics. One im-
portant property of this solution is that all magnetic field lines penetrate the black
hole horizon. The remaining magnetic flux splits between the field lines originat-
ing from the accretion disk and the field lines passing through the gap between
the hole and the disk. In general, the angular velocity of magnetic field lines
in steady-state force-free magnetospheres has to be prescribed, so one faces the
task of setting physically sensible boundary conditions for all these three differ-
ent types of magnetic field lines. In the case of the field lines originating from
the accretion disk the solution is obvious. Their angular velocity is given by the
angular velocity of the disk at the foot points. As for the other two kinds of
magnetic field lines, this task is less trivial. In their solution, Macdonald and
Thorne [263] and later Macdonald [262] appealed to the existing analogy be-
tween the black hole horizon and a rotating conducting sphere. They concluded
that only the field lines penetrating the event horizon rotate, whereas in the gap
ΩF = 0.

Fig. 9.23. Evolution of a split monopole around Schwarzschild black holes. Left: split
monopole as initial condition; right: magnetic flux surfaces in the final evolution. Near the
equatorial plane, a current sheet has developed. Figure adapted from Komissarov [238]
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Figure 9.24 shows the final solution, at t = 126, for a Kerr black hole with
a = 0.9 immersed into a Wald magnetosphere. A current sheet is formed in the
equatorial plane within the black hole ergosphere. This is clearly seen in the right
panel of Fig. 9.24 which shows the distribution of (B2 − D2)/max(B2, D2). Near
the equator the predominantly radial electric field is larger than the magnetic field
and drives the electric current across the poloidal magnetic field lines. Both the
radial component (the middle panel of Fig. 9.24) of magnetic field and its azimuthal
component exhibit a break in the equatorial plane on the scale of the current sheet.
The most important result is shown in the left panel of Fig. 9.24: all magnetic field
lines penetrating the ergosphere are forced into rotation in the same sense as the black
hole irrespective of whether they eventually cross the event horizon or not. Along
these field lines there are outgoing fluxes of both energy and angular momentum.
Indeed, in steady state force-free magnetospheres the angular momentum flux is
proportional to Hφ and the energy flux is proportional to ΩF Hφ. Notice that Ω and
Hφ are the same in the Boyer–Lindquist as in the Kerr–Schild coordinates. As one
can see in Fig. 9.24, both these quantities are nonvanishing along the field lines
penetrating the ergosphere. Within the current sheet the electromagnetic energy and
angular momentum are not conserved and, thus, the numerical results suggest that

Fig. 9.24. Magnetospheric Wald problem. Left panel: The angular velocity of magnetic field
lines. There are 15 contours equally spaced between 0 and 0.67. The angular velocity first grad-
ually increased towards the axis but then reaches a maximum and goes slightly down. The thick
lines show the ergosphere (the outer line) and the inner light surface (the inner line). Middle
panel: The magnetic flux surfaces. Right panel: The distribution of (B2− D2)/max(B2, D2).
There are 15 contour equally spaced between −0.12 and 1.0. This quantity monotonically
decreases towards the current sheet in the equatorial plane within the ergosphere. The thick
line shows the ergosphere. Figure adapted from Komissarov [238]
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it is the current sheet that supplies both the energy and the angular momentum for
the force-free magnetosphere above and below the sheet.

There is much more to the electrodynamics of black holes than it is proposed in
the membrane paradigm and the analogy between a magnetized rotating conducting
sphere and the black hole horizon is at least incomplete. In fact, closer inspection of
the causality arguments due to Punsly and Coroniti shows that it is the membrane
paradigm which is most directly under attack. The Blandford–Znajek solution itself
is involved mainly because it is widely considered as inseparably linked with the
paradigm.

On the Nature of the BZ Mechanism

It is well known that a black hole with zero total electric and magnetic charge
cannot have its own magnetic field and, ultimately, any magnetic field penetrating
the hole’s ergosphere has to be supported by external currents. This fact alone makes
black holes very different from magnetized stars like pulsars. Moreover, a steady
state axisymmetric vacuum electromagnetic field cannot be used to extract energy
and angular momentum of a rotating black hole. Indeed, the steady-state vacuum
equations,

∇ ×H = 0, ∇ × E = 0 (9.153)

ensure

Hφ = Eφ = 0 (9.154)

for axisymmetric configurations. Then one finds that the poloidal components of the
energy and the angular momentum flux vectors vanish as well. In order to extract
energy and angular momentum, the electromagnetic field has to be modified by
magnetospheric charges and currents. However, in order to drive such currents and,
perhaps, even to create charged particles via pair cascade in the first place, the electric
field should not be screened. That is at least one of the above conditions has to be
broken in the vacuum solution. As it is well known, the vacuum solution due to Wald
has this property, but we need to know whether it is generic.

Thus, the vacuum field created within a black hole ergosphere by distant sources
must have unscreened electric fields capable of driving electric currents, provided the
charged particles are injected there somehow. The most popular mechanism involves
an e± pair cascade in strong electric and radiation field. Let us consider an initial
vacuum solution of the kind discussed above, that is a solution with D · B = 0 and
ΩF = 0, and figure out what occurs when plasma is injected.

First of all, FIDO’s electric field E = D will drive the conductivity current
across the magnetic field lines within the ergosphere. This will result in the electric
charge separation and the drop of the electrostatic potential along the magnetic field
lines entering the ergosphere (see Fig. 9.25). The induced parallel component of
the electric field will drive the conductivity current along the magnetic field lines
leading to the dynamo of Hφ according to the Ampère law ∇ × H = 4πJ. As one
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Fig. 9.25. Induction in the BH magnetosphere. Left panel: The initial currents driven by
the gravitationally induced electric field within the ergosphere as it is being filled with pair
plasma. Right panel: The electric current system of the steady-state Wald magnetosphere.
Figure adapted from Komissarov [239]

can see in the left panel of Fig. 9.25, the sign of the generated Hφ is exactly the one
which is required to slow down the black hole. However, we need to verify that this
is not a temporary phenomenon and a nonvanishing Hφ, and, hence, a nonvanishing
poloidal current, will be a property of the magnetosphere when it relaxes to a steady
state.

Since the magnetosphere is driven to rotation in the ergosphere, the outgoing
flux of angular momentum will inevitably result in rotation and, thus, extraction of
the black hole energy as well. The equilibrium value ofΩF depends of the details of
the interaction. In the simulations [238], the black hole was surrounded by massless
plasma and the equilibrium value ofΩF was determined by the rate of deposition of
energy and angular momentum in the surrounding space by means of propagating
waves.

Even after reaching a force-free equilibrium, the magnetospheric electric field
does not become completely screened. Within the ergospheric current sheet, E⊥ al-
ways remains slightly stronger than the magnetic field and keeps driving the cross
field conductivity currents, thus, sustaining the potential drop along the magnetic
field lines entering the current sheet. In the force-free region itself, it is the small
residual component of E‖ that drives the poloidal conductivity currents, just as it
occurs in the wires connected to the Faraday disk.

It is also quite clear why the magnetic field lines remaining outside of the ergo-
sphere along their entire length do not rotate. Although the vacuum Wald solution has
an unscreened E‖ component of the electric field which can trigger pair production
and drive poloidal currents for a while, the injected charges eventually redistribute
along the field lines and screen E‖. Then, because E⊥ is too weak, even in the equa-
torial plane, to drive the cross field current, the poloidal currents die out completely.
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The force free conditions are met even when Hφ = 0. This conclusion is altered
when the field lines outside the ergosphere are linked up with the surrounding disk.
Then a smooth transition between the ergospheric rotation and the disk rotation is
expected (as outlined in Fig. 9.25).

Where is the Unipolar Inductor of a Kerr Black Hole?

In the case of the Faraday disk, which is a classical example of a unipolar inductor,
electrons are forced to participate in the disk rotation via collisions with other disk
particles. This provides the electromotive force, qv × B, which results in electric
charge separation and, hence, the voltage drop between the disk rim and its center.
When the disk is used as battery in a closed electric circuit the electromotive force
continues to push electrons against the electric force and across the magnetic field
lines. This is essential for sustaining the potential drop and for providing the current
closure. Spinning magnetized cosmic objects like stars or accretion disks generate
an electric field in the very much same way. Such a field is often described as
rotationally induced.

Although, the membrane paradigm invites to treat black holes in a similar fashion,
in reality they are rather different. Both in the Blandford–Znajek solution and in
the solution to the magnetospheric Wald problem, there is no massive conducting
rotating object and, thus, no usual electromotive force driving electric current over
its surface. In spite of this curious feature the potential drop across the magnetic
field lines still exists and the electric currents still flow.

The answer to this paradox seems to reside in another peculiar property of rotating
black holes – contrary to our everyday experience, the electric charge separation is not
the only way of creating stationary electric field in their vicinity. The vacuum solution
found by Wald shows that such an electric field can be induced gravitationally. Unless
a battery is continuously recharged via the action of some electromotive force, it
cannot drive a stationary electric current. In other words, the initial transient currents
can redistribute electric charge in the black hole magnetosphere in such a way
that the electric field becomes completely screened and can no longer drive the
electric currents. However, as we have shown above, such a final state is not possible
within the black hole ergosphere. Black holes do not allow stationary solutions with
screened electric field and vanishing poloidal electric currents.

Thus, the electrodynamics of rotating black holes is very different from electro-
dynamics of usual magnetic rotators and their batteries operate on other principles
than the classical unipolar inductor. The key role played by the ergosphere in black
hole electrodynamics allows us to call it the driving force of the Blandford–Znajek
mechanism.

The Role of the Horizon

Since Blandford and Znajek employed the Boyer–Lindquist coordinate system, the
horizon appears as a singular boundary of their spatial domain and the Znajek
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condition appears as a boundary condition. In fact, this perception of the Znajek’s
condition is fully accommodated in the Membrane paradigm, where this condi-
tion is used to endow the event horizon with the properties of rotating conduct-
ing surfaces, reintroducing the missing unipolar inductor in a somewhat ghostly
form.

Znajek’s horizon condition is not a boundary condition after all [72]. Indeed,
Znajek derived the horizon condition from a very natural requirement. Namely, the
electromagnetic field at the event horizon had to be nonsingular when measured by
a local free-falling observer. However, in the limit of force-free electrodynamics,
the event horizon coincides with the fast critical surface of the ingoing wind. This
immediately follows from the fact that the fast wave of force-free electrodynamics
propagates with the speed of light. All this suggests that Znajek’s condition is in
fact a regularity condition at the fast critical point of the ingoing wind, obtained by
Znajek in a somewhat unconventional way.

There is an important difference between a boundary condition and a regularity
condition. Boundary conditions are set on the boundaries of computational domain
and select particular solutions to both steady-state and time-dependent problems.
Regularity conditions apply only to steady-state problems when one is looking
for solutions passing smoothly through critical points, at which the steady-state
equations change their type.

In the Kerr–Schild coordinates, where there is no coordinate singularity at the
horizon, the critical nature of the Znajek condition becomes very clear. Let us con-
sider a steady state force-free solution smoothly passing through the event horizon. In
such a solution the angular velocity of magnetic field,ΩF , and Hφ are constant along
the magnetic field lines. We can use these constants in order to find the relationship
between Bφ and Br along a given magnetic field line

H = αB+ 1

α

[
ω(β · B)− B(β · ω+ β2)+ β(β · B)] . (9.155)

From this equation we derive, after rather involved calculations, the following result

Bφ = αHφ − Br sin2 θ(2rΩ − a)

∆ sin2 θ
. (9.156)

The denominator of the right-hand side of this equation vanishes at the event horizon,
where ∆ = 0. For Bφ to remain finite, the numerator has to vanish as well and we
obtain

Hφ = sin2 θ

α+
(2r+Ω − a)Br = (2r+Ω − a) sin θ

r2+ + a2 cos2 θ
Aφ,θ , (9.157)

which is exactly the Znajek condition (notice that Hφ, Aφ, and Ω are the same in
the Kerr–Schild coordinates as in the Boyer–Lindquist coordinates). Thus, Znajek’s
boundary condition is indeed a regularity condition at the fast critical point of the
ingoing wind. In MHD approximation, in the case where the particle inertia is
not negligibly small, the fast surface is located outside of the event horizon and
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Znajek’s horizon condition is no longer needed to determine the steady-state wind
solution [100].

Once we have seen that (1) the event horizon does not play the role of a unipolar
inductor, (2) Znajek’s horizon condition is just the usual regularity condition, and (3)
the key role in the electrodynamic mechanism is played by the black hole ergosphere,
this dispute about the BZ mechanism has to be somewhat redirected. What we need
to verify is that the ergosphere is causally connected with the outgoing wind. In fact,
the inner Alfvén surface is always located inside the ergosphere, and the numerical
simulations are fully consistent with this result. All these arguments allow us to
conclude that there is no causality clash associated the electrodynamic mechanism
in general and with the Blandford–Znajek solution in particular.

9.6 Magnetic Spin-Down of Rotating Black Holes

One consequence of this gravitomagnetic coupling is the fact that a rapidly rotating
black hole generates a battery voltage drop near the horizon which then drives
a huge current system through a magnetosphere. For this reason, we now integrate
the induction law along a closed curve connecting a load region with the ergosphere
through the disk ∮

C
αEp · ds = − d

dt

∫
A

B · dS−
∮

C
(β × B) · ds . (9.158)

The last term acts as an additional term to Faraday’s induction law for moving
conductors. In a stationary situation we find the EMF

EMF(C) ≡
∮

C
αE · ds = −

∮
C
(β × B) · ds . (9.159)

The integral along the flux surface outside the disk gives no contribution, and far
away the gravitomagnetic effect drops out rapidly. There remains therefore only the
contribution near the horizon. The main driving force is the integral near the horizon

EMF = −
∫
(βH × B⊥) · ds � 1

2π
ΩH ∆ΨH

� 1020 volt

(
a

M

) (
MH

109 M�

) (
BH

10 kG

)
, (9.160)

where ∆ΨH denotes the magnetic flux that covers the ergosphere. This EMF which
drives the current system near the horizon depends strongly on the rotational state
ΩH of the black hole. It vanishes for nonrotating holes.

The maximum power which can be extracted from the rotational energy of the
hole depends quadratically on the mass [80]

PH,max � 1045 erg s−1
(

a

M

)2 (
BH

104 G

)2 (
MH

109 M�

)2

. (9.161)
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Such a system drives a current IH that is also given by the rotation of the field
lines

IH � 1

2
(ΩH −ΩF) BHr2

H � 1018 amp . (9.162)

As in the case of Jupiter’s and of stellar magnetospheres, this current flow leads to
a braking down of the rotating hole (forΩH > Ω

F) on a typical time-scale given by

tspin−down = JH

dJH/dt
� 1 Gyr

(
BH

10 kG

)−2 (
MH

109 M�

)−1

. (9.163)

Since the maximum field strength BH also scales as BH ∝ 1/
√

MH (Eddington field
strength), the braking time is practically independent of the mass MH ! This is an
interesting result: when supermassive black holes are born as rapidly rotating objects
at redshift z � 2–6, they would still be moderately rotating nowadays.

Let us discuss another application of this magnetospheric coupling. The toroidal
velocity vT with respect to ZAMOs is

vT = Ω − ω
α

eφ (9.164)

and, instead of using the toroidal magnetic field, it is more convenient to introduce
the current stream function I = α#Bφ̂. In terms of these quantities, the poloidal
electric field for a stationary configuration can be written as

αEp = η

ω̄
∇ I × eφ − I

ω̄
vp × eφ − (Ω − ω)∇Ψ . (9.165)

η is the plasma diffusivity. The poloidal electric field is the result of currents and
poloidal as well as toroidal plasma motions.

Let us consider a situation where magnetic fields are advected in the disk and
superposed with some external field. A dipolar field is advected inwards and closes
perpendicular to the horizon. In this case, the last term in the expression for the
poloidal field vanishes at the horizon, where Ω(r+) = ΩH = ω(r+), however in
such a way that (Ω − ω)/α remains finite at the horizon. This term only creates
a θ-component in the electric field. The rapid radial inflow also only generates
a component of this type. The only radial component of the electric field is pro-
duced by the first term due to magnetic diffusivity. For a diffusivity vanishing near
the horizon, those component will also disappear near the horizon so that currents
that are flowing mostly radial in the disk will be deflected away from the disk
near the horizon. Outside the disk, η vanishes so that the last term is the domi-
nant contribution to the electric field (which is always perpendicular to the flux
surfaces).
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Problems

9.1. Spin Evolution of Black Holes: Under accretion, the spin of a black hole
evolves according to (see Sect. 8.5.1)

da

dt
= Ṁacc

MH
[ j0(a)− 2a e0(a)]

+2a
P

MHc2
− ΩH

8
(1−ΩF/ΩH)

rHc2

G MH

B2
Hr3

H

MHc2
. (9.166)

Show that j0(a) − 2ae0(a) → 0 for a → 1, when the inner edge of the Keplerian
disk is at the marginal stable orbit.
Integrate the evolution a(t) by including the Blandford–Znajek process with
ΩF = ΩH/2 and for a fixed ratio of magnetic energy to black hole energy,
B2

Hr3
H/MHc2 = const.

9.2. Merging of Two Black Holes: Describe the various phases in the merging of
two black holes in the center of a galaxy. Assume that the more massive black hole
sits in the center of the spheroid. Which process brings in the second black hole from
the parsec-scale to the subparsec-scale?
Calculate the crash-time for the black hole binary due to gravitational wave losses.
Describe the form of the gravitational waves expected from this process.

9.3. A Cluster of Black Holes in the Galactic Center: Estimate the number of
stellar black holes formed in the Bulge of our Galaxy. Discuss the possible effects
for the stars in the Bulge.

9.4. Primordial Black Holes: Calculate the Hawking temperature for solar mass
type black holes. Estimate their evaporation time-scale.

9.5. Spectrum of Sgr A*: Compile from the literature an energy spectrum for the
Galactic center (radio, submillimeter, IR, X-rays and gamma-rays). Give a pos-
sible interpretation for the various spectral branches. Estimate the corresponding
luminosity and compare with the Bondi accretion rate from the Galactic center
region.

9.6. Light Cylinder Surfaces: Solve the equation for the inner and outer light
cylinder surface around a rotating Kerr black hole. Plot the functions rL = rL(θ).

9.7. Poynting Flux in Force-Free Magnetospheres: Derive from the equations for
force-free magnetospheres expressions for the Poynting flux and angular momentum
flux in the magnetosphere.

9.8. Stationary MHD and Disk Winds: Use the membrane formalism to derive
the five constants of motion for plasma flows in axisymmetric magnetospheres: the
field rotationΩF(Ψ), the plasma load η(Ψ), the total energy E(Ψ), the total angular
momentum L(Ψ), and the entropy of the plasma flow s(Ψ).
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Solve these expressions for the Lorentz factor, the specific angular momentum and
the toroidal magnetic field of the plasma flow as a function of the Mach number
M2 = 4πµη.
Investigate the critical points in the plasma flow and compare this with force-free
conditions.
Derive from the normalization of the four-velocity the wind equation as a function
of the Mach number M.



10 Physics of Accretion Flows
around Compact Objects

The dominant accretion process for compact objects involves disk accretion. Gas
supplied by donor stars in binary systems as well as by the host galaxy in quasars
possesses sufficient angular momentum to form a disk-like structure around the
compact objects. Accretion onto black holes in quasars powers the most luminous
sources in the Universe. Quasars have now been detected up to redshifts of 6.4. In
nearby galaxies, there is however not much fuel available so that extremely weak
sources result from this accretion. Similarly, quiescent compact objects in binary
systems show completely different signatures in the spectra compared to objects at
high accretion rates, such as Cygnus X-1.

The physical state of accretion disks around compact objects will not depend
very much on the mass of the central object, one of the fundamental parameters is the
accretion rate in units of the Eddington accretion rate. Objects in the Universe differ
by at least 10 orders of magnitude in their accretion rate. For the innermost structure
of the resulting accretion disk, the spin of the central object may play some crucial
role. In the modern view, an accretion disk is a quasistationary solution of radiative
magnetohydrodynamics, provided the initial configuration has sufficient gas, angular
momentum and magnetic fields. A slightly magnetized toroidal configuration has
turned out to be a suitable test-bed as initial configuration. It provides the gas supply,
is stabilized by angular momentum and winds up magnetic fields by differential
rotation.

One of the basic questions in the theory of accretion disks is the origin of
the angular momentum transport in disks. Turbulence in the disks is the natural
driver for transporting angular momentum to larger radii. This is the basic as-
sumption already made by the pioneering papers on accretion disks by Shakura
and Sunyaev [363]. In the last years, turbulence driven by magnetic instabilities
(MRI) turned out to be a potent source of angular momentum transport (Balbus
and Hawley [48, 49]). Although magnetohydrodynamic (MHD) disk turbulence
has long been seen as a source for angular momentum transport, current confi-
dence rests on two more recent developments. Balbus and Hawley [48] demon-
strated that the introduction of a weak magnetic field renders accretion flows
linearly unstable. Numerous subsequent computer simulations showed then in
the 1990s that the instability indeed rapidly develops into sustained turbulence,
which transports angular momentum outwards at a rate that is consistent with
observational constraints derived in studies of accretion in mass transfer binary
systems.



514 10 Physics of Accretion Flows around Compact Objects

The existence of the MRI tells us that the ultimate model for accretion disks
is magnetohydrodynamics (MHD) including some form of radiation transport. The
algorithmic treatment of classical MHD converges slowly towards a maturated state,
but the inclusion of radiative processes is still a big challenge for the future. In this
chapter, we give an overview over the nature of MRI and its realization in computer
simulations. For this purpose, we give an introduction into the algorithms used to
simulate MHD processes on the computer, both in Newtonian and general relativistic
approach.

This chapter is not meant to be a fundamental introduction into classical accretion
theory. The reader is expected to be familiar with the concepts of standard accretion
disks (also called α disks) and advection-dominated accretion flows (ADAFs). These
topics can be found in many textbooks. It is the intention of the author to give an
overview about modern concepts of accretion theory and observations, which are
relevant for the future trends in the physics of accretion flows.

10.1 Angular Momentum Transport

In the absence of magnetic fields, a differentially rotating disk with angular velocity
Ω(R) is linearly stable to axisymmetric perturbations according to the Rayleigh
criterion if

d

dR

(
R2Ω

)
> 0 , (10.1)

i.e. if the specific angular momentum j(R) = R2Ω of the flow is an increas-
ing function of radius. For geometrically thin disks with Keplerian angular ve-
locity ΩK (R) =

√
G M/R3 the specific angular momentum j(R) ∝ √

R, and
the disk is hydrodynamically stable. Numerical simulations seem to support this
conclusion. Real disks are quite often geometrically thick with velocity profiles
different from Keplerian ones. But they too are probably stable by the Rayleigh
criterion.

This situation changes drastically, if the disk contains a magnetic field. Analytic
studies have shown that a weak magnetic field destabilizes astrophysical disks,
provided that

dΩ2

d ln R
< 0 . (10.2)

This condition is almost always satisfied in real disks. This magnetorotational
instability (MRI) exists regardless of the initial magnetic field configuration [3, 48,
49, 407]. However, the growth rates will somewhat depend on the magnetic field
configuration.

The main ideas behind the MRI can be derived from a simplified treatment
already given by Balbus and Hawley [49]. We consider a fluid element orbiting
in a disk with central gravitational potential Φ(r). We assume that pressure forces
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are negligible, which is certainly not true for real disks. In cylindrical coordinates
(R, z, φ), the equations of motion read as

R̈ − Rφ̇2 = −∂RΦ + fR (10.3)

Rφ̈ + 2Ṙφ̇ = fφ . (10.4)

fR and fφ are forces which will be specified in the following. We concentrate on
a small patch of the disk at radius R0 that is corotating with the overall orbital angular
velocity Ω(R). Then we can define a local Cartesian coordinate system (x, y) with

R = R0 + x , φ = Ω t + y/R0 . (10.5)

In linear order we obtain from the above equations of motion

ẍ − 2Ω ẏ = −x
dΩ2

d ln R
+ fx (10.6)

ÿ + 2Ω ẋ = fy . (10.7)

These equations describe the epicyclic motion of a pressureless fluid element per-
turbed from equilibrium.

If a disk contains a weak magnetic field, perturbations to the fluid in the plane of
the disk will be opposed by magnetic tension forces generated by the bending of the
field lines. We consider perturbations of the form exp i(ωt−kx)with a corresponding
magnetic tension force f = −(kvA)

2 s, where s is the displacement vector and
vA =

√
B2

z /4π� is the Alfvén speed. Using this expression for the forces fx and
fy, and assuming a time-dependence exp(iωt), the above two equations become
a coupled system

−ω2x − 2i ωΩy = −x
dΩ2

d ln R
− (kvA)

2x (10.8)

−ω2x + 2i ωΩy = −(kvA)
2 y . (10.9)

Combining these two relations yields a dispersion relation that is quadratic in ω2

ω4 −ω2
[

dΩ2

d ln R
+ 4Ω2 + 2(kvA)

2
]

+(kvA)
2
[

dΩ2

d ln R
+ (kvA)

2
]
= 0 . (10.10)

As usual, the system is unstable if ω2 < 0, which occurs when the third term in
the dispersion relation is negative. Instability occurs therefore if

dΩ2

d ln R
+ (kvA)

2 < 0 . (10.11)

For sufficiently weak fields, vA → 0, or for perturbations of long enough wave-
lengths, k → 0, we obtain the criterion mentioned in equation (10.2). In a real disk,
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the longest wavelength perturbation in the vertical direction will be of the order of
the scale-height H of the disk. There will be therefore instability, provided that the
magnetic field is weaker than some threshold value Bmax.

The physical reason for this instability is fairly simple. Let us consider the
above situation and consider the effect of perturbing a weak vertical field threading
an otherwise uniform disk. If the field remains frozen into the plasma, field lines
connecting adjacent annuli in the disk will be sheared by the differential rotation
into a trailing spiral pattern. Provided the field is weak enough, magnetic tension
will not keep the field lines back to the vertical. The magnetic tension acts to reduce
the angular momentum of the inner fluid element and boost that to the outer one,
providing angular momentum transport in the outward direction that is required to
drive the accretion process.

In a Keplerian disk, the growth rate ωmax can be as large as 3Ω/4, meaning that
the growth of the magnetic field occurs on a dynamical time-scale. Analytic studies
are however unable to follow the nonlinear evolution of the instability. One of the
main question is here, what happens when the MRI reaches a kind of saturation rate
and turbulence is excited throughout the entire flow? The important information is
then contained in the stress tensor

WRφ = � 〈vR(vφ − RΩ)− BR Bφ/(4π)〉 , (10.12)

which includes both the Reynolds and magnetic (Maxwell) stresses. The angle
brackets denote a density weighted average over height. WRφ can be measured in
numerical simulations and it can be used to estimate the α parameter introduced by
Shakura and Sunyaev [363] in the form of

WRφ = α � c2
S , (10.13)

where cS is the local sound speed and α is a dimensionless parameter that measures
the efficiency of angular momentum transport in disks.

Numerical Simulations of MRI

Numerical simulations of the nonlinear development of the MRI have now been per-
formed in both local and global geometries. Local simulations follow the evolution
of the MRI in a small patch of the disk with periodic boundary conditions in φ and R.
Global simulations [38,199] have the advantage of being able to study the large-scale
magnetic fields and are essential for the investigation of of geometrically thick flows,
where H � R. All these simulations have one problem in common: The physical
separation between the largest relevant scale (that of the disk) and the dissipative
scale (either viscous or resistive) is always too large to be resolved numerically. In
addition, in most simulations purely numerical effects are responsible for the dissi-
pation. In all simulations it has been found that the MRI leads on a time-scale of just
a few orbital periods to a sustained MHD turbulence in which angular momentum
is transported outwards. The magnetic field energy stays in general smaller than the
thermal energy in the disk. The Maxwell stress dominates by a large factor over the
Reynolds stress. Values for α have been found in the range of 0.01 to 0.1.
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10.2 Magnetohydrodynamics for Accretion Disks

The equations which have to be implemented on the computer are given either in
conservative or nonconservative form. In the spirit of MRI, no viscosity is needed
for the description of accreting plasmas. An accretion disk is a quasistationary
solution of radiative MHD for a given initial configuration with sufficient gas,
angular momentum and magnetic fields.

10.2.1 Equations of Magnetohydrodynamics

Due to the complexity, accretion onto compact objects can only be handled nu-
merically. An understanding of the essential features of MHD is therefore crucial
for compact objects. Many codes can be found on the market which solve these
equations.

Advective Form for Radiative MHD

Accretion disks are global solutions of the equations for radiative MHD, no viscosity
is needed to drive the angular momentum transport. According to the philosophy of
MRI, angular momentum transport is self-consistently given by the MHD system.
This system has been formulated, for example by Stone, Mihalas and Norman in
1992 [378], with D/dt = ∂t + v · ∇ as the advective derivative,

D�

dt
+�(∇ · v) = 0 (10.14)

�
Dv
dt
= −∇P − �∇Φ

− 1

8π
∇B2 + 1

4π
(B · ∇)B+ χ�

c
F (10.15)

�
D(e/�)

dt
= −P(∇ · v)− κ�(4πB − cE)

+ η

16π2
|∇ × B|2 +∇ · (κ∇T)+ σ : ∇v (10.16)

∂B
∂t
= ∇ ×

(
v× B− η

4π
∇ × B

)
(10.17)

�
D(E/�)

dt
= −∇v : ΠR −∇ · F+ κ�(4πB − cE) (10.18)

F = −cλFLD

χ�
∇E (10.19)

Φ(r) = − G M

r − RS
(10.20)

σik = −l2
T�min(0,∇ · v)×

(
∇vik − 1

3
∇ · v

)
+lA� (δxi ×min(0,∇vik)

2) δik . (10.21)
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Here �, v, e, and P are the gas density, velocity, internal energy density, and pressure,
respectively, and B is the magnetic induction. The total opacity χ is the sum of
electron scattering σ = 0.4 cm2 g−1 and the free–free absorption opacity κ =
1052 �9/2 e−7/2 cm2 g−1. E is the energy density of the radiation field, B the energy
density in the Planck distribution, ΠR the pressure and F the flux in the radiation
field. Gas cools by emitting photons at a rate proportional to the black-body value
B = σBT 4/π, where σB is the Stefan–Boltzmann constant, T = µ�/(R�) the gas
temperature, µ = 0.6 and R the gas constant. The flux limiter λFLD is equal to 1/3 in
optically thick regions (Levermore and Pomraning [252]). Causality is preserved in
regions where the radiation energy density varies over optical depth less than unity
by reducing the limiter to zero. An ideal gas equation is assumed, P = (Γ − 1)e
with Γ = 5/3.

Gravity is treated in the pseudo-Newtonian limit by means of the Paczynski–
Wiita approach. This guarantees the same structure for the ISCO as in Schwarzschild,
but neglects the correct boundary conditions for the angular velocity at the horizon
(see the discussion in Sect. 8.5). The viscous stress tensor σik is composed of
artificial viscosity, which contains the tensor artificial viscosity and the artificial
viscosity due to Neumann and Richtmyer (1950). lT and lA are the corresponding
shock smearing length-scales. Advective schemes of this type are implemented in
the ZEUS3D code [378] and NIRVANA2.0 [431]. These codes use a staggered
grid to advance the solution of the induction equation. This method guarantees that
div(B) = 0 is satisfied with machine accuracy. More recent public-domain codes,
such as FLASH [163] or PLUTO [291, 292], prefer to use the MHD equations in
conservative form.

Conservative Form of Ideal MHD

In a real physical system, we should have the conservation of momentum, en-
ergy and mass. But the above set of equations cannot guarantee strict numer-
ical conservation of momentum and energy, though it can assure the conser-
vation of mass. At the same time, this scheme also has numerical difficul-
ties with convective derivatives. The practical application of this set of equa-
tions also shows that nonconservative equations lead to numerical difficulties
with strong shocks and to errors in the Rankine–Hugoniot conditions and shock
speed [152].

The equations of ideal MHD can be formulated in true conservation form

∂t�+∇ · (�v) = 0 (10.22)

∂t(�v)+∇ ·
[
�v⊗ v+

(
P + 1

8π
B2

)
I− 1

4π
B⊗ B

]
= 0 (10.23)

∂tB−∇ · [v⊗ B− B⊗ v] = 0 (10.24)

∂t(�e)+∇ ·
[(
�e+ P + B2

8π

)
v− 1

4π
(v · B)B

]
= 0 , (10.25)
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subject to the constraint ∇ · B = 0. The total energy density E is given by

E = �e = P

Γ − 1
+ 1

2
�v2 + 1

8π
B2 . (10.26)

When magnetic fields vanish, the ideal MHD equations reduce to the conservative
form of the Euler equations for hydrodynamics (see Sect. 3.1).

This set of equations allows strict numerical conservation of mass, momen-
tum and energy. But practical application of it shows that, in the region of low
plasma β, where β = 8πPg/B2, numerical difficulties will be met. Sometimes
pressure becomes negative, because P is the difference of large numbers (here we
can also see that normalization has to be combined with other techniques to avoid
the difference of large numbers, though normalization itself can prevent most such
cases). The model of ideal MHD is therefore a fully conservative system, ex-
cept for the induction equation which requires some regulation for maintaining
numerically ∇ · B = 0 [131]. With the definition of the eight-dimensional state
vector

U = (�, �v,B, E)T , (10.27)

these equations can be written for Cartesian coordinates in true conservative form
without source terms

∂U
∂t
+∇ · F = 0 . (10.28)

The flux vector F in general depends nonlinearly on the state variable U, F = F(U).
We can then apply Godunov methods by integrating over a spacetime volume
∆t ×∆x1 ×∆x2 ×∆x3 to advance the state vector

U(t +∆t) = U(t)− ∆t

∆V

∑
faces j

F j ∆Sj + S(g)∆t . (10.29)

S(g) is a source term due to non-Cartesian coordinates (see below). The summation
is taken over all spatial faces of the cell, U is the vector of conserved variables
averaged over a cell volume, and F j are the fluxes averaged over the cell faces. In
a Godunov scheme, the fluxes are found by solving the Riemann problem at the cell
interfaces [396].

Equations in Curved Coordinates

The above equations can easily be formulated for Cartesian systems

(x1, x2, x3) = (x, y, z) , (h1, h2, h3) = (1, 1, 1) , (10.30)
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spherical polar coordinates with

(x1, x2, x3) = (r, θ, φ) , (h1, h2, h3) = (1, r, r sin θ) (10.31)

and cylindrical coordinates

(x1, x2, x3) = (R, z, φ) , (h1, h2, h3) = (1, 1, R) , (10.32)

where hi are metric scale factors. The conservative form of the MHD equations is
slightly different for different geometries. They can still be written in semiconser-
vative form, which now has a source term on the right-hand side,

∂U
∂t
+ 1

h1h2h3

(
∂

∂x1
[h2h3F] + ∂

∂x2
[h1h3G] + ∂

∂x3
[h1h2H]

)
= S . (10.33)

The state vector is now

U = (�, �v1, �v2, �v3, B1, B2, B3, E)T (10.34)

and the flux functions are explicitly given1

F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�v1

�v2
1 − B2

1 + P∗
�v1v2 − B1 B2

�v1v3 − B1 B3

0
E3

−E2

(E + P∗)v1 − B1(v · B)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�v2

�v2v1 − B2 B1

�v2
2 − B2

2 + P∗
�v2v3 − B2 B3

−E3

0
E1

(E + P∗)v2 − B2(v · B)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(10.35)

and

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�v3

�v3v1 − B3 B1

�v3v2 − B3 B2

�v2
3 − B2

3 + P∗
E2

−E1

0
(E + P∗)v1 − B3(v · B)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (10.36)

The source terms S are quite complicated and given by derivatives of the metric
functions (Christoffel symbols)

1 For the following Bi is replaced by Bi/
√

4π.
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S =
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10.37)

P∗ is the total pressure

P∗ = P + B · B
2

, (10.38)

and E the electromotive forces, E = v×B. The total energy E is given as previously
by equation (10.26). This system consists of eight conservation equations, but only
seven fluxes are nontrivial. The fluxes of Bi in the i-direction are always zero.

Eigenvalues and Eigenvectors

We also can write the conservation equations in primitive variables

P = (�, v1, v2, v3, B1, B2, B3, e)
T (10.39)

in the following form, say in the x-direction,

At
∂P
∂t
+ Ax

∂P
∂x
= 0 , (10.40)

where the matrices Ai are the Jacobian matrices

Ax(U) = ∂F
∂U
, Ay(U) = ∂G

∂U
, Az(U) = ∂H

∂U
, At = ∂U

∂P
. (10.41)

This represents a hyperbolic system with the characteristic polynomial

|Ax − λAt | = 0 . (10.42)

Ay and Az have similar structures as Ax . The eigenvalues and eigenvectors have
been studied by many authors [90, 346, 351]. There are two sets of eigenvectors for
the eigensystem of Ax . One is related to the one-dimensional system and the other is
based on the modification proposed by Powell [331]. The fifth component is ignored
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and the rest is identical to the one-dimensional flux where B1 is a constant. The
eigenvalues for the 7× 7 system are

λ1,7 = v1 ± c f , λ2,6 = v1 ± cA , λ3,5 = v1 ± cs , λ4 = v1 , (10.43)

where

cA =
√

B2
1/4π� (10.44)

is the Alfvén wave speed, and

c f =
√

1

2

(
a2 + B2

4π�
+

√(
a2 + B2/4π�

)2 − 4a2c2
A

)
(10.45)

cs =
√

1

2

(
a2 + B2

4π�
−

√(
a2 + B2/4π�

)2 − 4a2c2
A

)
(10.46)

are the speeds of the fast and slow magnetosonic waves, and a is the acoustic wave
speed defined as

a = √
ΓP/� . (10.47)

In the 8× 8 eigensystem of Powell, the eigenvalues are

λ1,8 = v1 ± c f , λ2,7 = v1 ± cA , λ3,6 = v1 ± cs , λ4,5 = v1 . (10.48)

The eigensystem is discussed in Powell [331].
For a dimensional splitting integration scheme, the CFL conditions along each

row is given by

CFL = ∆t ×min

[ |v1| + c f

h1∆x1
,
|v2| + c f

h2∆x2
,
|v3| + c f

h3∆x3

]
, (10.49)

where the minimum is over all the cells.

Flux Formula

The Godunov method and its higher order extensions require the solution of the
Riemann problem. In practical computations, this is solved billions of times, making
the Riemann problem solution process the most demanding one in a numerical
method. Numerical fluxes across the cell interfaces are computed by using various
flux formula. One of the simplest implementation is the HLL flux formula (Harten
et al. [194]) which is based on the maximum left- and right-propagating wave speeds

FHLL = ψ+F(UL)− ψ−F(UR)+ ψ+ψ−(UR − UL)

ψ+ − ψ− (10.50)



10.2 Magnetohydrodynamics for Accretion Disks 523

with

ψ+ = max(0, λ+f,L , λ
+
f,R) , ψ− = min(0, λ−f,L , λ

−
f,R) . (10.51)

The HLL solver has strong diffusion on the rarefaction waves and contact surfaces.
Various improvements have been proposed.

These Riemann solvers are proposed for 1D problems and first-order method. To
achieve higher order accuracy in space, a second-order or higher order reconstruction
is required. The simplest case is a piecewise linear profile in the cell

Ui(x) = Ui + x − xi

∆x
∆̄ui , (10.52)

where ∆̄ui is a limited slope for the cell. Typically, a minmod-slope limiter is used.

10.2.2 Time and Space Discretization

In the real world, space and time are continuous, but in an MHD simulation, we
have to use discrete space and time to describe the system. The simplest way to
discretize space is to divide the whole simulation region into many regions of the
same size. For the time discretization, the simplest way is to choose the same
time-step, ∆t, for all the evolution. Though the uniform discretization of space and
time is simple, we cannot hope that it can optimize the simulation efficiency and
reliability. In order to have a better solution of this problem, we need finer grids
in some regions, while at the same time, coarser grids are enough in other regions.
A gridding scheme depending on the real physical component value, instead of being
predefined, is called adaptive (AMR). The kind of step adjusting that can be done
by program itself is called self-adaptive. The same thing can also be performed in
time domain.

A package of FORTRAN 90 routines, called PARAMESH [264], has been
developed to provide an application developer with an easy route to extend an
existing serial code that uses a logically Cartesian structured mesh into a parallel code
with AMR. PARAMESH builds a hierarchy of subgrids to cover the computational
domain, with spatial resolution varying to satisfy the demands of the application
(Fig. 10.1). These subgrid blocks form the nodes of a tree data structure (quad-tree
in 2D or oct-tree in 3D). Each grid block has a logically Cartesian mesh, and the
index ranges are the same for every block. Thus, in 2D, if we begin with a 10× 20
grid on one block covering the entire domain, the first refinement step would produce
four child blocks, each with its own 10× 20 mesh, but now with mesh spacing 1/2
that of its parent. Any or all of these children can themselves be refined in the same
manner. This process continues until the domain is covered with a quilt-like pattern
of blocks with the desired spatial resolution everywhere. A similar package called
Chombo [120] provides a set of tools for implementing finite difference methods for
the solution of partial differential equations on block-structured adaptively refined
rectangular grids. Both elliptic and time-dependent modules are included. Support
for parallel platforms and standardized self-describing file formats are included.
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Fig. 10.1. A 2D 6 × 4 grid is created on each block. The numbers assigned to each block
designate the blocks location in the quad-tree below. The colors assigned to the nodes of the
tree indicate one possible distribution of the blocks during a four-processor calculation

Chombo provides a distributed infrastructure for parallel calculations over block-
structured, adaptively refined grids.

Error Handling and Divergence Cleaning

The errors of analytical results come from the approximation of the theoretical model
and the improper presentation of the physical environments and procedures. When
a simulation model comes from a theoretical model, it also has errors generated
by the analytical results. In addition, a numerical method has its own errors during
the simulation process due to computation accuracy and imperfect representation of
those continuous processes, such as differentiations in time and space. Simple error
analysis can be conducted on the basis of each of the simulation equations, as shown
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in the error terms [131]. Further error analysis of the whole system becomes much
more prohibitive because of the complexity of the MHD equations. The comparison
of simulation results with analytical results for simple problems can give us some
very useful ideas of the errors of the MHD equation system.

Diffusive errors come from the diffusive property of MHD equations. In some
cases, there are some sharp boundaries between two parts of the simulation region.
But because of the error of the numerical computation, such sharp boundaries can
be smoothed. Generally, diffusive errors smooth the parameter variation in space
and make the spatial configuration more flat. In some cases, the error in a numerical
computation can feed back on the simulation system. If the computation scheme
cannot erase this error, some wiggles may appear. Sometimes these wiggles can be
greatly enhanced through the feedback mechanism to an extent that the real physical
process can be totally hidden.

In numerical MHD simulations the divergence constraint on the magnetic field
causes severe stability problems. Accumulating errors can lead to an unphysical
situation and can result in a breakdown of the simulation. Various authors have
developed an approach to the stabilization of numerical schemes which can be eas-
ily used as an extension of an existing solver. The method is based on a modified
formulation of the MHD equations in which the divergence constraint is coupled to
the system by introducing a further unknown function. The evolution of divergence
errors is strongly dependent on the type of the equation chosen for this function. For
the one-dimensional setting, these errors can be transported out of the computational
domain by a wave equation or can be dissipated by a heat equation. In [131] a mixed
formulation is suggested, by which the divergence errors are transported and dis-
sipated at the same time. The resulting system is still hyperbolic and the density,
momentum, magnetic induction, and the total energy density are still conserved.
Numerical examples demonstrate that this method decreases the divergence errors
by up to two orders of magnitude even compared with the often used source term
stabilization approach by Powell and coworkers [331].

10.2.3 MRI Driven Turbulence in Disks

As an application of the previously discussed methods we consider the evolution of
the MRI in strong differentially rotating disks.

Linear Stability Analysis

Let us consider an equilibrium disk of a differentially rotating fluid in which there
is a uniform vertical component of magnetic field, as well as an azimuthal (toroidal)
component which is too weak to exert significant stresses on the equilibrium flow.
We also assume that the flow is incompressible, ∇ · V = 0. We now consider
local perturbations (i.e. wavelengths much less than equilibrium wavelengths) with
wavenumbers purely in the vertical direction. The incompressibility condition then
implies δvz = 0, i.e. the fluid motions are entirely horizontal. Similarly, the
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condition ∇ · B = 0 implies that there is no perturbation in the vertical component,
δBz = 0.

The perturbed equations resulting from the induction equation are then

∂ δBR

∂t
= Bz

∂ δvR

∂z
(10.53)

∂ δBφ
∂t

= R
dΩ

dR
δBR + Bz

∂ δvφ

∂z
. (10.54)

These equations describe the dynamics of the perturbed field. Vertical gradients of
radial and azimuthal velocity stretch the equilibrium vertical field out into radial and
azimuthal field, respectively. In addition, the background differential rotation shears
out the perturbed radial field into azimuthal field.

The perturbed fluid momentum equations are

∂ δvR

∂t
− 2Ω δvφ = Bz

4π�

∂ δBR

∂z
(10.55)

∂ δvφ

∂t
+ κ2

2Ω
δvR = Bz

4π�

∂ δBφ
∂z

(10.56)

∂δP

∂z
+ Bφ

4π�

∂δBφ
∂z

= 0 . (10.57)

κ is the epicycle frequency given by

κ2 = R
dΩ2

dR
+ 4Ω2 = 1

R3

d j2

dR
. (10.58)

The radial and azimuthal momentum equations are like the spring equations we
discussed in the previous section. Vertical gradients in the azimuthal field create
vertical magnetic pressure gradients (the last equation) which, for an incompressible
flow, are immediately balanced by vertical fluid pressure gradients. This equation
becomes trivial, if the equilibrium azimuthal field Bφ vanishes.

Assuming a spacetime dependence of the perturbations, (δv, δB) ∝ exp[i(kz −
ωt)], the first four equations can be solved to give the dispersion relation

ω4 − [
2(kVA)

2 + κ2] ω2 + (kVA)
2
(
(kVA)

2 + R
dΩ2

dR

)
= 0 . (10.59)

VA = Bz/
√

4π� is the Alfvén speed corresponding to the vertical field2. This
immediately implies that one of the solutions of this quadratic equation for ω2 will
be negative (implying an unstable mode), if and only if

(kVA)
2 + R

dΩ2

dR
< 0 . (10.60)

2 The most general dispersion relation is discussed by Balbus and Hawley [49].
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Fig. 10.2. MRI growth rate as a function of the vertical wavenumber, normalized to the Alfvén
speed. The dispersion relation for ideal MHD is shown as a dashed line. Solid lines relate to
the viscous case, parametrized by the ion–ion collision frequency ν in units of the rotational
frequencyΩ. Figure adapted from [214]

All accretion disks around black holes have angular velocities that decrease outwards.
Hence, sufficiently small Alfvén speeds always catalyze an instability! It is then easy
to show that the maximum instability growth rate, Γ = iω,

Γmax = 1

2

∣∣∣∣ R dΩ

dR

∣∣∣∣ , (10.61)

occurs for wavenumbers (see Fig. 10.2)

(kVA)
2
max = Ω2 − κ4

16Ω2
. (10.62)

For Keplerian disks we find Γmax = 3ΩK/4, κ = ΩK , and therefore(
kVA

ΩK

)
max
� 1 . (10.63)

This implies that the instability grows on the Keplerian time-scale.
This magnetorotational instability (MRI) relies on weak magnetic fields.

If the field is too strong at the considered wavelength, then magnetic tension will
overcome the magnetic torquing and the flow will stabilize. The stronger the field,
the longer the wavelength required for instability. This suggests that laminar flows
are unstable, provided an unstable MRI wavelength � VA/Ω can fit inside the
vertical thickness of the disk. This corresponds to initial magnetic field densities that
are smaller than the thermal energy densities. This has been confirmed by global
simulations.
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Global MRI Simulations

Recent increases in supercomputer performance have significantly improved the
ability to evolve the basic equations of accretion disk structure and evolution. These
developments, along with continuing progress in understanding the most important
physical processes that occur within accretion disks, suggest that predictive disk
simulations are a realistic goal. Such disk simulations will be global, fully three-
dimensional, and incorporate physical processes such as magnetohydrodynamics
(MHD) and radiation transport. At present, we are still some ways from this goal;
global simulations are still rather idealized in terms of disk structure, energetics, and
dynamical range.

Most of the global disk simulations for black holes are nonrelativistic and assume
as initial condition a polytropic gas torus in the gravitational field of a pseudo black
hole. This means that the gravitational potential is given by the Paczynski–Wiita
form [319]

Φ(r) = − G M

r − RS
, (10.64)

where RS is the Schwarzschild radius. This initial condition is chosen to be a torus
for various reasons. First, the mechanical equilibrium can easily be constructed,
and, secondly, a torus is a kind of reservoir for angular momentum located at some
large distance away from the black hole. This second fact is however also the crux
for numerical simulations, because large dynamical ranges in radii are required. In

Fig. 10.3. Compact objects (white dwarfs, neutron stars and stellar black holes) as companion
stars in binary systems accrete gas from a normal star. This gas carries over angular momentum,
such that a turbulent accretion disk is formed. These disks are typically optically thick in the
outer parts and optically thin near the compact object
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a quasar host galaxy, this would require something like 100,000 dynamical radii.
The Paczynski–Wiita potential is a useful approximation for nonrotating black holes,
but it requires the wrong boundary conditions for differential rotation. In a real
Schwarzschild background, the angular velocity Ω(r) should vanish along the hori-
zon. This is a consequence of the no-rotation following from frame-dragging (see
Sect. 8.4). In studies of accretion disks around neutron stars, one has to introduce
a real boundary layer along the surface of the neutron star.

Much of this work has focused on geometrically thick accretion disks. With
a pressure scale-height H comparable to the disk radius R, the thick disk, or accre-
tion torus, is more easily resolved in a numerical simulation than disks for which
H/R � 1. Matsumoto [275] followed the evolution of a thick torus embedded in an
external vertical field, and found significant outflow collimated along the global ver-
tical field lines. Hawley [199] considered tori containing toroidal fields and poloidal

Fig. 10.4. Evolution of a torus including weak magnetic fields (plasma β = 103) for various
time-steps. The black hole of 10 solar masses (dark central region) is treated in the pseudo-
Newtonian approach. The density is represented in logarithmic scale. Shown is the original
torus configuration (a) and the density distribution at one (b), 1.5 (c) and 2.5 (d) revolution
periods at density maximum. White numbers (right-hand side) indicate the values of the
density maximum and minimum. Simulation provided by S. Brinkmann [88], based on the
NIRVANA code (ZAH, LSW Heidelberg)



530 10 Physics of Accretion Flows around Compact Objects

field loops. In these studies the initial field was entirely contained within the disk
and the resulting outflows were confined to the creation of a magnetized corona.
A generic feature of all these thick disk simulations is the presence of large ampli-
tude fluctuations in accretion rate, density, and other variables, in both space and
time.

Thick accretion tori with initially non-Keplerian angular momentum distributions
are highly unstable. MHD turbulence develops rapidly and is sustained by a self-
consistent dynamo process within the disk (Fig. 10.4). The constant or near-constant
specific angular momentum distribution of the initial torus rapidly evolves to one
that is near Keplerian. In principle, the rotation profile Ω(R) is a free function,
but in practice, almost all MRI simulations show that the Keplerian profile rapidly
emerges (Fig. 10.5). The reason for this is the vigorous outward transport of angular
momentum that is established by MRI. This spreads initially the torus radially,
diluting the effects of pressure gradients. Balbus [51] has shown that for a polytropic
equation of state, P = K�Γ , the equilibrium density profile satisfies

KΓ�Γ−1

Γ − 1
= h∞ + G M

r

(
1− cosβ

cos λ

)
, (10.65)

where h∞ is the enthalpy at infinity and λ is the colatitude. For an isothermal equation
of state one obtains

� = �∞ exp

[
G M

r

(
1− cosβ

cos λ

)]
. (10.66)

Fig. 10.5. Evolution of the angular momentum distribution in the accreting torus. Radii
are given in units of Schwarzschild radii. The initial constant specific angular momentum
(dashed line) quickly evolves towards a quasi-Keplerian distribution (solid line). Compare
with Fig. 10.4. Figure provided by S. Brinkmann [88] (LSW Heidelberg)
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Fig. 10.6. The magnetorotational instability (MRI) in action. The images show the density
distribution in the meridional plane of a nonrotating black hole together with velocity vectors.
The initial torus was in hydrodynamical equilibrium with a plasma beta of 103, but it evolves
rapidly as the simulation proceeds. The radial field is sheared by the differential rotation,
creating toroidal field. Turbulence develops within the disk with the onset of the magnetorota-
tional instability (MRI). The resulting Maxwell stresses drive angular momentum transfer; the
disk begins to accrete into the central hole and expands radially outward. One revolution at the
torus maximum corresponds to 500 lct. Top left: initial phase; top right: evolution after four
torus rotation periods; lower panel: zoom into the central part. Images based on simulations
provided by S. Brinkmann [89] (ZAH, LSW Heidelberg)
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Fig. 10.7. Position space power spectrum for density (upper), radial velocity (middle), and
vertical velocity fluctuations (lower). In each plot, the upper curve is for the nonaxisymmetric
data and the lower curve is for the axisymmetric data. The sharp peak at the orbital frequency
in the middle plot is the box averaged data. The frequency is in units of cycles per orbital
period. Power has been rebinned into logarithmically spaced frequency bins, which effectively
multiplies the power spectrum by one power of frequency. Axisymmetric hydrodynamic
normal mode frequencies from are shown as arrows. The epicyclic mode is at the orbital
frequency (unity). Inertial modes and sound waves should lie below and above the epicyclic
frequency, respectively. Figure adapted from Arras et al. [42]

The simulation shown in Fig. 10.4 assumes a toroidal configuration located at
16 Schwarzschild radii, having initially a constant specific angular momentum. The
computational domain is in spherical coordinates (r, θ, φ) running from 2 to 30
Schwarzschild radii in r, 0 ≤ θ ≤ π/2. An outflow boundary condition is used at
both the outer and inner radial boundaries, and periodic boundary conditions are
used for φ.
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Already after one revolution at the torus center, the MRI sets in, field energy is
amplified, and soon the characteristic radial streaming structures (referred to as the
channel solution) of the vertical field instability appear, much as they do in the local
shearing box models. In the present simulation, these structures develop first at the
inner part of the torus where the rotation frequency is the highest. The amplitude of
the MRI becomes nonlinear by three orbits at the center of the grid, and filaments of
strong magnetic field are carried inward and outward by fluid elements well out of
Keplerian balance. These reach the outer part of the disk even before the local MRI in
that region becomes fully nonlinear. Thus there are two immediate global effects not
seen in local simulations: linear growth rates that vary strongly with radius (ωMRI �
Ω � R−3/2), and extended radial motions of significantly non-Keplerian plasma.

Quasiperiodic Oscillations from Magnetorotational Turbulence

Quasiperiodic oscillations (QPOs) in the X-ray light-curves of accreting neutron
star and black hole binaries have been widely interpreted as being due to standing
wave modes in accretion disks. These disks are, however, thought to be highly
turbulent due to the magnetorotational instability (MRI). Arras et al. [42] have
recently studied wave excitation by MRI turbulence in the shearing box geometry.
They demonstrate that axisymmetric sound waves and radial epicyclic motions driven
by MRI turbulence give rise to narrow, distinct peaks in the temporal power spectrum
(Fig. 10.7). Inertial waves, on the other hand, do not give rise to distinct peaks which
rise significantly above the continuum noise spectrum set by MRI turbulence, even
when the fluid motions are projected onto the eigenfunctions of the modes. This is
a serious problem for QPO models based on inertial waves.

The most striking feature in Fig. 10.7 is the axisymmetric sound waves, which
appear as sharply defined peaks. The power in these peaks approaches the broad
continuum due to nonaxisymmetric MRI turbulence, and clearly rises above the
continuum for at least two of the peaks.

These results demonstrate that QPOs can be found in simulations of MRI tur-
bulence, at least in a shearing box geometry. The well-defined boundary conditions
of this geometry help ensure the existence of modes, but it is not clear that such
well-defined boundaries will exist in global accretion disks. Global MRI simula-
tions could in principle determine self-consistently, whether wave cavities exist and
contain trapped modes. This is one of the exciting prospects for future global MRI
simulations.

10.2.4 Two-Temperature Plasmas and Radiation Pressure in Accretion Disks

Radiation is essential for the understanding of classical accretion disks. One of the
basic assumptions was that all free energy locally dissipated by turbulence is radiated
away. Very little has been done to include radiative losses in numerical simulations.
Hujeirat and Rannacher [205] have pointed out that different time-scales have to
be included when radiation is accounted for. This requires a modification in the
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integration of the MHD equations, time-implicit codes are better suited to model the
evolution of such systems.

Since ions and electrons are only weakly coupled in low density accretion disks,
the equations governing radiative MHD for applications in accretion disks can be-
come quite complicated [206]

∂t�+∇ · (�v) = 0 (10.67)

∂t(�vp)+∇ · (�vp ⊗ vp) = −∇P + 1

8π
∇B2 + 1

4π
(B · ∇)B

−�∇Φ + λFLD∇E +�visc (10.68)

∂t(� j)+∇ · ( j�v) = 1

4π
Bp · ∇(RBφ)+Πφ

visc (10.69)

∂tEi +∇ · (Eiv) = −Pi(∇ · v)+ η

16π2
|∇ × B|2

−Λi−e +∇ · (κi∇T)+Φvis (10.70)

∂tEe +∇ · (Eev) = −Pe(∇ · v)+Λi−e

−ΛB −Λcyc −ΛC (10.71)

∂t E +∇ · (Ev) = ∇ · [λFLD∇E] +ΛB +ΛC +Λcyc (10.72)

−Λi−e +∇ · (κe∇T) (10.73)

∂tB = ∇ ×
(

v× B− η

4π
∇ × B

)
. (10.74)

The subscripts i and e correspond to ions and electrons in the plasma, respectively.
Radiation is treated as a first moment, i.e. by means of the radiative energy density
E, and the radiative diffusion coefficient λFLD is a flux limiter which forces the
radiative flux to adopt the correct form in an optically thin medium. We have also split
the velocity vector into a poloidal component and the specific angular momentum
j = R2Ω, v = (vp, RΩ).Λi−e,ΛB,ΛC andΛcyc correspond to electron heating by
ions, Bremsstrahlung cooling, Compton and cyclotron cooling, respectively. These
functions are given as follows [13] (in cgs units)

Λi−e = 5.95× 10−3 nineckB
Ti − Te

T 3/2
e

/N (10.75)

ΛB = 4acκabs� (T
4 − E)/N (10.76)

�
Fig. 10.8. The photon bubble instability. Snapshots of the gas density at 1.5 orbits in three
calculations of a small patch of accretion disk, centered 20 Schwarzschild radii from a black
hole of 108 M�. The domain extends 1.15 Shakura–Sunyaev scale-heights H above and below
the midplane and the width is 0.4H. At left are results from a 1D calculation in which the
gas is cooled by vertical radiation diffusion and contracts slightly toward the midplane. At
center in a 2D calculation, convection starts in the outer layers. The version shown at right
differs only in including a magnetic field (arrows). The field is initially uniform, inclined 87◦
from horizontal, with pressure 10% of the midplane radiation pressure. Figure adapted from
Turner et al. [403]
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ΛC = 4σT nec
kB

mec2
(Te − Trad)/N . (10.77)

N ∝ (Γ − 1)/Γ is a normalization quantity. The radiative temperature is defined as
Trad = E1/4.

Magnetic Effects in Radiation-Dominated Accretion Disks

Black hole systems with luminosities above a few percent of the Eddington limit
are thought to be powered by accretion through a geometrically thin disk supported
by radiation pressure. Near the hole, the internal pressure greatly exceeds the gas
pressure. The released gravitational energy escapes by diffusion of photons to the
disk faces. This model is unstable to perturbations in mass flow and heating rates.
The thermal instability is absent if additional cooling processes operate. In MRI
models, magnetic fields linking material at different distances from the hole transfers
angular momentum outward. The gas is heated by dissipation of magnetic fields
and the turbulence through microscopic resistivity and viscosity. The strength of the
magnetic fields is regulated by generation through MRI and losses through buoyancy
and dissipation.

One of the basic questions is how radiation-dominated disks cool. Several dy-
namical instabilities have linear growth rates similar to or even faster than the orbital
frequency [402]. This may lead to a vertical energy transport in turbulence driven
by the MRI. The most important instabilities are convection, the Shaviv modes and
photon bubbles (Fig. 10.8):

– The standard SS model is convectively unstable (Bisnovatyi-Kogan and Blin-
nikov [73]). Convection may be quenched if heating from the dissipation of
magnetic fields is concentrated at low column depths (Turner [403]).

– Radiation-supported atmospheres through which photons diffuse in less than
a sound-crossing time may be subject to a linear instability (Shaviv [365]). This
might lead to the formation of low-density chimneys where the radiative flux is
enhanced.

– Displacements of gas along magnetic field lines can be overstable, lead-
ing to growing and propagating density variations known as photon bubbles
(Arons [41]; Gammie [164]). Growth is fastest at short wavelengths (Blaes and
Socrates [75]). This photon bubble instability may lead to the development of
trains of propagating shocks.

The effects of these instabilities can be simulated by using a flux-limited diffu-
sion module for MHD, which involves conservation of mass, plasma momentum,
radiation flux, plasma energy, and radiation energy, as well as the evolution of the
magnetic fields, for a local shearing box, as formulated by Turner et al. [403]

D�

dt
+�(∇ · v) = 0 (10.78)
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�
Dv
dt
= −∇P − 1

8π
∇B2 + 1

4π
(B · ∇)B+ χ�

c
F− �Ω2z (10.79)

�
D(e/�)

dt
= −P(∇ · v)− κP�(4πB − cE) (10.80)

�
D(E/�)

dt
= −∇v : ΠR −∇ · F+ κP�(4πB − cE) (10.81)

∂B
∂t
= ∇ × (v× B) (10.82)

F = −cλFLD

χ�
∇E . (10.83)

The vertical component of gravity is included by an acceleration gz = Ω2z.
These equations have been simulated by Turner et al. [403] using the ZEUS MHD

code with its FLD module developed by Turner and Stone [401]. In the absence of
magnetic fields, convective instability grows at about the orbital frequency Ω and
cools the disk much faster than photon diffusion (Fig. 10.8). Including magnetic
fields, photon bubble modes with wavelengths shorter than the gas pressure scale-
height grow faster than the orbital frequency in the disk surface layers. Disturbances
reaching nonlinear amplitudes steepen into trains of shocks. These results indicate
that photon bubbles may be important in cooling radiation-dominated accretion
disks.

Ultraluminous X-ray sources (ULXs) with observed luminosities of 1039.5 to
1041erg/s and spectra fitted by multitemperature black body radiation of temperatures
1–2 keV are thought to be black holes accreting mass from a late O type stellar
companion at high rate. In order not to exceed the Eddington limit, the accreting black
holes would have to be of intermediate mass, 50–100 M�, while the observed disk
temperatures are too high for such black hole masses. Various suggestions have been
made to resolve this problem. Radiation pressure supported disks in magnetic fields
are unstable against a photon-bubble instability. In a nonlinear version, such radiation
driven inhomogeneities can allow the escaping flux to exceed the Eddington limit
and were suggested as resolution of the ULX problem. It is proposed that radiation
pressure leads to a complete fragmentation of accretion disks in magnetic fields
around black holes and that radiation escapes through the gaps between fragments
at super-Eddington luminosity. Essential for the gap formation is the overlying disk
corona into which gas of too low a density evaporates, similar to evaporation of hot
gas into the interstellar medium.

10.3 States of Turbulent Accretion Disks

X-ray binaries thought to contain black holes show at least three spectral states [125]
(see Fig. 1.5). The low/hard state (LHS) is characterized by a power law and
an exponential cutoff at about 200 keV or a thermal Comptonization model with
an electron temperature of about 70 keV. A quiescent state has been suggested to
exist, but in reality, the X-ray and radio properties of low luminosity BH candidates
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form a continuum down to the lowest observable luminosities. The spectrum of
the high/soft state (HS) is dominated by a thermal component thought to arise in
a standard thin disk (SSD). This state also exhibits a weak power-law tail without
observable cutoff. The very high state (VHS) displays the same two components,
but with the steep power-law dominating the total flux. Steady radio emission, which
is likely coming from a jet, has been found in the low/hard state, and strong radio
flares have been seen during the very high state [155]. No strong radio emission has
ever been detected in the high/soft state. Radio emission from active nuclei is also
correlated with the X-ray spectral properties, and therefore with the geometry of the
inner accretion flow.

This suggests that there is a class of flows that radiate inefficiently near the
surface of a black hole [21, 308] (Fig. 10.10). Analytic models of nonradiating
accretion flows (generically called NRAFs) have been based on the classical α
prescription.

10.3.1 Turbulent Angular Momentum Transport in Accretion Disks

The purpose of this section is to elucidate the nature of turbulent transport in ac-
cretion disks. Weak-turbulence theory allows a connection to be made between
a phenomenological transport modelling and the fundamental fluid equations. As
pointed out by Balbus [51], this is equivalent to retaining the quadratic correlations
in the turbulent fluctuations. Kato et al. [219] had already applied this formalism to
black hole accretion.

Global Conservation Laws in Turbulent Flows

Accretion disks satisfy two global conservation laws: conservation of angular mo-
mentum and conservation of total energy. To investigate the behavior of a turbulent
flow, we consider the time-steady form of angular momentum conservation

∇ ·
[
�R2Ω v− RBφ

4π
B
]
= 0 (10.84)

and the energy conservation law

∇ ·
[
�v

(
v2

2
+Φ + ΓΘ

Γ − 1

)
+ 1

4π
B× (v× B)

]
= −Q− . (10.85)

The second term in the energy equation represents the Poynting flux in the flow.
Contributions from viscosity and thermal conduction have been neglected. We un-
derstand all equations as azimuthally averaged.

We next expand all quantities into mean plus fluctuating components. The mass
flux is then

〈�v〉 = 〈�〉〈v〉 + 〈δ� δv〉 , (10.86)
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which satisfies mass conservation

∇ · 〈�v〉 = 0 . (10.87)

Then we may define a stress vector

W = 〈δvφ δv− BφB
4π

〉 . (10.88)

In terms of these quantities, angular momentum conservation reads as

∇ · [〈�R2Ω v〉 + 〈�〉RW
] = 0 . (10.89)

Similarly, the energy equation, though second order in weak turbulence theory,
assumes the form

∇ ·
[
〈�v〉

(
R2Ω

2
+Φ + Γ 〈Θ〉

Γ − 1

)
+〈�〉 RΩW+ Γ

Γ − 1
〈�〉〈δΘ δv〉

]
= −Q− . (10.90)

Θ is the normalized temperature, Θ = kBT/µ. The first group of terms corresponds
to the Bernoulli flux, which in general need not be constant. The essential new term
which is not included in standard thin disk theory is the correlated thermal energy
flux 〈δΘ δv〉. In standard models, the dominant nonadvective energy flux comes from
the rotational transport term W. The ratio of thermal energy flux to rotational stress
will be of order cS/RΩ.

When combining mass conservation with radial hydrostatic equilibrium

RΩ2 = 1

�

∂P

∂R
+ ∂Φ
∂R
, (10.91)

the energy equation can be written as

〈�vR〉
2R2

d(R4Ω2)

dR
+ 〈Θ〉
Γ − 1

〈�v〉 · ∇S

+∇ ·
(
〈�〉RΩW+ Γ

Γ − 1
〈�〉〈δΘ δv〉

)
= −Q− . (10.92)

Energy is transported through a turbulent disk by various processes

−
(

WRφ
dΩ

d ln R
+ Qrad

)
= ∇ · Fth + 〈Θ〉

Γ − 1
〈�v〉 · ∇S , (10.93)

where Qrad is the volumetric radiation loss rate, S is the mean entropy and Fth is the
thermal energy flux
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Fth = Γ�

Γ − 1
〈δv δΘ〉 . (10.94)

The velocity–temperature correlation is responsible for convective transport. This
energy equation states that the rate at which energy is locally extracted from differ-
ential rotation is equal to the rate at which it is carried away by waves, dissipated as
heat, and radiated away.

The second term on the right-hand side of the energy equation (10.93) is the
average rate at which entropy is generated by the mean mass flow. If the energy is
not carried off by adiabatic processes, then it must be dissipated. In the absence of
radiative losses, it must drive either an inflow or outflow. In nonradiative accretion
flow simulations one sees strong outflows generated.

In standard accretion disk theory (SSD), both terms on the right-hand side of the
energy equation (10.93) are ignored, only radiation losses are included

−WRφ
dΩ

d ln R
= Qrad . (10.95)

The energy equation is a crucial question in ZEUS-like codes, which base their
energetics on internal, as opposed to a total energy equation in conservative schemes.
The important question is how much free energy is locally radiated away and how
much is transported elsewhere. This has to be carefully checked in future codes.

One-Dimensional Approaches

On dimensional reasons, one can approximate the functional forms for W and for
the thermal flux by means of〈

� δvR δvφ − BR Bφ/4π
〉 = αSS 〈P〉 (10.96)

〈� δvR δΘ〉 = αT 〈P〉〈cS〉 , (10.97)

where αSS (the Shakura–Sunyaev α parameter) and αT are dimensionless constants.
The dynamical stress must be positive to extract energy from the differential rotation,
i.e. αSS > 0, whereas the thermal flux can have either sign.

10.3.2 Truncated Accretion and Standard Disk Models in 1D

Two families of models are currently considered to describe an accretion flow onto
black holes and production of the observed X-ray radiation: (i) a standard cold
accretion disk with a hot corona above it, and (ii) an outer truncated accretion
disk with a hot semispherical inner flow (called ADAF). The general idea is that
accretion in the outer parts is optically thick and then makes a sudden transition
towards an optically thin state (Fig. 10.9). The radius, where this transition occurs,
is called transition radius. This situation will be analyzed in the following in the 1D
approximation.
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Fig. 10.9. Stationary thin disk solutions. Four types of solution branches are discussed in
the literature: standard optically thick accretion disk for low accretion rates, slim disk so-
lution for optically thick high accretion rates, the Shapiro–Eardley–Lightman disk for hot
optically thin plasmas, and the advection-dominated ADAF solution. Figure adapted from
A. Müller [304](LSW Heidelberg)

1D Disk Dynamics

For axisymmetric flows it is quite convenient to introduce vertically integrated
variables, thereby reducing the 2D equations into a set of 1D equations. The basic
variables are: the mass-density �, the velocity field V = (VR, Vφ, 0) in cylindrical
coordinates (R, φ, z), the pressure p, and the internal energy e with the following
expressions:

– surface mass density

Σ(t, R) =
∫ H

−H
�(t, R, z) dz � 2H �(t, R, 0) (10.98)

– integrated pressure

P(t, R) =
∫ H

−H
p(t, R, z) dz � 2H p(t, R, 0) (10.99)

– integrated stress for viscous processes

WRφ(t, R) =
∫ H

−H
πRφ(t, R, z) dz = νΣ R

dΩ

dR
(10.100)

– integrated dissipation

Q+(t, R) =
∫ H

−H
D(t, R, z) dz . (10.101)



542 10 Physics of Accretion Flows around Compact Objects

The system of conservation equations is now vertically integrated to result in the
following system of 1D evolution equations

∂Σ

∂t
+∇ · (ΣV) = 0 (10.102)

∂(ΣVR)

∂t
+∇ · (ΣVR V) = −∂P

∂R
+ RΣ

(
Ω2 −Ω2

K

)
+4

3

∂

∂R

(
νΣ

R

∂(RVR)

∂R

)
+ 2VR

∂(νΣ)

R∂R
(10.103)

∂(Σ j)

∂t
+∇ · (Σ j V) = 1

R
∂R(R

2WRφ) (10.104)

∂E

∂t
+∇ · (EV)+ P(∇ · V) = Qvisc + Qcond + Qturb − Qrad . (10.105)

The first equation determines the surface mass density Σ, the second one the radial
drift VR, the third one the angular momentum distribution j(t, R) and the last equation
the internal energy E. Please note that in our case ∇ · (ΣV) = (1/R)∂R(RΣVR). In
this notation, the equations are written in conservative form.

Thermodynamics

In addition, we need an equation of state which includes in general radiation pres-
sure

p = �kBT

µmu
+ a

3
T 4 , pG = β p . (10.106)

The equation for the internal energy is then

�E = �kBT

µmu(Γ − 1)
+ a T 4 (10.107)

with Γ = Cp/CV as the ratio of the specific heats. From this we obtain the equation
of state for the integrated pressure

P = Σ kBT

µmu
+ 1

3
2aHT 4 . (10.108)

We also can express the total variation of the pressure as

dp = pG(d ln T + d ln�)+ 4pR d ln T

= βp(d ln T + d ln �)+ 4(1− β)p d ln T

= (4− 3β)p d ln T + βp d ln � , (10.109)

and the total variation of the internal energy
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dE = pG

�(Γ − 1)
d ln T + 3

pG

�
(4d ln T − d ln �)

= p

�

[
β

Γ − 1
d ln T + 3(1− β)(4d ln T − d ln �)

]
= p

�

[
12(1− β)(Γ − 1)+ β

Γ − 1
d ln T − 3(1− β) d ln �

]
= p

�

[
4− 3β

Γ3 − 1
d ln T − 3(1− β) d ln �

]
= CV T d ln T − 3(1− β) p

�
d ln � . (10.110)

From the first law of thermodynamics we obtain

dE = T ds − p d
1

�
= T ds + p

�
d ln� (10.111)

and therefore for the entropy variation

T ds = CV T d ln T − (4− 3β)
p

�
d ln �

= CV T
[
d ln T − (Γ3 − 1) d ln �

]
, (10.112)

where

Γ3 − 1 ≡
(

d ln T

d ln �

)
ad
. (10.113)

This gives the specific heat CV

CV = R

µ(Γ − 1)

(
12(1− β)(Γ − 1)+ β

β

)
= 4− 3β

Γ3 − 1

p

�T
(10.114)

and the corresponding adiabatic index Γ3

Γ3 − 1 = (4− 3β)(Γ − 1)

12(1− β)(Γ − 1)+ β) . (10.115)

In the case of gas pressure dominance we have Γ3 = Γ . These equations are com-
pletely analogous to the corresponding equations in stellar structure.

With these relations one can derive the evolution equation for the temperature
in the disk mid-plane, T(t, R),

∂T

∂t
+ VR

∂T

∂R
− 1

CVΣ

∂

R ∂R

[
8acT 3 H

3κΣ

R ∂T

∂R

]
= (Γ3 − 1)

4− 3β

T

R

∂(RVR)

∂R
+ Q+

CVΣ
− Q−

CVΣ
. (10.116)
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This is a diffusion-type equation for the temperature evolution with sources given by
the compression of the flow and viscous heating, Q+, as well as by radiative losses
Q−. In most applications, the advective term and radial diffusion are neglected.
This approximation is justified for standard disks, but it no longer holds for general
accretion. In particular near the horizon extreme radial temperature gradients occur
so that also heat conduction is an important contribution (this just changes the heat
capacity in the diffusion term).

Cooling

The cooling function Q− depends on the physical processes (Bremsstrahlung, cy-
clotron cooling, optically thick emission or Comptonization). For Bremsstrahlung
one can write (in cgs units)

Q−
Brems = 1.24× 1021 erg s−1 cm−2 H�2

√
T . (10.117)

For optically thick emission from the surface of the disk

Q− = 16acT 4

3τ
(10.118)

with the optical depth τ = Σκeff/2 of the disk. Similar expressions can be found for
cyclotron cooling.

Turbulence

The question of the viscosity ν is of central importance for accretion disks. Since
the time of Shakura and Sunyaev [363], most people use a phenomenological ansatz

ν = 2

3
αSScS H , (10.119)

with αSS < 1 as the turbulence parameter. Typical values found in magnetic turbu-
lence are αSS � 0.01.

Abramowicz et al. [22] first obtained a unified Σ − Ṁ picture for stationary
accretion flows at a fixed radius R in the case of low viscosity, which includes
four classes of solutions, namely SSDs, Shapiro–Lightman–Eardley (SLE) disks,
slim disks and ADAFs. The solid lines in Fig. 10.10 represent thermal equilibrium
solutions, i.e. stationary solutions of the 1D disk equations with Q+ = Q−. In Fig.
10.10, the right S-shaped curve consists of three branches, of which the lower one is
for gas-pressure-supported SSDs, the middle one for radiation-pressure-supported
SSDs, and the upper one for slim disks; while the left curve consists of two branches,
of which the lower one is for SLE disks, and the upper one for ADAFs. The unstable
branches are those which have Q+ > Q− above and Q+ < Q− below, while the
stable branches are just opposite. Thus gas-pressure-supported SSDs, slim disks and
ADAFs are thermally stable, whereas radiation-pressure-supported SSDs and SLE
disks are thermally unstable.
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Fig. 10.10. Optically thin (left branches) and optically thick states (right branches) for accre-
tion onto compact objects. Two types of log(Σ)− log(Ṁ) branches exist for accretion flows at
a fixed radius. Besides the standard models (SSD, lower right branch), two different branches
appear for extremely low accretion rates (ADAF and the Shapiro–Lightman–Eardley (SLE)
disk). The arrows show the behavior of the flow resulting from the thermal instability of
a radiation-pressure-supported SSD

10.3.3 Standard Thin Disk Solutions (SSD)

When only radial advection is dominant, the above equations lead to the mass
conservation

∂Σ

∂t
+ 1

R
∇R(RΣVR) = 0 , (10.120)

and conservation of the specific angular momentum j = R2Ω

∂(Σ j)

∂t
+ 1

R
∇R(RΣVR j) = 1

R
∂R(R

2WRφ) . (10.121)
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Under the condition that ∂tΩ = 0, one can combine these two equations for Keplerian
disks

∂Σ

∂t
= 3

R
∂R

[√
R ∂R[ν

√
RΣ]

]
. (10.122)

In general, this is a nonlinear diffusion equation for Σ(t, R), since ν can be a local
function of the disk properties. This equation can be solved analytically for the case
ν = const

Σ(τ, x) = m

πR2
0

1

τx1/4
exp

[
−1+ x2

τ

]
I1/4(2x/τ) , (10.123)

where I1/4(x) is the modified Bessel function. The initial condition is a ring of matter
of mass m at radius R0, x = R/R0 and τ = 12νt/R2

0 are dimensionless radius and
time variables.

Stationary and geometrically thin disks are obtained under the following as-
sumptions:

– Mass conservation

Ṁ = 2πRVRΣ = const (10.124)

– Almost Keplerian orbits, i.e. |VR| � Vφ, Ω = ΩK . This assumption has
been confirmed in MRI simulations. The radial Euler equation is automatically
satisfied.

– Angular momentum conservation: since there are no stable circular orbits
inside the innermost stable orbit, this orbit is often assumed to be the inner
boundary of the accretion disk with a torque-free condition, WRφ(Rin) = 0. The
equation of angular momentum conservation can therefore be integrated

Ṁ

2π
( j − jin) = −R2 WRφ . (10.125)

Since j = √G MH R, this equation determines the torque on a ring in the disk,
independent of the nature of the viscosity,

WRφ =
∫ H

−H
πRφ dz = νΣ R

dΩ

dR
= − Ṁ

2πR2

√
G MH R

(
1−√

Rin/R
)
.

(10.126)

For Keplerian orbits, this relation can be written as

νΣ = Ṁ

2π

[
1−√

Rin/R
]
. (10.127)

– Energy conservation: The kinematic viscosity ν generates a dissipation of
energy in the disk at a rate D(R) per unit area and per unit time
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Q+(R) = D(R) = 1

2
νΣ(RΩ′)2 = 3G MH Ṁ

8πR3

[
1−√

Rin/R
]
. (10.128)

This expression is also independent of the nature of the viscosity and determines
the total disk luminosity

Ldisk =
∫ ∞

Rin

D(R) 2πR dR = 1

2

G MH

Rin
. (10.129)

Half of the potential energy gained by moving inwards is dissipated away, the
other half is stored in kinetic energy of the orbit. Matter just outside the boundary
layer around the horizon still retains as kinetic energy half of the potential energy.
For slowly rotating white dwarfs and neutron stars, this energy is emitted in the
boundary layer, for black holes it is swallowed by the horizon. As we will discuss
in Sect. 10.5, this inner boundary condition is violated by rapidly rotating black
holes, where magnetic fields can interact with the frame-dragging effect.

– Hydrostatic equilibrium: Neglecting motions in the vertical direction, the ver-
tical Euler equation reduces to the hydrostatic equilibrium

1

�

dP

dz
= −G MH

R2

Z

R
. (10.130)

This leads to the solution for the disk height H

H � cS

ΩK
, (10.131)

where cS is the sound speed.
– EoS: The total pressure of the disk material is the sum of gas and radiation

pressure

P = �kBT

µm p
+ 4σSB

3c
T 4 , (10.132)

where kB is the Botlzmann constant, µ the mean molecular weight, and σSB the
Stefan–Boltzmann constant.

– Radiative Transport: The temperature Tc in the midplane of the disk is obtained
by the energy equation relating the vertical energy flux to the rate of generation of
thermal energy by viscous dissipation (or any other form of dissipation). When
we equate the heat input per unit area, Q+(R), with the heat loss per unit area
given by the radiative transport, we obtain for the central temperature

4σSB

3τ
T 4

c = D(R) = 3G MH Ṁ

8πR3

[
1−√

Rin/R
]
. (10.133)

τ is the optical depth of the disk defined through

τ = κR�H = κRΣ , (10.134)
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with κR = κR(�, T) as the total Rosseland mean opacity. For hot disks around
compact objects, the main contributor to the opacity are free–free transitions and
Thomson scattering. The optical thick condition for standard disks [363] implies
that τ � 1. If τ ≤ 1, radiation escapes directly, and the above estimate for the
central temperature is no longer valid.

– Turbulent viscosity: The standard model of disks is based on the so-called α
prescription of Shakura and Sunyaev [363]. Here, it is assumed that the dominant
process for redistribution of angular momentum is turbulent viscosity, where the
effective kinematic viscosity of a turbulent process is given by ν � LTvT with
LT as the size and vT as the velocity of the largest eddies in the flow. In accretion
disks, we can assume that the scale-height of the eddies is less than the disk
thickness H , and turbulence is subsonic. Consequently,

ν = αSS cS H , (10.135)

with αSS ≤ 1. This parametrization has been confirmed still to be useful, even
in cases where turbulence is exited by magnetic instabilities (MRI), where one
typically finds αSS � 0.1–0.01 [74].

Solving the above listed set of equations, one obtains then the central density
�c(R), the surface density Σ(R), the central pressure Pc(R), the disk height H(R),
the radial drift VR(R), the central temperature Tc(R), and the optical depth τ(R) as
functions of the parameters M, Ṁ and α. For fixed values of M and Ṁ, the disk
around neutron stars and black holes can be divided into three distinct regions:

– An outer disk, at large radii, in which gas pressure dominates over radiation
pressure and in which the opacity is mainly due to free–free processes.

– A middle region, in which still gas pressure dominates over radiation pressure,
but the opacity is mainly due to electron scattering.

– An inner region, near the surface of the compact object, in which radiation
pressure dominates over gas pressure, and the opacity is still dominated by
electron scattering. Since the optical depth in this inner part is not extremely
high, Comptonization of soft disk photons by the hot electrons is a major source
for SEDs.

Spectral Energy Distributions (SED) for SSD

The spectral energy distribution (SED) of the gravitational power released as elec-
tromagnetic radiation when matter accretes onto a compact object and its temporal
variability are the main observed features for compact objects. The observed spec-
tral energy distributions (SEDs) are far from universal. In standard disks, we would
expect a multicolor black-body spectrum, determined by the temperature given by
σSBT 4

eff(R) = D(R),

Teff(R) =
{

3G MṀ

8πR3σSB

[
1−√

Rin/R
]}1/4

. (10.136)
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Fig. 10.11. Global spectrum of a standard disk consists of a superposition of black-bodies
for each ring in the disk. The temperature of the rings steadily increases towards the central
object

When the spectrum of each ring in the disk is approximated by a Planck spectrum,
an observer at a distance d, whose line-of-sight makes an angle θ to the normal of

the disk plane, would observe a spectral flux from the disk

Fν = 4πhν3 cos θ

c2d2

∫ Rout

Rin

R dR

exp[hν/kBT∗(R)] − 1
, (10.137)

where Rout is the outer radius of the disk. In the integrated spectrum we can distin-
guish between the following branches (Fig. 10.11)

– Fν ∝ ν2 for hν � kBTout;
– Fν ∝ ν1/3 for kBTout � hν � kBTmax;
– Wien decay for hν � kBTmax.

NLTE effects in the disk atmosphere will change the above multicolor spectrum
(Fig. 10.12), which is only valid for high accretion rates. For accretion rates below
a certain threshold, roughly Ṁ < 0.03ṀED, the optical depth in the inner disk drops
below unity – the inner disk becomes optically thin and is heated up. Different
accretion modes are however possible, with different radiative properties. The main
goal of accretion theory is to distinguish and understand all the possible different
modes of accretion, and classify the observed sources in terms of of such modes. The
spectra of accreting black holes clearly show different components, that are produced
by different physical processes and originate from different regions of the accretion
flow. One of those components is a quasithermal hump, produced by a geometrically
thin, optically thick accretion. It is shown that such a model not only underestimates
systematically the value of the inner disk radius, but that, when the accretion rate
through the disk is allowed to change, the inner edge of the disk, as inferred from
the multicolor model, appears to move, even when it is in fact fixed at the innermost
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Fig. 10.12. Non-LTE disk spectra for quasars. A comparison of predicted spectral energy
distributions for the sequence of models for a maximum rotating Kerr black hole (solid line),
and for a Schwarzschild black hole (dashed lines), for models with M = 109 M� and various
values of L/LEdd. The values of the mass accretion rates are 2, 1, 1/2, 1/4, etc. for the Kerr
hole, and the corresponding values for the Schwarzschild hole are 5.613 times larger. Figure
adapted from Hubeny et al. [204]

stable orbit. Most accreting black holes, either of stellar mass or supermassive, when
observed with hard X-rays show also signs of a hot Comptonizing component in the
flow, the so-called corona.

Relativistic effects will also influence the form of the observed spectra. Li
et al. [253] have applied a ray-tracing technique to compute the observed spec-
trum of a thin accretion disk around a Kerr black hole (relevant for the high state).
They include all relativistic effects such as frame-dragging, Doppler boost, grav-
itational redshift, and bending of light by the gravity of the black hole (see Sect.
8.4.4). Self-irradiation of the disk as a result of light deflection is also included in
these models. Assuming that the disk emission is locally black-body, the observed
spectrum depends on the spin of the black hole, the inclination of the disk, and the
torque at the inner edge of the disk. With this method, the spin parameters of the
black holes in 4U1543–47 and GRO J1655–40 are estimated to be a/M � 0.6 and
� 0.6–0.7, respectively, or even somewhat higher, if color effects are included in the
fitting procedure. These spectra will be modified by non-LTE effects due to Compton
scattering. Models of this type applicable to the high/soft state of black hole X-ray
binaries are discussed by Davis et al. [130]. For a given source, these models predict
that the luminosity in the high/soft state should approximately scale with the fourth
power of the empirically inferred maximum temperature, but with a slight hardening
at high luminosities, in good agreement with observations.
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10.3.4 Advection-Dominated Flows (ADAF)

The Advection-Dominated Accretion Flow model (ADAF) originates as an alterna-
tive solution to the same hydrodynamical equations of viscous differentially rotating
flows that were solved in the standard disk model [211,307,308]. The ADAF model
is a solution that works with low, sub-Eddington accretion rates. In this solution,
the accreting gas has a very low density which implies that the flow is optically
thin and therefore unable to cool efficiently within the accretion time. The viscous
energy is therefore stored in the gas as thermal energy instead of being radiated away,
and is advected onto the central compact object. The gas temperature is therefore
extremely high. This causes the the gas to swell so that H � R – ADAF models are
geometrically thick hot accretion disks. Since electrons can cool efficiently, but are
not coupled tightly to the ions, ADAF models can evolve towards two-temperature
flows, where the ions are much hotter than the electrons.

A low/hard state, characterized by a power-law spectrum with photon index
of 1.4–1.8 and extending to 100 keV, is observed both in transient systems (X-ray

Fig. 10.13. Spectrum of a stellar black hole transient system. The absence of any soft black-
body-like component in the X-ray band of the binary black hole source RXTE J1118+480
implies the existence of an extended hot optically thin region, with the optically thick cool
disk truncated at some radius Rtr ≥ 50 RS. The dashed-dot curve represents the emission
from a truncated accretion disk. Excess emission occurs in the infrared which extends down
to the radio region. It has been associated with jet emission. The absence of the inner disk
black-body component also underscores the requirement that the seed photons for thermal
Comptonization (dashed curve) be produced locally in the hot flow, e.g. via synchrotron
radiation. In the meantime, the mass of the black hole in this transient system has been
determined to be 8.5 M�, the orbital period is 4.1 hours and the system is at a distance of
1.7 kpc [168]. Figure adapted from Yuan et al. [430]
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novae, e.g. GRS 1124–68, GRO J0422+32) and persistent systems (e.g. Cyg X-1
and LMC X-3). It is generally assumed that these spectra are produced by thermal
Comptonization of seed photons in the vicinity of an accreting black hole. Both
Chandra and XMM are capable of observing soft X-rays down to 0.2 keV with
good energy resolution. Esin et al. [148], and later Yuan et al. [430] present detailed
modelling of the combined near-simultaneous HST, EUVE, Chandra and RXTE
observations of the source RXTE J1118+480 (Fig. 10.13). A spectral model based
on an advection-dominated accretion flow surrounded by a truncated thin disk and
including jet outflows seems to provide reasonable fits to the combined optical, UV
and X-ray data.

We will not discuss these models in details in the 1D approximation, since
these models represent exactly the situations which can now be simulated in MHD
turbulent processes.

10.3.5 Super-Eddington Accretion

For Eddington and super-Eddington accretion flows, radiation energy density is
important. These models are preferentially discussed in spherical polar coordinates
(r, ζ, φ), where ζ is the polar angle measured from the equatorial plane of the disk.
We also assume that the gas flow is axisymmetric. In this coordinate system, the
basic equations for mass density, momentum, gas energy ε and radiation energy E
are written in conservative form

∂�

∂t
+∇ · (�v) = 0 (10.138)

∂(�v)

∂t
+∇ · (�v v) = �

[
w2

r
+ v

2
φ

r
− G M

(r − RS)2

]
− ∂P

∂r

+∇ · Sr + 1

r
Srr + fr (10.139)

∂(�w)

∂t
+∇ · (r�w v) = − tan ζ �v2

φ −
∂P

∂ζ

+∇ · (rSζ )+ tan ζ Sφφ + fζ (10.140)
∂(�r cos ζvφ)

∂t
+∇ · (�r cos ζvφ v) = ∇ · (r cos ζSφφ) (10.141)

∂(�ε)

∂t
+∇ · (�ε v) = −P ∇ · v+Φ −Λ (10.142)

∂E

∂t
+∇ · F+∇ · (vF + vPR) = Λ− �κ + σ

c
v · F . (10.143)

� is the density, v = (v,w, vφ) are the three velocity components, and PR is the
radiative stress tensor. Radiative quantities are calculated in the comoving frame.
The force density exerted by radiation is given by

f = �κ + σ
c

F , (10.144)
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where κ and σ denote the absorption and scattering coefficients. The quantity Λ
describes cooling and heating of the gas

Λ = �cκ(S∗ − E) , (10.145)

where S∗ is the source function. In local thermodynamic equilibrium, S∗ = aT 4,
where T is the gas temperature. To close the system, we use the flux-limited diffusion
approximation

F = − λc

�(κ + σ) ∇E (10.146)

and

PR = E TEdd , (10.147)

with TEdd as the Eddington tensor.
Under these high accretion rates, the dominant radiation pressure force in the

interior part of the disk accelerates gas vertically to disk plane, and jets with velocities
of 0.2–0.4c are formed along the rotational axis [316]. The initially anisotropic jet
flow expands outwards and becomes gradually isotropic at larger distances. Such
outflows could explain the jets observed in the binary source SS 433 and the outflows
observed in high-redshift quasars.

10.3.6 Unified Models of Disk Accretion

The most broadly accepted view on the structure of accretion disks is that the
character of the flow is mainly determined by the Eddington ratio ṁ = Ṁ/ṀEdd.
In high Eddington ratio objects, accretion proceeds through a cold optically thick
disk, while for lower Eddington ratio the cold disk evaporates close to the black
hole. Below a certain radius rtr, depending on the accretion rate, the accretion flow
proceeds through some form of optically thin hot flow (ADAF). A plausible geometry
is shown in Fig. 10.14.

For accretion rates above a few percent Eddington, accretion disks on scale
much beyond the marginal stable orbit are well modelled by standard disk models
(Fig. 10.14). These disks vertically collapse due to efficient radiative cooling which
is the origin of the observed UV bumps in quasars. These disks will however be
truncated at some radius rtr, whose position is dictated by the overall accretion rate
and the nature of the turbulence which is responsible for the angular momentum
transport [182]. Here the disk is transformed into a hot geometrically thick and
optically thin disk (sometimes called ADAF, or hot accretion torus). In this part,
energy is mostly advected inwards and disappears inside the horizon of the black
hole. In this part, the hard X-rays of Cyg X-1, Seyfert galaxies and quasars are
generated by Compton scattering of soft photons.

One can analyze the formation of the transition front within time-dependent one-
dimensional models based on a pseudo-Newtonian description of the gravitational
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Fig. 10.14. Schematic sketch of the accretion flow in different spectral states as a function
of the Eddington-scaled mass accretion rate ṁ in black hole systems (BBHs and galactic
centers). Under high accretion rates, radiation pressure drives outflows, under low accretion
rates, outflows are generated by magnetic coupling with the rotating black hole. Figure adapted
from A. Müller [304] (LSW Heidelberg)

field of black holes [182], given in the previous section. This description is suitable
to simulate the behavior of accretion onto nonrotating black holes. It turns out that
the transition front is not stationary, but time-dependent. We found essentially two
effects which drive the time-dependence of the transition radius: first, the transition
radius has a tendency to drift to larger radii, the ADAF is growing and the SSD
is shrinking. Secondly, also a rapid oscillatory motion of the transition radius is
observed in numerical simulations [182].

Not much mass is probably lost from the standard disk. The growth of the black
hole will therefore depend ultimately on the accretion processes occurring in the hot
inner part. Many models show strong outflows under these conditions. One example
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considered in some details is the case of nonradiative accretion flows driven by the
magnetorotational instability, also called the Balbus–Hawley instability (De Villiers
et al. [134,135]; Brinkmann [88,89]). The issue of the existence of super-Eddington
accretion onto rotating black holes is therefore completely open. Super-Eddington
accretion is, however, necessary to accelerate the growth of black holes in the early
Universe in order to explain the bright quasars at redshift 6, where the Universe was
less than one billion years old.

The time evolution of accretion states can be observed much easier for stellar
black hole systems (see McClintock and Remillard [283]). Interestingly, the outer
radius of the accretion disk is expected to be roughly one solar radius, and this
corresponds to � 105 gravitational radii, as in the case of extragalactic sources (e.g.
M87). At all disk radii, the binding energy liberated by viscous dissipation is radiated
locally and promptly and results in a gas temperature that increases radially inward
reaching a maximum of T � 107 K near the black hole. This picture is the standard
thin disk model (SDD). This is at least correct for the high state spectra (HS).
At lower mass accretion rates corresponding to several percent of the Eddington
luminosity, a BHB usually enters the low/hard (LH) state and at very low accretion
rates it reaches the quiescent state, which may be just an extreme example of the LH
state (Fig. 10.14).

The hard X-ray spectrum is most plausibly explained as due to Comptonization
of soft photons by the hot optically thin plasma in the inner torus.

The disks in NLS1 and quasars extend most probably down to the marginally
stable orbit. This follows from the power-law character of their soft X-ray spectra
and the change of the slope at the Lyman edge. In intermediate luminosity objects,
like radio galaxies and normal Seyfert 1 galaxies, the disk most likely exists in the
outer part of the flow, at distances of a few tens to a few hundreds of Schwarzschild
radii. The argument here comes from the interpretation for double profiles of optical
lines and the presence of relatively narrow iron lines (Reynolds and Nowak [341]).

10.3.7 Fundamental Time-Scales for Accreting Black Holes

If the accretion flow is roughly Keplerian, the most fundamental time-scale is the
dynamical one given by the Keplerian frequency

tdyn = 2π/ΩK (R) = 2πR

c

√
c2 R

G MH
. (10.148)

We can conveniently express this time-scale in suitable units

tdyn = 1.05 days MH,9 (R/RS)
3/2 , (10.149)

where MH,9 denotes the mass of the black hole in units of 109 solar masses. Thermal
time-scales are somewhat larger due to the turbulence parameter α

ttherm = tdyn/α . (10.150)



556 10 Physics of Accretion Flows around Compact Objects

When the transition radius changes with time, we need an estimate for the
characteristic time-scale of the removal of the cold disk from a given radius. This
removal occurs in a change of the accretion flow into an optically thin flow

tevap = E

ηṀc2
(10.151)

with E = πR2Σ kT/m p, which can be expressed as

tevap � 10 yrs ṁ−1 MH,9 (R/10 RS)
2 . (10.152)

For stellar mass black holes, this time-scale is of the order of seconds. In standard
models, this time-scale can be identified with the viscous time-scale

tevap = E

F
= ΣkT

αPHΩK
= tvisc , (10.153)

where

tvisc = ttherm (R/H)2 . (10.154)

In many radio-loud quasars, knots are ejected with a cyclic time-scale of a few
years (in 3C 273 probably every year, in 3C 345 every fifth year). It is then tempting
to relate this time-scale to the above evaporation time-scale. Since the mass in 3C 273
is probably similar to the black hole mass found in M87, where MH = 3× 109 M�,
one year is close to the evaporation time for a radius of a few Schwarzschild radii.
Since 3C 273 is a bright quasar, truncation must occur very near to the marginal
stable orbit in order to explain the thermal UV bump of the spectrum. Contrary to
this, the mass derived for 3C 120 from reverberation is MH = 3× 107 M�, and this
source is probably in the low state (Marscher et al. [269]).

The X-ray emission observed from BH sources is highly erratic and can be
analyzed in terms of power spectra. The accretion rate also determines the X-ray
state of BH sources. In fact, high state and low state show different power density
spectra (PDS), as exemplified by Cyg X-1 (Fig. 10.15).

Power spectra show typically a break from a slope −1 to −2 at some break
frequency νbreak. In fact, all BH sources seem to have similar PDSs. In Fig. 10.16
we plot the break time-scales vs. Black hole masses for Cyg X-1 in the low and
high state and for some Seyfert galaxies (for a break between a low frequency slope
−1 and a high frequency slope of −2 (with data from McHardy et al. [284])). The
NLS1s all lie above the high state line. If the break time-scale is associated with
the position of the truncation radius and the same physics defines the characteristic
time-scales in all black hole systems, then the movement of the truncation radius
provides a natural explanation of Fig. 10.16. It is not clear at the moment, whether
the position of the truncation radius is only a function of the accretion rate. The
absence of broad iron emission lines in most Seyfert galaxies is a hint towards the
correctness of this interpretation.

This scaling of the break frequency with the black hole mass demonstrates that
the essential properties of black hole accretion are independent of the mass.



10.3 States of Turbulent Accretion Disks 557

Fig. 10.15. PDSs of the Seyfert galaxy NGC 4051 (filled circles) and of Cyg X-1 in its low and
high state. Frequency times power is shown here. Figure adapted from McHardy et al. [284]

Fig. 10.16. Break time-scales for various AGN compared to Cyg X-1 in the low state. The
Narrow Line Seyferts (NLS1) MCG–6–30–15 and NGC 4051 are shown together with broad-
line Seyferts as filled symbols. The scaling of the break time with black hole mass is given for
the low state (solid line) and the high state (dotted line). Data taken from McHardy et al. [284]
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10.4 Relativistic MHD – Turbulent Accretion onto Black Holes

A powerful way to improve our understanding of astrophysical processes near com-
pact objects is through accurate, large scale, three-dimensional numerical simula-
tions. Nowadays, computational general relativistic astrophysics is an increasingly
important field of research. In addition to the large amount of observational data gath-
ered by high-energy X- and gamma-ray satellites such as Chandra, XMM–Newton,
or INTEGRAL, and the new generation of gravitational wave detectors, the rapid
increase in computing power through parallel supercomputers and the associated
advance in software technologies now enables large scale numerical simulations in
the framework of general relativity. However, the computational astrophysicist and
the numerical relativist face a daunting task. In the most general case, the equations
governing the dynamics of relativistic astrophysical systems are an intricate, coupled
system of time-dependent partial differential equations, comprising the (general) rel-
ativistic (magneto-)hydrodynamic (MHD) equations and the Einstein gravitational
field equations. In many cases, the number of equations must be augmented to
account for nonadiabatic processes, e.g. radiative transfer or sophisticated micro-
physics (realistic equations of state for nuclear matter, nuclear physics, magnetic
fields, and so on).

10.4.1 From SRMHD to GRMHD

Magnetic fields play a crucial role in determining the evolution of many relativistic
objects. Special relativistic MHD (SRMHD) is the foundation for any GRMHD

Fig. 10.17. Illustration of the main elements of modern accretion theory. Under the high
accretion rates found in the early Universe, a standard accretion disk (SDD) is formed far
away from the central black hole, which is truncated at a certain radius near the marginal
stable orbit of the black hole. Here, a transition occurs towards an inner advection dominated
disk which is of toroidal shape. The standard disk is the origin for the UV bump observed in
quasars, while in the hot inner disk hard X-rays are produced by Compton scattering of soft
photons. Figure provided by A. Müller [304] (LSW Heidelberg)
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scheme, the transition to full GRMHD involves however some nontrivial problems.
SRMHD schemes have been developed by van Putten [405], Komissarov [236], Bal-
sara [53], Del Zanna et al. [132], Koldoba et al. [233], and Leismann et al. [251]. In
recent years, numerical codes which evolve the general relativistic MHD equations
(GRMHD) on a fixed Schwarzschild or Kerr black hole spacetime have been devel-
oped by Koide et al. [230, 232], Komissarov [238], De Villiers and Hawley [133],
and Gammie et al. [166]. These codes have mainly been used to study the struc-
ture of accretion flows to rotating black holes, the Blandford–Znajek process in
low-density magnetospheres [239, 240], and the formation of GRB jets [135] .
A general approach to solve numerically the equations of GRMHD within the 3+1
split has been recently presented by Anton et al. [36], Baiotti et al. [46], and Duez
et al. [138].

10.4.2 The Equations for GRMHD

For the following, we write the metric in the traditional 3+1 split

ds2 = −α2 dt2 + γik(dxi + βi dt)(dxk + βk dt) . (10.155)

As discussed in Sect. 2.8, a natural observer associated with the 3+1 splitting is the
Eulerian observer with four-velocity n perpendicular to the hypersurface of constant
t. Its components are given by

nµ = (1,−βi)/α (10.156)

and nµ = (−α, 0, 0, 0), respectively. The Eulerian observer is naturally extended by
three spatial basis vectors that are tangent to the hypersurface t = const

ea = {n, ∂i} , a = 0, · · · , 3 . (10.157)

In the one-component plasma limit, the equations of general relativistic MHD
consist of particle conservation

1√−g
∂µ[√−g �0Uµ] = 0 , (10.158)

expressed in terms of rest-mass density �0 = mn, and conservation of energy
momentum

Tµν;ν = 0 . (10.159)

In the case of a one-component plasma, the stress–energy tensor consists of a perfect
fluid part and the contributions from the Maxwell stresses (see Appendix E)

Tµν =
(
�0 + ε + P + b2

4π

)
UµUν +

(
P + b2

8π

)
gµν − 1

4π
bµbν , (10.160)
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where bµ is the magnetic field as measured in plasma frame

bµ = −1

2
ηµν�σ UνF�σ . (10.161)

The three-velocity of the plasma as measured by the Eulerian observer is then
given as

vi = −hi
µUµ

nµUµ
, (10.162)

where W = −nµUµ = αUt is the Lorentz factor in the Eulerian frame and hµν =
gµν + nµnν is the projector onto the hypersurface orthogonal to nµ. The above
expression can also be written as

vi = Ui

W
+ β

i

α
. (10.163)

A Conservative Formulation of GRMHD

Similar to the approach chosen to model pure hydrodynamical flows in Sect. 3.1, we
shortly discuss the time evolution of magnetohydrodynamic fields based on a con-
servative schemes (details are given in Appendix E). Baryon number conservation
gives

∂t[√γD] + ∂ j[√γDv j] = 0 , (10.164)

where D = �0 αUt = �0W . Similar to the hydro case, we introduce the momentum
fluxes measured by Eulerian observers

Si = −nµTµi = αT t
i = [�0h + b2/4π]W2 vi − αbtbi/4π , (10.165)

as well as the total energy density

τ = nµnνT
µν = W2�0h∗ − PT − α2(bt)2 − D , (10.166)

where PT = P + b2/8π and h∗ = h + b2/4π�0.
The GRMHD equations have therefore the form of a hyperbolic system, similar

to (3.32) (for a derivation, see Appendix E),

1√−g

(
∂[√γU]
∂t

+ ∂[
√−gFi]
∂xi

)
= S , (10.167)

which are obtained by combining the plasma equations with the induction equation
(E.23). The state vector of GRMHD now consists of eight variables

U = (D, Si , τ, Bi)T , (10.168)
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explicitly given by the vector in the state space

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D
S1

S2

S3

τ

B1

B2

B3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�0W
(�0h + b2/4π)W2v1 − αbtb1/4π
(�0h + b2/4π)W2v2 − αbtb2/4π
(�0h + b2/4π)W2v3 − αbtb3/4π

(�0h + b2/4π)W2 − PT − α2(bt)2/4π − D
B1

B2

B3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (10.169)

PT is the total pressure given by gas pressure P = (Γ−1)�0ε and magnetic pressure,
as defined above. B is the magnetic field as measured by the Eulerian observer nµ.
The second part in the momentum fluxes Si , btbi/4π ∝ (v ·B)Bi/4π, represents the
Poynting fluxes. Starting with the expressions for bt , bi and b2 in the definition of S
one finds the following expression for the total momentum fluxes

S = [
W2�0h + B2/4π

]
v− (v · B)

4π
B . (10.170)

This is an essential feature of relativistic MHD, which is missing in the con-
servative formulation of MHD in the Newtonian approximation (see Sect. 10.3).
In relativistic MHD, only the sum of kinetic momentum and Poynting flux is
conserved. Relativistic MHD flows therefore allow for an exchange of momen-
tum between kinetic momentum and momentum carried by electromagnetic fields.
In the Newtonian version, this is only the case for the energy equation: the
Bernoulli equation tells us that the total energy consisting of kinetic energy, in-
ternal energy and Poynting energy is conserved. This fact has already been ob-
served in the case of stationary flows (see, e.g. Camenzind [98]) and is the se-
cret behind the formation of relativistic jets. Relativistic jets are always gener-
ated, when the Poynting flux exceeds the total kinetic momentum at the base of
the jet.

The corresponding fluxes F are now given by

Fi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

DV i

S1V i − b1 Bi/4πW + PT δ
i
1

S2V i − b2 Bi/4πW + PT δ
i
2

S3V i − b3 Bi/4πW + PT δ
i
3

τV i + PTv
i − αbt Bi/W

B1V i − Bi V 1

B2V i − Bi V 2

B3V i − Bi V 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (10.171)

where V i ≡ vi−βi/α. The energy–momentum tensor in the sources S now includes
both parts, plasma and electromagnetic fields
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S =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
Tµν∂µgν1 − Γ �νµg�1

Tµν∂µgν2 − Γ �νµg�2

Tµν∂µgν3 − Γ �νµg�3

α(Tµt∂µα− TµνΓ t
νµ)

0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (10.172)

In this way, the above system generalizes the system of special relativistic MHD [236]
(see also Leismann et al. [251]). GRMHD is not only important for the inves-
tigation of magnetized accretion disks around compact objects, but in the future
also for core collapse calculations in supernovae, the merger of magnetized bi-
nary neutron stars, formation of supermassive black holes, and the generation
of gamma-ray bursts (GRBs) [138]. It can be coupled with the time evolution
of the gravitational fields, using, e.g. the BSSN formulation for the gravitational
field [61, 367].

In GRMHD, the importance of magnetic effects is expressed in terms of two
parameters, the plasma beta, β = 8πP/b2, and a second parameter that defines the
ratio of magnetic energy density to that of the rest mass

δ = b2

4π�0c2
. (10.173)

For δ� h, the magnetic energy flux, �0σW2v, will be much larger than the material
energy flux, �0hW2v. The speed of sound waves, cS, follows from

hc2
S =

∂P

∂�0
|ε + P

�0

∂P

∂ε
|�0 . (10.174)

For an adiabatic EoS we thus find

cS =
√
ΓP

�0h
. (10.175)

The Alfvén speed, cA, follows from Anile [33]

c2
A =

b2

4π�0hT
= δ

h + δ . (10.176)

This shows that for highly magnetized plasmas, δ � h, and the Alfvén speed
approaches the speed of light.

In numerical simulations, we also need primitive variables P = (�0, v
i , ε, Bi).

Here, vi = Ui/Ut is the three-velocity. The functions U(P) and F(P) are analytic,
but the inverse operations are usually not. Also, there is no simple expression for
F(U).
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10.4.3 Nonradiative Accretion onto Rotating Black Holes

The study of relativistic accretion and black hole astrophysics is a very active field of
research, both theoretically and observationally. Observations are providing increas-
ingly detailed quantitative information about the accretion flows that power such
high-energy systems as X-ray binaries and active galactic nuclei. These observa-
tions have been modelled in some detail by a variety of accretion scenarios, but such
models rely on unavoidable assumptions such as regular flow geometry and a simple,
parameterized stress. Global numerical MHD simulations offer a way to investigate
the basic physical dynamics of accretion flows without these assumptions.

In recent years, there has been a revitalization of interest in magnetic fields
near black holes. It is now widely believed that magnetohydrodynamic turbulence
driven by the magnetorotational instability drives the flow of matter and angular
momentum through the accretion disk. With that development, the properties of
the magnetic field near to the central black hole have been revisited by several
authors. Treating the region within the radius of marginal stability as force-free,
some authors have argued that the large-scale magnetic field near the black hole is
always weak due to the relatively weak fields at which the MRI saturates. If true,
the extraction of the black hole spin energy via the Blandford–Znajek process may
then be insignificant. On the other hand, one can make the opposite assumption (i.e.
a dynamically insignificant magnetic field frozen into the plasma) and argue that the
strongly sheared flow within the radius of marginal stability will amplify the field
to very high values relative to the thermal pressure. Such fields may be effective at
extracting the rotational energy of the black hole and/or creating a flow of energy
and angular momentum from within the radius of marginal stability to outer parts of
the accretion disk.

In the following we discuss a few results based on fully three-dimensional gen-
eral relativistic magnetohydrodynamic simulation codes that evolve time-dependent
inflows into Kerr black holes.

The time evolution of the density distribution in a weakly magnetized torus
around a rotating black hole with Kerr parameter a/M = 0.5 has been simulated
with the GRMHD code HARMS [166] (similar results were obtained by De Villiers
and Hawley [134, 135], Hirose et al. [202], and Krolik et al. [246]; see also [200]).
The pressure maximum is at 12 gravitational radii. Superposed on this equilibrium
is a purely poloidal magnetic field with plasma beta of 0.01. The orbital period at
the pressure maximum is 264 light crossing times. The simulation runs to 2000
light crossing times, corresponding to 7.6 orbital periods at pressure maximum.
It will be interesting to investigate the coupling between magnetic fields and the
gravitomagnetic field of the black hole occurring near the ergosphere of the black
hole, i.e. typically in a region smaller than three gravitational radii. This is also the
region where the velocities in pseudo-Newtonian calculations are to be the most
inaccurate. In relativity, speeds are limited to the speed of light, while in pseudo-
Newtonian simulations they can easily exceed this causal limit. For this purpose
extremely high-resolution simulations are needed and the singular Boyer–Lindquist
coordinates must be avoided.
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Krolik et al. [246] have analyzed the bound matter inside the initial pressure
maximum, where the time-averaged motion of gas is inward and an accretion disk
forms. They use the flows of mass, angular momentum, and energy in order to
understand dynamics in this region. The sharp reduction in accretion rate with
increasing black hole spin observed in these simulations is explained by a strongly
spin-dependent outward flux of angular momentum conveyed electromagnetically;
when a/M > 0.9, this flux can be comparable to the inward angular momentum
flux carried by the matter. In all cases, there is outward electromagnetic angular
momentum flux throughout the flow; in other words, contrary to the assertions
of traditional accretion disk theory, there is in general no stress edge, no surface
within which the stress is zero. These conclusions are still based on nonconservative
algorithms, for which angular momentum conservation has not shown to be true.
The retardation of accretion in the inner disk by electromagnetic torques also alters
the radial distribution of surface density, an effect that may have consequences
for observable properties such as Compton reflection. The net accreted angular
momentum is sufficiently depressed by electromagnetic effects that in the most

Fig. 10.18. Disk evolution near a rotating Kerr black hole with spin parameter a/MH = 0.5 at
t = 0 (left) and after 2000 light crossing times (right). The resolution is 300×300 grid points.
After a few orbital periods at the pressure maximum the accretion becomes fully turbulent, as
in the newtonian calculations. Figure adapted from Gammie et al. [166]
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rapidly spinning black holes mass growth can lead to spin-down. Spinning black
holes also lose energy by Poynting flux; this rate is also a strongly increasing
function of black hole spin, rising to 10% or more of the rest-mass accretion rate at
very high spin. As the black hole spins faster, the path of the Poynting flux changes
from being predominantly within the accretion disk to predominantly within the
funnel outflow.

10.5 Jets and the Ergosphere

The coupling of ordered magnetic fields within the ergosphere is a promising source
for the generation of relativistic outflows from rapidly rotating compact objects
(Fig. 10.19). The most compelling cases for a relativistic phenomenon are the
ubiquitous jets in extragalactic radio sources associated with active galactic nu-

Fig. 10.19. Magnetic fields near rotating black holes. Left: initial field configuration is confined
to the torus. Right: Field structure created by MRI. The field is highly turbulent in the disk and
in coronal outflows, but strongly ordered in the polar funnel, which connects the ergosphere
with the far zone. Cooling of the hot plasma will broaden the polar funnel. Figure adapted
from Gammie et al. [166]
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clei (see Fig. 10.22 and 10.25). In the commonly accepted standard model, flow
velocities as large as 99% of the speed of light (and in some cases even beyond) are
required to explain the apparent superluminal motion observed at parsec-scales in
many of these sources. Models which have been proposed to explain the formation
of relativistic jets involve accretion onto a compact central object, such as a neutron
star or stellar mass black hole in the galactic microquasars GRS 1915+105 and GRO
J1655–40, or a rotating supermassive black hole in an active galactic nucleus, which
is fed by interstellar gas and gas from tidally disrupted stars.

At parsec scales, the jets, observed via their synchrotron and inverse Compton
emission at radio frequencies with VLBI imaging, appear to be highly collimated
with a bright spot (the core) at one end of the jet and a series of components which
separate from the core, sometimes at superluminal speeds. In the standard model,
these speeds are interpreted as a consequence of relativistic bulk motions in jets
propagating at small angles to the line-of-sight with Lorentz factors up to 20 or
more. Moving components in these jets, usually preceded by outbursts in emission
at radio wavelengths, are interpreted in terms of travelling shock waves.

10.5.1 Jets as Outflows from the Ergospheric Region

One of the most spectacular phenomena associated with accretion onto black holes
is the creation of powerful, highly relativistic jets. However, despite intense observa-
tional and theoretical study, the basic energy source of these relativistic jets remains
unknown. Broadly speaking, there are two possibilities. Firstly, jets could be pow-
ered by the liberation of gravitational potential energy of accreting matter. If this
is the case, the most likely scenario is the formation and subsequent focusing and
acceleration of a magnetohydrodynamic (MHD) disk wind. While this mechanism
has the appealing feature of potentially being universal to all accreting systems (and
therefore allowing a unified model for jets from protostellar systems, accreting white
dwarfs and accreting neutron stars as well as accreting black holes), it is not clear
that such a disk wind can be accelerated to the highly relativistic velocities seen
from many black hole systems. The alternative is that jets could be powered by the
magnetic extraction of the spin energy of the central black hole using the mechanism
described in the seminal paper by Blandford and Znajek [80]. The power extracted
from a Kerr black hole with dimensionless spin parameter a∗ threaded by a magnetic
field of strength BH (in the membrane paradigm sense) is

LBZ � 1

32
ω2

F B2
Hr2

Ha∗c , (10.177)

where rH is the radius of the event horizon and ω2
F = ΩF(ΩH − ΩF)/Ω

2
H , with

ΩH and ΩF being the angular velocities of the black hole and magnetic field lines,
respectively. It is often argued (e.g. see [80]) that the magnetic field structure adjusts
itself such that ΩF = ΩH/2, hence maximizing ω2

F to a value of 1/4. While the
initial work of BZ was based on force-free black hole magnetospheres, the basic
mechanism is seen to operate in the recent generation of fully relativistic MHD
accretion disk simulation.
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Fig. 10.20. Jets from the ergosphere. Turbulent accretion onto rotating black holes generates
three different regions around the black hole. The hot turbulent disk is located near the
equatorial plane with weak magnetic fields. Adjacent is a region of hot coronal outflows (disk
winds), and near the polar region we find the polar MHD wind funnel which is completely
magnetically dominated. Magnetic fields in the polar funnel are found to be well ordered.
Figure adapted from McKinney [281]

In many studies, the plunge region of the black hole accretion disk has been ne-
glected (see Fig. 10.18). This is the region of the disk within the radius of marginal
stability, in which the accretion flow is undergoing rapid inwards acceleration (ul-
timately crossing the event horizon at the velocity of light as seen by a locally
nonrotating observer). Unless the magnetic field is extremely strong, this is a region
where inertial forces will dominate and the commonly employed force-free approxi-
mation will break down. This means that the actual field threading the plunge region
would be very weak. However, it does not imply that the field threading the BH
horizon, which is what counts for the BZ effect, is also weak. The field swept in by
the plunge region would be cleaned into some well-ordered configuration threading
the black hole (Fig. 10.20) and can be confined by the inertial forces of the plunging
accretion flow even if it achieves strengths appreciably higher than the characteristic
field strengths in the inner disk. Since the strength of the BZ mechanism depends
on the square of the magnetic field, this enhancement could have major implications
for the relative dominance of spin-energy extraction.

The jet structure that emerges from GRMHD simulations (Fig. 10.20) is pri-
marily due to the internal evolution of the jet rather than by the interaction with
the surrounding medium itself. In particular, these GRMHD-based results are in-
sensitive to the two different models of the initial surrounding medium. One model
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Fig. 10.21. Relativistic jets are driven by magnetic fields covering the ergosphere of rapidly
rotating black holes. In a log–log plot, 45◦ lines correspond to lines of constant θ. Lines
of constant spherical polar r are horizontal near the z-axis and vertical near the R-axis.
The field lines are shown as red lines. From r = 0 outwards: Blue#1: horizon + ingoing-

fast magnetosonic; Cyan#1: ingoing-Alfvén; Black#1: |Bφ̂| = |Br̂ |; Green#1: ergosphere;
Purple#1: ingoing-slow ; Black#2: stagnation surface where poloidal velocity u p = 0 ;

Purple#2: outgoing-slow ; Cyan#2: outgoing-Alfvén; Black#3: |Bφ̂| = |Br̂ | again ; Green#2:
light cylinder; Blue#2: outgoing-fast. The disk and coronal regions have been truncated with
a power-law cutoff for r ≤ 100 M and a conical cutoff for larger radii. Figure adapted from
McKinney [281]

�
Fig. 10.22. The center of the Virgo galaxy Messier 87. A black hole with a mass of three
billion solar masses is the origin of the jets visible from radio to X-rays in Messier 87. Top:
In this HST image, the blue of the jet (synchrotron emission) contrasts with the yellow glow
from the combined light of billions of unseen stars and the yellow, point-like globular clusters
that make up this galaxy. The jet is produced by a 3-billion-solar-mass central object. Bottom:
Radio image of M87, taken with the VLA, shows giant bubble-like structures where radio
emission is thought to be powered by the jets subatomic particles coming from the central
black hole. The false color corresponds to the intensity of the radio energy being emitted
by the jet. Inset: The VSOP radio image of the region close to the black hole, where an
extragalactic jet is formed into a narrow beam by magnetic fields. Image Credit: NASA and
The Hubble Heritage Team (STScI/AURA) and VLA
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considered by McKinney [281] is a surrounding infall of material and the other
is an evacuated exterior region. The Poynting-dominated jet structure is negligibly
broader or narrower in the evacuated case due to magnetic confinement. Beyond
the outer Alfvén surface at r � 10 G MH/c2, the jet becomes marginally unstable
to current-driven instabilities. Such instabilities drive shocks in the jet that limit the
efficiency of magnetic acceleration and collimation, but are vital for understanding
the acceleration of nonthermal particles.

Figure 10.21 shows the characteristic structure of ergospheric jets for one polar
axis as a result from long integration [281]. The inner Alfvén surface lies inside
the ergosphere, as required to extract energy. The field lines follow nearly a power
law until r ∼ 102 G MH/c2. The stagnation surface, which divides inflow from
outflow regions, is time-dependent, but stable. Clearly the transition to a supercritical
(superfast) flow has occurred. After the fast surface, the field lines stretch out and
oscillate around a conical asymptote. The fast surface near the polar axis is at
r ∼ 250 M, where for the other hemisphere it is at r ∼ 500 M. This flow structure is
exactly what one expects from stationary MHD. The outer Alfvén surface is located
very near to the light cylinder, and this is responsible for relativistic outflow speeds.

Jets are a common outcome of accretion (Fig. 10.22), yet the observed jet prop-
erties, such as collimation and speed, are not uniform between systems. This is
despite the fact that the basic physics (general relativistic magnetohydrodynamics
(GRMHD)) to describe such systems is black hole mass-invariant. Thus, it is worth-
while determining the unifying, or minimum number of, pieces of physics that would
explain most of the features of gamma-ray bursts (GRBs), X-ray binaries, and active
galactic nuclei (AGN). To understand jet formation requires at least explaining the
origin of the energy, composition, collimation, and Lorentz factor.

Primarily, one can distinguish two types of jets: (i) Poynting-dominated jets,
which are typically dominated in energy flux by Poynting flux and dominated in
mass by electron–positron pairs or electron–proton plasma for AGN and X-ray bi-
naries, while probably dominated in mass by electron–proton plasmas for GRBs;
and (ii) Poynting baryon jets with about equal Poynting flux and rest-mass flux
and dominated in mass by baryons. The latter are sometimes referred to as coronal
outflows due to their origin [285–287]. This two-component jet model is one key to
understanding the diversity of jet observations. The Poynting-dominated jet is likely
powered by the Blandford–Znajek effect, while the Poynting baryon jet is likely
powered by both Blandford–Znajek power and the release of disk gravitational bind-
ing energy. Collimation of the polar Poynting-dominated jet may be due to transfield
balance against the broader Poynting baryon jet or by self-collimating hoop stresses.

Jet Systems

Some black hole X-ray binaries have jets [155, 296], such as GRS 1915+105 with
apparently superluminal motion (Γ ∼ 3), but may have Γ ∼ 1.5. Synchrotron radi-
ation from the jet suggests the presence of a magnetized accretion disk. Observations
of a broad, shifted, and asymmetric iron line from GRS 1915+105 is possible evi-
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dence for a relativistic accretion disk, although this feature could also be produced
by a jet component.

The standard paradigm is that relativistic jets from X-ray binaries are probably
produced by the Blandford–Znajek effect. However, at least some black holes, such
as GRS 1915+105, might have slowly rotating black holes. If this were correct, then
another mechanism would be required to produce jets. Indeed, jets or outflows are
produced from systems containing neutron stars, young stellar objects, supersoft
X-ray white dwarfs, symbiotic white dwarfs, and even UV line-driven outflows from
massive O stars.

AGN are observed to have jets with Γ ≤ 10, or even Γ ∼ 30. Some radio-quiet
AGN show evidence of weak jets, which could be explained as a coronal outflow
and not require a rapidly rotating black hole. Observations imply the existence of
a two-component jet structure with a Poynting jet core and a dissipative surrounding
component. The energy structure of the jet and wind are important in understanding
the feedback effect that controls size of the black hole and may determine the M–σ
relation.

Neutron stars and black holes are associated with the most violent of post-Big-
Bang events: supernovae and some gamma-ray bursts (GRBs) and probably some
X-ray flashes (XRFs) [329]. Observations of a supernova light-curve in the afterglow
suggest that at least some long-duration GRBs are probably associated with core-

Fig. 10.23. AGN jets emerge from the immediate vicinity of black holes in the center of
galaxies (red: stellar nucleus). The AGN jet is optically thin and emits nonthermal synchrotron
and inverse Compton emission, when embedded into a bath of stellar and infrared photons
from the dusty torus on the parsec-scale (cloudy medium)
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collapse events (SN Ibc). Neutrino processes and magnetic fields are both important
to understand core-collapse. In unravelling the mechanism by which core-collapse
supernovae explode, the implementation of accurate neutrino transport has been
realized to be critical to whether a supernova is produced in simulations. This has
thus far been interpreted to imply that highly accurate neutrino transport physics is
required, but this could also mean additional physics, such as a magnetic field, could
play a significant role. Indeed, all core-collapse events may be powered by MHD
processes rather than neutrino processes. Core-collapse involves shearing subject to
the Balbus–Hawley instability as in accretion disks. All core-collapse explosions are
significantly polarized, asymmetric, and often bi-polar indicating a strong role of
rotation and a magnetic field.

Black hole accretion is the key source of energy for many GRB models. Collapsar
type models suggest that a black hole forms during the core-collapse of some
relatively rapidly rotating massive stars. The typical radius of the accretion disk
likely determines the duration of long-duration GRBs. An accretion disk is also
formed as a result of a neutron star or black hole collisions with another stellar
object.

GRBs are believed to be the result of an ultrarelativistic jet. Indirect observational
evidence of relativistic motion is suggested by afterglow achromatic light breaks
and the “compactness problem” suggests GRB material must be ultrarelativistic
with Lorentz factor Γ ≥ 100 to emit the observed nonthermal gamma-rays (see,
e.g. [329]). Direct observational evidence for relativistic motion comes from radio
scintillation of the ISM and measurements of the afterglow emitting region from
GRB030329.

Typical GRB jet models invoke either a hot neutrino-driven jet or a cold Poynting
flux-dominated jet, while both allow for comparable amounts of the accretion energy
to power the jet. A neutrino-driven jet derives its energy from neutrino annihilation
from gravitational energy and the jet is thermally accelerated. However, strong
outflows can be magnetically driven. In particular, black hole rotational energy can
be extracted as a Poynting outflow [80].

10.5.2 From the Ergosphere to the Cluster Gas

Jets launched from the immediate vicinity of the black hole are collimated on the
subparsec-scale in extragalactic sources and propagate then into the kiloparsec-scale,
where they begin to interact with the surrounding cluster gas.

Jets and the Cluster Gas

The lobes of powerful radio galaxies are fuelled by two oppositely directed relativistic
beams emitted from the nucleus. By comparing the power supplied by the beams
with the power radiated by the radio components, one can show that only a small
fraction of the power supplied can be radiated away from the tip of the beam, and that
most of the energy must be deposited in a cavity surrounding the beam (Fig. 10.24).
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Fig. 10.24. Cygnus A and its cluster gas. The blueish colors represent low-frequency
(330 MHz) synchrotron emission from the shocked beam plasma which is distributed in
the cocoon around the jets on the kiloparsec-scale. The reddish and yellow colors represent
X-ray emission from the cluster gas, which is strongly distorted in the central part (yellow fil-
aments). The jets drive a weak elliptical bow-shock into the cluster gas. Image: superposition
of VLA measurements at 330 MHz and according to a Chandra image

Using NASA’s Chandra X-ray Observatory, astronomers have found a giant
football-shaped cavity within X-ray emitting hot gas surrounding the galaxy Cygnus
A. The cavity in the hot gas has been created by two powerful jets emitted from
the central black hole region in the nucleus of Cygnus A. Hot gas is steadily being
piled up around the cavity as it continuously expands, creating a bright rim of X-ray
emission. The jets themselves terminate in radio and X-ray emitting hot spots some
70 kiloparsecs from the center of the galaxy.

Large-Scale Jets and High-Energy Emission

Large-scale jets extending to hundreds of kiloparsec distances from the quasar nu-
cleus often radiate their power predominantly in X-rays. This has been revealed by
surveys with the Chandra X-ray Observatory [270], following its unexpected dis-
covery of an X-ray jet in the quasar PKS 0637−752 at redshift z = 0.65. Despite
extensive observational and theoretical work, the dominant X-ray emission mech-
anism operating in quasar jets remains unsettled. Neither naive single-component
synchrotron nor synchrotron-self-Compton models

can fully explain the spectral energy distributions (SEDs) at radio, optical and
X-ray wavelengths. A widely discussed hypothesis for the strong X-ray emission is
relativistically enhanced inverse Compton (IC) scattering off the cosmic microwave
background (CMB) photons. In this model, the bulk velocity of the jet is assumed
to be highly relativistic all the way to nearly megaparsec distances, with a Doppler
factor of D ∼ 10.
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Fig. 10.25. The quasar 3C273 at redshift 0.158 and its jet. Top: False-color composite showing
the relation between the quasar 3C273 (top left; the quasar is really just a very small and bright
source, the fuzz apparently surrounding it is an artifact that appears when taking a picture of
a very bright source) and the jet. The color coding is the same as in the image below. Bottom:
False-color composite of 3C273’s jet, showing in which wavelength region the emission peaks:
X-rays (observed with Chandra) in blue, optical light (observed with HST) in green, radio
waves (observed with the VLA) in red. Yellow indicates that both optical and radio emission
are strong. The jet behaves differently at these three wavelengths: the X-ray image becomes
fainter farther from the nucleus, the radio image gets brighter, and the optical remains largely
constant, but fragmented into many knots. Details can be found in Uchiyama et al. [404].
Image Credit: HST, Spitzer and Chandra Observatory NASA/CXC/SAO

Alternative scenarios for producing X-ray emission at such large distances from
the central engine include a variety of nonconventional synchrotron models. The
X-ray emission could be explained by a spectral hump in a synchrotron spectrum as
a result of reduced IC cooling in the Klein–Nishina regime provided that a Doppler
factor of the jet is large. Alternatively, a second synchrotron component responsible
for the X-rays could be formed by turbulent acceleration in the shear boundary layer
or by hypothetical high-energy neutral beams (neutrons and gamma-rays) from the
central engine. Finally, synchrotron radiation could also be produced by very high-
energy protons, Ep ≥ 1018 eV.



10.5 Jets and the Ergosphere 575

Uchiyama et al. [404] have presented results from Spitzer IRAC observation of
the 3C 273 jet at wavelengths 3.6 and 5.8µm, combined with the photometry with the
VLA radio, HST optical, and Chandra X-ray data (Fig. 10.25). This multiwavelength
analysis led to the conclusions that the flat optical emission in the X-ray-dominated
knots originates in the high-energy power-law component, which also accounts
for the X-ray emission. The agreement between the optical-X-ray slope and the
X-ray spectral index throughout the jet supports this picture. On the other hand,
the radio to infrared spectra can be expressed by a power law with an exponential
cutoff at∼ 5× 1013 Hz. The two distinct radiation components, namely low-energy
(radio-infrared) and high-energy (optical-X-ray) emission, have similar power of
∼ 1044 erg s−1 for the entire jet volume (without a beaming correction); the power
in the second component becomes noticeably higher, if its peak position is located far
beyond the X-ray domain. The relative importance of the two components changes
along the jet (see Fig. 10.25). In the inner, X-ray-dominated knots, the high-energy
component overwhelms the low-energy one.

The second component can be attributed to either synchrotron radiation by
a second population of high-energy electrons (or protons), or the beamed IC emission
by the radio-emitting electrons. In the first case, the double synchrotron nature may
arise from the presence of distinctively different acceleration processes (e.g. shock
and turbulent acceleration). In the context of the origin of extragalactic cosmic-rays, it
is interesting that a faster acceleration mechanism producing the second component is
capable of accelerating cosmic-ray protons to energies 1016 eV ≤ Ep,max ≤ 1019 eV.

Problems

10.1. MRI: Derive the complete dispersion relation for the magnetorotational insta-
bility in a differentially rotating disk (see [49]). Discuss the various branches of the
dispersion relation.

10.2. Ring Diffusion: Show that the solution

Σ(τ, x) = m

πR2
0

1

τx1/4
exp

[
−1+ x2

τ

]
I1/4(2x/τ) (10.178)

solves the diffusion equation (10.122). Study the asymptotic behavior of this solution
in the limit 2x/τ � 1 and 2x/τ � 1. Derive the radial drift velocity for these two
limits.

10.3. Relativistic Standard Disks: The Shakura–Sunyaev disk models presented
in Sect. 10.4 are nonrelativistic and, hence, can only be viewed as a crude approx-
imation to real black hole accretion disks near the horizon. The formal relativistic
generalization of the steady-state Shakura–Sunyaev disk model to a relativistic ac-
cretion disk in a Kerr metric was made in 1974 by Kip Thorne and Don Page [320]
(see also [342]). Formulate the relativistic angular momentum and energy conser-
vation for geometrically thin disks and derive the relativistic dissipation function.
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Show that for a nonrotating black hole the radiative efficiency is only η ≈ 0.06,
while a standard disk around a Kerr black hole with a/M = 1 has an efficiency of
η ≈ 0.42.

10.4. Radiative Transfer around Rotating Black Holes: Geometrically thin disks
are best described in terms of cylindrical coordinates (t, φ, R, z), such that z = 0
corresponds to the equatorial plane. The metric tensor of the Kerr geometry can now
be expanded in powers of z/R.
(i) Derive the expressions for the metric tensor of the Kerr geometry up to second
order (see also [342]).
(ii) Show that the flow field U for matter in a Keplerian disk is given in leading order
by

Ut = 1√
B

(
1+ a

R

√
M

R

)
, Uφ = 1√

B

√
M

R3
, (10.179)

where we use the two structure functions

A = 1− 2M

R
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R2
(10.180)

B = 1− 3M
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R
. (10.181)

With the velocity field U = (Ut,Uφ, 0, 0) one can now define a local rotating
reference frame (LRFM), which can be extended to form a local tetrad ea with

ea = Lβa Bβ , Bα = L̄b
αeb , (10.182)

where B0 = U and Bi form a triad.
(iii) Determine the form of the transformation matrices L and L̄.
The transport of radiation in the disk is described in terms of a Boltzmann equation for
the photon distribution f(x, p) depending on the coordinates xµ and the photon four-
momentum pα (see Sect. 3.2). The phase-space distribution is related to the specific
intensity Iν by means of the relation Iν = hν h3ν2 f(x, p)/c2. Since photons travel
along null geodesics, except for interactions, the relativistic transport of photons
follows from the geodesic spray

pα
∂ f

∂xα
+ Γ i

αβ pα pβ
∂ f

∂pi
= Q , (10.183)

where Q contains all possible interactions of photons with matter (emission, ab-
sorption and scattering). These calculations have to be done in the LRFM, since all
interactions only have well known expressions in the local rest frame of the plasma.
For this reason, we write the transfer equation in terms of the photon momenta as
measured in the LRFM, p̄a = L̄a

β pβ ,

Lαa p̄a ∂ f

∂xα
+ ωi

ab p̄a p̄b ∂ f

∂ p̄i
= Q̄ . (10.184)
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The connection coefficients ωi
ab follow from the transformation

ωi
ab = L̄i

�

(
LσaΓ

�
σγ +

∂L�a
∂xγ

)
Lγb . (10.185)

The photon momentum is given by its frequency ν and direction n, p̄ = hν (1,n)
with

n =
(√

1− µ2 sinχ,
√

1− µ2 cosχ,µ
)
, (10.186)

where µ is the cosine of the angle between the photon direction and z−axis, and χ
is the corresponding azimuthal propagation angle on the unit sphere.
(iv) Derive from this transformation an expression for the three-vector mi =
ωi

ab p̄a p̄b.
(v) Derive an explicit expression for the stationary transfer equation (10.184) in
order z/R.
(vi) Discuss the diffusion approximation for geometrically thin disks.
(vii) Find an expression for the operator Q̄, when Bremsstrahlung and electron
scattering are the dominant processes (see [13]).

10.5. GRMHD in Minkowski Space: Evaluate the GRMHD equations (10.167) in
the limit of flat space. Compare your result with [251].

10.6. Characteristic Speeds of GRMHD: Consider the following set of variables,
V = (Uµ, bµ, P, s), where s is the specific entropy. Then GRMHD equations can
be written as a quasilinear system of the form

AµA
B ∇µV B = 0 (10.187)

where A and B run from 0 to 9. Calculate the form of the matrices Aµ. LetΦ(xµ) = 0
define a characteristic hypersurface. Determine the characteristic matrix Aµ∇µ and
its determinant. Determine from this the characteristic waves (see also [33]).
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White dwarfs, neutron stars and black holes are fascinating objects in the Universe.
In the last 20 years, great efforts have been undertaken to understand these compact
objects in greater details. As we have outlined in this book, even the interior structure
of white dwarfs is still somewhat uncertain. While the interior of black holes is of no
astrophysical relevance, the internal structure of massive neutron stars is still under
great debate. The internal structure of black holes is, however, of some importance
for the understanding of Einstein’s gravity. Inside the horizon, one should find a
true vacuum with a vanishing energy–momentum tensor. From a modern point of
view, vacuum has a structure – as we now know from the cosmological vacuum.
There is some evidence that the Big Bang singularity will be avoided by quantum
gravitational effects. Therefore, during the collapse of a stellar object towards a
singular state we expect to run through the inverse of a Big Bang. In my opinion, the
formation of black holes is by no means understood from a modern physical point
of view.

The case for neutron stars is in a much better shape than black holes – except
that neutron stars are probably not neutron stars, but either hybrid neutron stars or
quark–neutron stars. About 2000 such objects appear in catalogs of radio pulsars
and X-ray binary systems. For many of them, the masses have been measured quite
accurately and found to cluster in a narrow range around 1.4 solar masses. This fact
alone is not understood. In contrast to white dwarfs, which show a broad distribution
in mass around a mean mass of 0.6 solar masses, this narrow peak distribution for
neutron stars has to be explained by future supernovae theories.

White Dwarfs

A detailed record of the physical processes that operate during post-main-sequence
evolution is contained in the internal chemical structure of white dwarfs. Global
pulsations allow us to probe the stellar interior through asteroseismology, revealing
the signatures of prior nuclear burning, mixing, and diffusion in these stars. The
coolest white dwarfs in any stellar population can be used to constrain the age, but
significant uncertainties remain in our understanding of the fundamental cooling
physics. The hydrogen-atmosphere variable white dwarfs provide a unique oppor-
tunity to reduce these uncertainties empirically. Stellar crystallization occurs in the
cores of these white dwarfs, releasing latent heat and delaying the gradual cooling
of the star. The emphasis on white dwarf stars and cosmology arises from the most



580 11 Epilogue and Future Prospects

recent advances in cosmological and galactic structure research in which white dwarf
stars are playing a very prominent role. Examples are Type Ia supernovae (i.e. white
dwarf supernovae), the origin and evolution of the Universe, the age of the galactic
disk, cosmochronology using white dwarfs in globular clusters and galactic clusters,
and the physics of accretion onto compact stars. In addition, GAIA will open up
the possibility to test the mass–radius relation for white dwarfs in a much broader
context.

When the white dwarf accumulates enough mass, about 1.4 solar masses, it will
obliterate itself. This catastrophic event is a Type Ia supernova. Because a precise
amount of mass is involved, every Type Ia supernova in the Universe shines at a
unified, known luminosity.

Neutron Stars

In the 40 years that have elapsed since the discovery of pulsars, rapidly rotating highly
magnetized neutron stars, the study of these fascinating objects has resulted in many
applications in physics and astronomy. Striking examples include the confirmation
of the existence of gravitational radiation, as predicted by general relativity, and the
first detection of an extrasolar planetary. Pulsar astronomy remains an extremely
active area of modern astrophysics and the next decade will undoubtedly continue
to produce new results from currently known objects as well as new surprises.

Through an understanding of the Galactic population of radio pulsars, it is pos-
sible to predict the detection statistics of terrestrial gravitational wave detectors to
nearby rapidly spinning neutron stars, as well as coalescing relativistic binaries at
cosmic distances. Continued improvements in gravitational wave detector sensitivi-
ties should result in a number of interesting developments and contributions in this
area. These developments and contributions might include the detection of presently
known radio pulsars, as well as a population of coalescing binary systems which
have not yet been detected as radio pulsars. The phenomenal timing stability of
radio pulsars leads naturally to a large number of applications, including their use
as laboratories for relativistic gravity and as natural detectors of gravitational radia-
tion. Long-term timing experiments of the present sample of millisecond and binary
pulsars currently underway appear to have tremendous potential in these areas and
perhaps detect the gravitational wave background (if it exists) within the next decade.

These applications will benefit greatly from the continued discovery of new
systems by the present generation of radio pulsar searches which continue to probe
new areas of parameter space. It is clear that we are aware of only about 1% of the
total active pulsar population in our Galaxy. It is therefore likely that we have not
seen all of the pulsar zoo. More sensitive surveys are being planned both in the short
term and in the longer term (the Square Kilometer Array). These should provide
a far more complete census of the Galactic pulsar population. Possible discoveries
in the future include:

– More dual-line binary pulsars, i.e. a double neutron star systems in which both
components are observable as radio pulsars. The additional clock in such a binary
system would be most valuable in further tests of strong-field gravity.
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– A radio pulsar with a black-hole companion would undoubtedly also be a fantastic
laboratory for studying gravity in the strong-field regime.

– A submillisecond pulsar. The original millisecond pulsar, B1937+21, rotating
at 642 Hz is still the second most rapidly rotating neutron star known. Do kHz
neutron stars exist? Searches now have sensitivity to such objects and a discovery
of even one would constrain the equation of state of matter at high densities.

– A binary system in which the neutron star is in the process of transforming from
an X-ray-emitting neutron star to a millisecond radio pulsar.

Relativistic binaries are tracers for the rich dynamical evolution of globular
clusters. The populations of these objects are the result of an interplay between
the gravitational dynamics of large N-body systems, the dynamics of mass trans-
fer, the details of stellar evolution, and the effect of the gravitational field of the
galaxy. The gravitational dynamics of globular clusters can enhance the popula-
tion of short period binaries of main-sequence stars as well as inject compact
objects such as white dwarfs and neutron stars into stellar binary systems. Once
they are in such systems, the details of stellar evolution and mass transfer in close
binary systems govern the likely end products of the dynamical interaction be-
tween the two stars. Furthermore, most models of the evolution of the core of
a globular cluster rely on the gradual hardening and ejection of binary systems to
delay the onset of core collapse. The hardening of binaries in the core of globu-
lar clusters will produce relativistic binaries, but it will also eventually eject these
systems as they gain larger and larger recoil velocities in each subsequent en-
counter. The threshold for ejection from a globular cluster depends both upon the
gravitational potential of the cluster itself and the gravitational potential of its en-
vironment generated by the Milky Way. As the globular cluster orbits the Milky
Way, its local environment changes. Consequently, if other dynamical processes
(such as gravothermal oscillations) do not dominate, the globular cluster’s popula-
tion of relativistic binaries may also reflect the past orbital history of the globular
cluster.

Rotating relativistic stars are of fundamental interest in physics. Their bulk prop-
erties constrain the proposed equations of state for densities greater than nuclear
density. Accreted matter in their gravitational fields undergoes high-frequency oscil-
lations that could become a sensitive probe for general relativistic effects. Temporal
changes in the rotational period of millisecond pulsars can also reveal a wealth of
information about important physical processes inside the stars or of cosmological
relevance. In addition, rotational instabilities can produce gravitational waves, the
detection of which would initiate a new field of observational asteroseismology of
relativistic stars.

Recent advances in numerical relativity have enabled the long-term dynamical
evolution of rotating stars. Several interesting phenomena, such as dynamical in-
stabilities, pulsation modes, and neutron star and black hole formation in rotating
collapse have now been studied in full general relativity. The current studies are
limited to relativistic polytropes, but new 3D simulations with realistic equations of
state should be expected in the near future.
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Collisions of black holes and neutron stars are interesting because of at least two
reasons. Firstly, it is expected that they emit a large amount of energy as gravitational
waves, which could be measured by new detectors. The form of those waves is
expected to carry information about the internal structure of such systems. Secondly,
collisions of such objects are the prime suspects of short gamma-ray bursts. The
exact mechanism for the energy emission is unknown so far.

Black Holes

Black holes have been found so far in two mass intervals, either as stellar black holes
with masses in the range of 2.5 to about 30 solar masses, or as supermassive black
holes with masses in the range of millions to billions of solar masses. Our Galaxy
is expected to harbor about 100,000 stellar black holes, only about two dozens have
been identified as X-ray binary systems. None has been found so far as companion
to a neutron star or white dwarf. In contrast to this, every massive galaxy harbors
a supermassive black hole in its center. Since the observable Universe contains at
least 100 billion massive galaxies, a tremendous number of potential black hole
candidates will appear in future galaxy surveys. In fact, in previous surveys more
than 100,000 black hole candidates have been found in quasars. Black holes are in
fact no longer exotic objects, but are now considered to be real compact objects in
the Universe. One interesting aspect of these objects is their spin state. Similar to
neutron stars, black holes can be moderately rotating objects, or very rapidly rotating
objects when accreting gas from their environment. The measurement of the spin of
black holes is certainly one of the key issues for future research.

A black hole is a kind of ground state for a self-gravitating object. With the
advent of the Kerr solution in 1963 and the postulate that black holes are behind the
enormous energy output of quasars, a new era has been opened up in the physics
of compact objects. For the past 20 years, astronomers have looked for stellar mass
black holes by measuring binary orbits and supermassive black holes by analyzing
rotation and random velocities of stars and gas near galactic centers. If the velocities
are large enough, as, for example, in the Sombrero Galaxy, then they imply more
mass than we see in stars. The only explanation which is in agreement with present-
day physics is a black hole. About 50 have been found in nearby galaxies. Their
masses are in the range expected for nuclear engines, and their numbers are consistent
with predictions based on the energy output of quasars. In the next years, with new
telescope techniques this number of black holes should considerably increase.

So far, dark clusters as an alternative to supermassive black holes have been
ruled out in only two galaxies, NGC 4258 and our Milky Way. These two galaxies
give us important proof that black holes exist. But both are special cases – NGC
4258 contains a disk of water masers that are observed with radio telescopes, and our
Galactic center is so close that one can follow individual stellar orbits. Andromeda
is now the first galaxy in which exotic alternatives to a black hole using Hubble can
be excluded.

With an ever-increasing number of secure detections, supermassive black holes
(SMBHs) have evolved, in the span of a few years, from exotic possibilities to
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well-established components of galaxies. While it was understood since the 1960s
that the energy sources of quasars must be gravitational, it was 30 years before
the existence of SMBHs was firmly established, through measurements of the Ke-
plerian rise in the rotation velocity of stars or gas at the very centers of galactic
nuclei. It is now generally accepted that the formation and evolution of galaxies
and SMBHs are tightly intertwined, from the early phases of protogalactic for-
mation, through hierarchical build-up in CDM-like cosmogonies, to recent galaxy
mergers.

On small scales, SMBHs are embedded in stellar cusps, parsec-scale regions
where the stellar density increases approximately as a power law with distance
from the SMBH into the smallest resolvable radii. Faint galaxies have steep nuclear
density profiles, while bright galaxies typically have weaker cusps. Steep cusps
form naturally as the growth of the SMBH pulls in stars. In small dense galaxies
where the star–star relaxation time is shorter than 1010 yr, steep cusps may also
form via collisional relaxation. Weak cusps may be remnants of strong cusps that
were destroyed by binary SMBHs during galaxy mergers; in fact the structure and
kinematics of galactic nuclei are now believed to be fossil relics of the merger
process.

The proximity of our Galaxy’s center presents a unique opportunity to study the
environment of a supermassive black hole with much higher spatial resolution than
can be brought to bear on any other galaxy. In 1995, this research has been initiated

Fig. 11.1. Black hole explorers in the future. Black holes and neutron stars in close binary
systems are promising sources of X-rays. XEUS will be a permanent space-borne X-ray
observatory with a sensitivity comparable to the most advanced planned future facilities such
as JWST, ALMA and Herschel. The mission is under study as envisaged by the Horizons
2000 Survey Committee. XEUS will be around 200 times more sensitive than XMM–Newton.
Credit: image credit ESA
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a diffraction-limited study on the Keck 10-meter telescope, of the Galaxy’s central
cluster.

One of the most intriguing puzzles to stem from a definitive case for a super-
massive black hole at the center of the Milky Way is the origin of the apparently
young stars in the central parsec; the existing gas in this region is far from be-
ing sufficiently dense for self-gravity to overcome the strong tidal forces from the
black hole, making star formation an unlikely process unless past densities in the
central parsec were far more extreme than at present. A wide range of possible
solutions have been proposed to account for the apparently young stars in the vicin-
ity of a supermassive black hole. One possibility is that the local gas density was
much higher in the past, allowing gravitational collapse to occur in the presence of
a strong tidal field. This could in principle occur through a pre-existing accretion
disk, which has since dispersed or by the collision of infalling dense gas clouds
although no such sufficiently dense gas clouds have been observed. Alternatively,
stars might form at larger radii, where the tidal forces are much lower, and migrate
inwards through dynamical friction. For this to work, the stars would have to belong
to a stellar cluster so dense that it would have undergone core collapse, possibly
forming an intermediate mass black hole. In a dramatically different approach, it
has also been suggested that these stars are not truly young but are old stars that
have been altered by their environment. At present, none of the proposed theories
is altogether satisfactory, leaving both the He I emission-line stars and the Sgr A*
cluster stars as paradoxes of apparent youth in the vicinity of a supermassive black
hole.

GRMHD and Accretion

The description of many important areas of modern astronomy, such as high-
energy astrophysics or gravitational wave astronomy, requires general relativity.
High-energy radiation is often emitted by highly relativistic events in regions of
strong gravitational fields near compact objects such as neutron stars or black holes.
The production of relativistic radio jets in active galactic nuclei, explained by pure
hydrodynamical effects as in the twin-exhaust model, by hydromagnetic centrifugal
acceleration as in the Blandford–Payne mechanism, or by electromagnetic extraction
of energy as in the Blandford–Znajek mechanism, involves an accretion disk around
a rotating supermassive black hole. The discovery of kHz quasiperiodic oscillations
in low-mass X-ray binaries extended the frequency range over which these oscil-
lations occur into timescales associated with the relativistic, innermost regions of
accretion disks. A relativistic description is also necessary in scenarios involving
explosive collapse of very massive stars to a black hole (in the so-called collapsar
and hypernova models), or during the last phases of the coalescence of neutron
star binaries. These catastrophic events are believed to exist at the central engine of
highly energetic gamma-ray bursts (GRBs). In addition, nonspherical gravitational
collapse leading to black hole formation or to a supernova explosion, and neutron star
binary coalescence are among the most promising sources of detectable gravitational
radiation. Such astrophysical scenarios constitute one of the main targets for the new
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generation of ground-based laser interferometers, just starting their gravitational
wave search (LIGO, VIRGO, GEO600, TAMA).

A powerful way to improve our understanding of the above scenarios is through
accurate, large-scale, three-dimensional numerical simulations. Nowadays, compu-
tational general relativistic astrophysics is an increasingly important field of research.
In addition to the large amount of observational data gathered by high-energy X- and
gamma-ray satellites such as Chandra, XMM–Newton, or INTEGRAL, and the new
generation of gravitational wave detectors, the rapid increase in computing power
through parallel supercomputers and the associated advance in software technologies
is making possible large scale numerical simulations in the framework of general rel-
ativity. In the most general case, the equations governing the dynamics of relativistic
astrophysical systems are an intricate, coupled system of time-dependent partial dif-
ferential equations, comprising the (general) relativistic (magneto-)hydrodynamic
(MHD) equations and the Einstein gravitational field equations. In many cases, the
number of equations must be augmented to account for nonadiabatic processes, e.g.
radiative transfer or sophisticated microphysics (realistic equations of state for nu-
clear matter, nuclear physics, magnetic fields, and so on). In this field of research we
expect great progress in the next years.



A Astrophysical Constants and Symbols

Physical Constants

Quantity Symbol Value [SI]

Speed of light c 299 792 458 m s−1

Newtonian gravitational constant G 6.6742(10)× 10−11 m3 kg−1 s−2

Planck constant h 6.6260693(10) × 10−34 J s
Reduced Planck constant � = h/2π 1.05457168× 10−34 J s
Planck constant �c 197.326968 MeV fm
Boltzmann constant kB 1.380658× 10−23 J/K
Electron mass me 9.1093897× 10−31 kg
Electron charge e 1.60217733× 10−19 C
Proton mass m p 1.67262158× 10−27 kg
Neutron mass mn 1.6749286× 10−27 kg
Unified atomic mass unit mu 1.6605402× 10−27 kg
Radiation constant aSB = π2k4

B/15c3
�

3 7.56× 10−23 J m−3 K−4

Stefan–Boltzmann constant σSB = caSB/4 5.6704× 10−8 W m−2 K−4

Fine structure constant α = e2/4πε0�c 1/137.0359895
Classical electron radius re = e2/4πε0mec2 2.81794092× 10−15 m
Thomson cross-section σT = 8πr2

e /3 6.65246154× 10−29 m2

Nuclear radius R0 = 1.2 A1/3 fm 1 fm = 10−15 m
Nuclear saturation density n0 0.1620 fm−3
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Astronomical Quantities

Quantity Symbol Value [SI]

Astronomical unit AU 1.4959787066 × 1011 m
Parsec pc 3.0856775807 × 1016 m
Sidereal year 365.25636042 d 3.1558150× 107 s
Solar mass M� 1.98892× 1030 kg
Solar luminosity L� 3.846× 1026 W
Solar radius (equatorial) R� 6.961× 106 m
Schwarzschild radius of the Sun RS = 2G M�/c2 2.95325008 km
Solar system unit of time T� = G M�/c3 4.92549047 µs
Eddington luminosity LEd = 4πG Mm pc/σT 1.257× 1031 M/M� W
Critical magnetic field Bcrit = m2

ec3/�e 4.4× 109 T
Chandrasekhar mass MCh = (5.87/µ2)M� 1.457 (2/µ)2 M�
Gravitational wave energy loss L0 = c5/G 3.628× 1052 W

Planck mass m P = √�c/G 1.22090× 1019 GeV/c2

Planck length L P =
√
�G/c3 1.61624× 10−35 m

Planck time tP =
√
�G/c5 5.39121× 10−44 s

Planck charge qP = √4πε0�c 1.87554× 10−18 C
Planck current IP = qP/tP 3.4789× 1025 A
Planck voltage VP = �/tPqP 1.04295× 1027 V
Planck impedance Z P = VP/IP 29.9792 Ω
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List of Symbols

Physical Variable Symbol Typical Unit

Redshift factor α Dimensionless
Metric of three-space γik Dimensionless
Shift vector field β

Exterior curvature Kik Square inverse length
Observer (tetrad) field ea Inverse length
One-form basis Θa Length
Specific angular momentum of black hole a Length
Angular momentum of black hole a∗ Dimensionless
Lagrangian L Energy
Lie derivative along X L X Inverse length
Mass of black hole MH Solar mass
Gravitational radius M Length
Covariant derivative along X ∇X Inverse length
Connection one-forms ωa

b Inverse length
Curvature two-forms Ωa

b Square inverse length
Grand canonical potential Ω Energy
Christoffel symbol Γ

µ
αβ Inverse length

Ricci tensor Rab Square inverse length
Einstein tensor Gab Square inverse length
Energy–momentum tensor T ab Energy density
Faraday tensor Fab Electric field
Bardeen (Newtonian) potential Φ Dimensionless
Magnetic flux function Ψ Magnetic flux
Vector field on manifold X Inverse length
Periastron shift of binary orbit ω̇ Degrees per revolution
Redshift and Doppler amplitude γRD Time
Shapiro range parameter r Time
Shapiro inclination parameter s Dimensionless
State vector of primitive variables P
State vector of conserved variables U
Flux vector of conserved variables F
Lorentz factor W Dimensionless
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Abbreviations and Acronyms

Symbol Meaning

AGN Active Galactic Nucleus
AMR Adaptive Mesh Refinement
ASCA Japanese X-Ray Satellite
BH Black Hole
CFL Courant–Friedrichs–Lewy condition
CHANDRA CHANDRAsekhar X-ray Observatory (NASA)
CHOMBO Block-Structured Adaptive Mesh Refinement Library
DE200 Development Ephemeris 200
EoS Equation of State
ESA European Space Agency
EUVN EUropean Vlbi Network
GAIA Satellite named after a Greek Earth Goddess (ESA)
GP-B Gravity Probe B
GRMHD General Relativistic MagnetoHydrodynamics
HIPPARCHOS HIgh Precision PARallax COllecting Satellite
INTEGRAL INTErnational Gamma-Ray Astrophysics Laboratory
JD Julian Date
JWST James Webb Space Telescope (NASA)
LAGEOS LAser GEOdetic Satellite
LMXB Low-Mass X-Ray Binary System
MJD Modified Julian Date
MPI Message Passing Interface
NS Neutron Star
PARAMESH Parallel Adaptive Mesh Refinement
QSO Quasistellar Object
QSR Quasistellar Radio Source
ROSITA ROentgen Survey with an Imaging Telescope Array
RXTE Rossi X-ray Timing Explorer
SEP Strong Equivalence Principle
SRMHD Special Relativistic MagnetoHydrodynamics
VLBA Very Long Baseline Array (USA)
VLBI Very Long Baseline Interferometry
VLTI Very Large Telescopes (ESO)
WD White Dwarf
WEP Weak Equivalence Principle
XEUS X-ray Evolving Universe Spectroscopy Mission (ESA)
XMM–NEWTON X-ray Multi-Mirror Satellite (ESA)
ZAMO Zero Angular Momentum Observer



B SLy4 Equation of State for Neutron Star Matter

The equation of state (EoS) of dense neutron star matter is one of the mysteries of
these objects. The EoS is a basic input for construction of neutron star models. Its
knowledge is needed to calculate various properties of neutron stars. The EoS is
predominantly determined by the nuclear (strong) interaction between elementary
constituents of dense matter. Even in the neutron star crust, with density below
normal nuclear density �0 = 2.7× 1014 g cm−3 (corresponding to baryon density
n0 = 0.16 fm−3), nuclear interactions are responsible for the properties of neutron
rich nuclei, crucial for the crust EoS. The knowledge of these interactions is partic-
ularly important for the structure of the inner neutron star crust, where nuclei are
immersed in a neutron gas, and even more so for the EoS of the liquid core. Nuclear
interactions are actually responsible for a dramatic lifting of Mmax from 0.7 M�,
obtained when interactions are switched off, to more realistic values of 1.4 M� as
measured in neutron star binary systems.

In the following tables, an equation of state of neutron star matter, describing both
the neutron star crust and the liquid core, is given from the paper [136]. It is based
on the effective nuclear interaction SLy of the Skyrme type, which is particularly
suitable for the application to the calculation of the properties of very neutron rich
matter.
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Table B.1. Structure and composition of the inner neutron-star crust. For caption, see next
table

nb Z A Xn Rp Rn Rcell u
(fm−3) (fm) (fm) (fm) (%)

1.2126 E–4 42.198 130.076 0.0000 5.451 5.915 63.503 0.063
1.6241 E–4 42.698 135.750 0.0000 5.518 6.016 58.440 0.084
1.9772 E–4 43.019 139.956 0.0000 5.565 6.089 55.287 0.102

2.0905 E–4 43.106 141.564 0.0000 5.578 6.111 54.470 0.107
2.2059 E–4 43.140 142.161 0.0247 5.585 6.122 54.032 0.110
2.3114 E–4 43.163 142.562 0.0513 5.590 6.128 53.745 0.113
2.6426 E–4 43.215 143.530 0.1299 5.601 6.145 53.020 0.118
3.0533 E–4 43.265 144.490 0.2107 5.612 6.162 52.312 0.123
3.5331 E–4 43.313 145.444 0.2853 5.623 6.179 51.617 0.129
4.0764 E–4 43.359 146.398 0.3512 5.634 6.195 50.937 0.135
4.6800 E–4 43.404 147.351 0.4082 5.645 6.212 50.269 0.142
5.3414 E–4 43.447 148.306 0.4573 5.656 6.228 49.615 0.148
6.0594 E–4 43.490 149.263 0.4994 5.667 6.245 48.974 0.155
7.6608 E–4 43.571 151.184 0.5669 5.690 6.278 47.736 0.169
1.0471 E–3 43.685 154.094 0.6384 5.725 6.328 45.972 0.193
1.2616 E–3 43.755 156.055 0.6727 5.748 6.362 44.847 0.211
1.6246 E–3 43.851 159.030 0.7111 5.784 6.413 43.245 0.239
2.0384 E–3 43.935 162.051 0.7389 5.821 6.465 41.732 0.271
2.6726 E–3 44.030 166.150 0.7652 5.871 6.535 39.835 0.320
3.4064 E–3 44.101 170.333 0.7836 5.923 6.606 38.068 0.377
4.4746 E–3 44.155 175.678 0.7994 5.989 6.698 36.012 0.460
5.7260 E–3 44.164 181.144 0.8099 6.059 6.792 34.122 0.560
7.4963 E–3 44.108 187.838 0.8179 6.146 6.908 32.030 0.706
9.9795 E–3 43.939 195.775 0.8231 6.253 7.048 29.806 0.923
1.2513 E–2 43.691 202.614 0.8250 6.350 7.171 28.060 1.159
1.6547 E–2 43.198 211.641 0.8249 6.488 7.341 25.932 1.566
2.1405 E–2 42.506 220.400 0.8222 6.637 7.516 24.000 2.115
2.4157 E–2 42.089 224.660 0.8200 6.718 7.606 23.106 2.458
2.7894 E–2 41.507 229.922 0.8164 6.825 7.721 22.046 2.967
3.1941 E–2 40.876 235.253 0.8116 6.942 7.840 21.053 3.585
3.6264 E–2 40.219 240.924 0.8055 7.072 7.967 20.128 4.337
3.9888 E–2 39.699 245.999 0.7994 7.187 8.077 19.433 5.058
4.4578 E–2 39.094 253.566 0.7900 7.352 8.231 18.630 6.146
4.8425 E–2 38.686 261.185 0.7806 7.505 8.372 18.038 7.202
5.2327 E–2 38.393 270.963 0.7693 7.685 8.538 17.499 8.470
5.6264 E–2 38.281 283.993 0.7553 7.900 8.737 17.014 10.011
6.0219 E–2 38.458 302.074 0.7381 8.167 8.987 16.598 11.914
6.4183 E–2 39.116 328.489 0.7163 8.513 9.315 16.271 14.323
6.7163 E–2 40.154 357.685 0.6958 8.853 9.642 16.107 16.606
7.0154 E–2 42.051 401.652 0.6699 9.312 10.088 16.058 19.501
7.3174 E–2 45.719 476.253 0.6354 9.990 10.753 16.213 23.393
7.5226 E–2 50.492 566.654 0.6038 10.701 11.456 16.557 26.996
7.5959 E–2 53.162 615.840 0.5898 11.051 11.803 16.772 28.603
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Table B.2. Previous table: Structure and composition of the inner neutron-star crust (ground
state) calculated within the compressible liquid drop model with SLy effective nucleon–
nucleon interaction. Xn is the fraction of nucleons in the neutron gas outside nuclei. Upper
part with Xn = 0 corresponds to a shell of the outer crust, just above the neutron drip
surface in the neutron-star interior, and calculated within the same model. Rp and Rn are the
equivalent proton and neutron radii. Wigner–Seitz cell radius and fraction of volume occupied
by nuclear matter (equal to that occupied by protons) are denoted by Rcell and u, respectively.
This table: Equation of state of the inner crust. First line corresponds to the neutron drip point,
as calculated within the COMPRESSIBLE LIQUID DROP MODEL. Last line corresponds
to the bottom edge of the crust

nb � P Γ nb � P Γ

(fm−3) (g cm−3) (erg cm−3) (fm−3) (g cm−3) (erg cm−3)

2.0905 E–4 3.4951 E11 6.2150 E29 1.177 9.9795 E–3 1.6774 E13 3.0720 E31 1.342
2.2059 E–4 3.6883 E11 6.4304 E29 0.527 1.2513 E–2 2.1042 E13 4.1574 E31 1.332
2.3114 E–4 3.8650 E11 6.5813 E29 0.476 1.6547 E–2 2.7844 E13 6.0234 E31 1.322
2.6426 E–4 4.4199 E11 6.9945 E29 0.447 2.1405 E–2 3.6043 E13 8.4613 E31 1.320
3.0533 E–4 5.1080 E11 7.4685 E29 0.466 2.4157 E–2 4.0688 E13 9.9286 E31 1.325
3.5331 E–4 5.9119 E11 8.0149 E29 0.504 2.7894 E–2 4.7001 E13 1.2023 E32 1.338
4.0764 E–4 6.8224 E11 8.6443 E29 0.554 3.1941 E–2 5.3843 E13 1.4430 E32 1.358
4.6800 E–4 7.8339 E11 9.3667 E29 0.610 3.6264 E–2 6.1153 E13 1.7175 E32 1.387
5.3414 E–4 8.9426 E11 1.0191 E30 0.668 3.9888 E–2 6.7284 E13 1.9626 E32 1.416
6.0594 E–4 1.0146 E12 1.1128 E30 0.726 4.4578 E–2 7.5224 E13 2.3024 E32 1.458
7.6608 E–4 1.2831 E12 1.3370 E30 0.840 4.8425 E–2 8.1738 E13 2.6018 E32 1.496
1.0471 E–3 1.7543 E12 1.7792 E30 0.987 5.2327 E–2 8.8350 E13 2.9261 E32 1.536
1.2616 E–3 2.1141 E12 2.1547 E30 1.067 5.6264 E–2 9.5022 E13 3.2756 E32 1.576
1.6246 E–3 2.7232 E12 2.8565 E30 1.160 6.0219 E–2 1.0173 E14 3.6505 E32 1.615
2.0384 E–3 3.4178 E12 3.7461 E30 1.227 6.4183 E–2 1.0845 E14 4.0509 E32 1.650
2.6726 E–3 4.4827 E12 5.2679 E30 1.286 6.7163 E–2 1.1351 E14 4.3681 E32 1.672
3.4064 E–3 5.7153 E12 7.2304 E30 1.322 7.0154 E–2 1.1859 E14 4.6998 E32 1.686
4.4746 E–3 7.5106 E12 1.0405 E31 1.344 7.3174 E–2 1.2372 E14 5.0462 E32 1.685
5.7260 E–3 9.6148 E12 1.4513 E31 1.353 7.5226 E–2 1.2720 E14 5.2856 E32 1.662
7.4963 E–3 1.2593 E13 2.0894 E31 1.351 7.5959 E–2 1.2845 E14 5.3739 E32 1.644
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Table B.3. Top: Composition of the liquid core. Fractions of particles are defined as xj =
nj/nb. Neutron fraction can be calculated using xn = 1 − x p. Bottom: Equation of state of
the liquid neutron star core

nb x p xe xµ nb x p xe xµ
(fm−3) (%) (%) (%) (fm−3) (%) (%) (%)

0.0771 3.516 3.516 0.000 0.490 7.516 4.960 2.556
0.0800 3.592 3.592 0.000 0.520 7.587 4.954 2.634
0.0850 3.717 3.717 0.000 0.550 7.660 4.952 2.708
0.0900 3.833 3.833 0.000 0.580 7.736 4.955 2.781
0.1000 4.046 4.046 0.000 0.610 7.818 4.964 2.854
0.1100 4.233 4.233 0.000 0.640 7.907 4.979 2.927
0.1200 4.403 4.398 0.005 0.670 8.003 5.001 3.002
0.1300 4.622 4.521 0.101 0.700 8.109 5.030 3.079
0.1600 5.270 4.760 0.510 0.750 8.309 5.094 3.215
0.1900 5.791 4.896 0.895 0.800 8.539 5.178 3.361
0.2200 6.192 4.973 1.219 0.850 8.803 5.284 3.519
0.2500 6.499 5.014 1.485 0.900 9.102 5.410 3.692
0.2800 6.736 5.031 1.705 0.950 9.437 5.557 3.880
0.3100 6.920 5.034 1.887 1.000 9.808 5.726 4.083
0.3400 7.066 5.026 2.040 1.100 10.663 6.124 4.539
0.3700 7.185 5.014 2.170 1.200 11.661 6.602 5.060
0.4000 7.283 4.999 2.283 1.300 12.794 7.151 5.643
0.4300 7.368 4.984 2.383 1.400 14.043 7.762 6.281
0.4600 7.444 4.971 2.473 1.500 15.389 8.424 6.965

nb � P Γ nb � P Γ

(fm−3) (g cm−3) (erg cm−3) (fm−3) (g cm−3) (erg cm−3)

0.0771 1.3038 E14 5.3739 E32 2.159 0.4900 8.8509 E14 1.0315 E35 2.953
0.0800 1.3531 E14 5.8260 E32 2.217 0.5200 9.4695 E14 1.2289 E35 2.943
0.0850 1.4381 E14 6.6828 E32 2.309 0.5500 1.0102 E15 1.4491 E35 2.933
0.0900 1.5232 E14 7.6443 E32 2.394 0.5800 1.0748 E15 1.6930 E35 2.924
0.1000 1.6935 E14 9.9146 E32 2.539 0.6100 1.1408 E15 1.9616 E35 2.916
0.1100 1.8641 E14 1.2701 E33 2.655 0.6400 1.2085 E15 2.2559 E35 2.908
0.1200 2.0350 E14 1.6063 E33 2.708 0.6700 1.2777 E15 2.5769 E35 2.900
0.1300 2.2063 E14 1.9971 E33 2.746 0.7000 1.3486 E15 2.9255 E35 2.893
0.1600 2.7223 E14 3.5927 E33 2.905 0.7500 1.4706 E15 3.5702 E35 2.881
0.1900 3.2424 E14 5.9667 E33 2.990 0.8000 1.5977 E15 4.2981 E35 2.869
0.2200 3.7675 E14 9.2766 E33 3.025 0.8500 1.7302 E15 5.1129 E35 2.858
0.2500 4.2983 E14 1.3668 E34 3.035 0.9000 1.8683 E15 6.0183 E35 2.847
0.2800 4.8358 E14 1.9277 E34 3.032 0.9500 2.0123 E15 7.0176 E35 2.836
0.3100 5.3808 E14 2.6235 E34 3.023 1.0000 2.1624 E15 8.1139 E35 2.824
0.3400 5.9340 E14 3.4670 E34 3.012 1.1000 2.4820 E15 1.0609 E36 2.801
0.3700 6.4963 E14 4.4702 E34 2.999 1.2000 2.8289 E15 1.3524 E36 2.778
0.4000 7.0684 E14 5.6451 E34 2.987 1.3000 3.2048 E15 1.6876 E36 2.754
0.4300 7.6510 E14 7.0033 E34 2.975 1.4000 3.6113 E15 2.0679 E36 2.731
0.4600 8.2450 E14 8.5561 E34 2.964 1.5000 4.0498 E15 2.4947 E36 2.708



C 3+1 Split of Spacetime Curvature

In this appendix we derive the Gauss equation and the Codazzi–Mainardi equations
for the 3+1 decomposition of the Riemann curvature.

C.1 Gauss Decomposition

In analogy to the decomposition of the connection form discussed in Sect. 2.8.3 we
split the curvature two-form given by the second structure equation

Ωa
b = dωa

b + ωa
c ∧ ωc

b . (C.1)

The Gauss decomposition follows from the spatial part of the second structure
equation
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This shows that we find for the curvature on the three-surface Σ
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Ωi
j |Σ = [dωi

j + ωi
s ∧ ωs

j + ωi
0 ∧ ω0

j]|Σ
= dω̄i

j + ω̄i
s ∧ ω̄s

j +
(
−ηim KmsΘ̄

s
)
∧
(
−K jtΘ̄

t
)

= Ω̄i
j +

(
−Ki

sΘ̄
s
)
∧
(
−K jtΘ̄

t
)

= Ω̄i
j + Ki

s K jt Θ̄
s ∧ Θ̄t . (C.3)

This Gauss equation expresses the 3D curvature tensor in terms of the projection of
the 4D curvature, with extrinsic curvature corrections. In fact, the expressions for
the Ricci tensor given in the next section show that the second part of Ωi

j is not
needed for the calculation of the Ricci tensor.

C.2 Codazzi–Mainardi Equations

The Codazzi–Mainardi equation follows from

Ω0
i = dω0

i + ω0
k ∧ ωk

i

= d
[∇i lnαΘ0 − KijΘ

j]+ [
(∇k lnα)Θ0 − Kk jΘ

j] ∧ ωk
i

= − 1

α
dα,i ∧Θ0 −∇k lnαωk

i ∧Θ0

−dKij ∧Θ j − Kij dΘ j + Kk j ω
k
i ∧Θ j

= 1

α

[
dα,i − α,kωk

i

] ∧Θ0 − dKij ∧Θ j + Kik ω
k
a ∧Θa + Kk j ω

k
i ∧Θ j

= 1

α
D(α,i) ∧Θ0 − dKij ∧Θ j + Kij ω

k
0 ∧Θ0

+Kik ω
k
m ∧Θm + Kk j ω

k
i ∧Θ j

= 1

α
D(α,i) ∧Θ0

− [
dKij − Kikω

k
j − Kk j ω

k
i

] ∧Θ j − Kik K k
mΘ

m ∧Θ0 . (C.4)

This decomposition provides then the projection of the 4D curvature Ω0
i known as

the Codazzi–Mainardi equation

Ω0
i |Σ = −D̄Kij ∧ Θ̄ j , (C.5)

where D̄Kij = (Ds Kij)Θ̄
s.

For the calculation of the Ricci tensor we only need the normal projections

Ωi
0(e j, e0) = Ω0

i(e j, e0) . (C.6)

From the above we derive for this

Ω0
i(e j, e0) = 1

α
D j(α,i)+ dKij(e0)− Kimω

m
j(e0)− Kk jω

k
i(e0)−K2

ij . (C.7)
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Remember that

dKij(e0) = 1

α

(
∂t − iβ · d

)
Kij . (C.8)

Now we consider the term, following from equation (2.368)

(Kω)ij = Kimω
m

j(e0)+ K jmω
m
i (e0)

= 1

α
K m

i

[
β[m| j] − c[m j] − ω̄m j(β)

]
+ 1

α
K m

j

[
β[m|i] − c[mi] − ω̄mi(β)

]
= − 1

α

[
Kimω̄

m
j(β)+ K jmω̄

m
i (β)

]
+ 1

2α

[
K m

i βm| j − K m
i β j|m + K m

j βm|i − K m
j βi|m

−K m
i cm j + K m

i c jm − K m
j cmi + K m

j cim
]

= − 1

α

[
Kimω̄

m
j(β)+ K jmω̄

m
i (β)

]
+ 1

2α

[−K m
i

(
βm| j + β j|m − (cm j + c jm)

)− 2K m
i cm j

−K m
j

(
βm|i + βi|m − (cmi + cim)

)− 2K m
j cim

+2K m
i βm| j + 2K m

j βm|i
]
. (C.9)

In this expression, all other terms including cim cancel out. Using the definition of
the extrinsic curvature Kij , equation (2.367), we find

(Kω)ij = −Kim K m
j − K m

j Kmi + 1

α
Kimβ

m
| j +

1

α
K jmβ

m
|i

− 1

α

[
Kimω̄

m
j(β)+ K jmω̄

m
i (β)

]
= −Kim K m

j − K m
j Kmi + 1

α
Kimβ

m
, j +

1

α
K jmβ

m
,i . (C.10)

Together with the expression for the Lie derivative of the extrinsic curvature

LβKij = βm Kij,m + Kimβ
m
, j + Km jβ

m
,i (C.11)

we found for the curvature component

Ω0
i(e j, e0) = 1

α
D j(α,i)+ 1

α
(∂t −Lβ)Kij

+Kim K m
j + K jm K m

i −K2
ij

= 1

α
D j(α,i)+ 1

α
(∂t −Lβ)Kij + K jm K m

i . (C.12)



D 3+1 Split of Rotating Neutron Star Geometry

D.1 The 3+1 Split of the Connection

We will apply Cartan’s methods to calculate the curvature tensor for rotating space-
times with respect to Bardeen observers. In a first step we calculate the exterior
derivatives for the fundamental one-forms (7.16) (A, B = 2, 3)

dΘA =
∑

B

exp(µA) µA,B dx B ∧ dx A + exp(µA)µA,φ dφ ∧ dx B

= exp(−µB)µA,B Θ
B ∧ΘA . (D.1)

Similarly, we find

dΘ1 =
∑

A

exp(−µA) ψ,AΘ
A ∧Θ1 −

∑
A

exp(ψ − ν − µA)ω,AΘ
A ∧Θ0 ,

(D.2)

as well as

dΘ0 =
∑

A

exp(−µA) ν,AΘ
A ∧Θ0 . (D.3)

Here we used the inversion

dφ = exp(−ψ)Θ1 + exp(ψ − ν)ωΘ0 . (D.4)

Comparing this with Cartan’s first structure equations

dΘ0 = −
∑

A

ω0
A ∧ΘA − ω0

1 ∧Θ1 (D.5)

dΘ1 = −
∑

A

ω1
A ∧ΘA − ω1

0 ∧Θ0 (D.6)

and

dΘA = −
∑

B

ωA
B ∧ΘB − ωA

1 ∧Θ1 − ωA
0 ∧Θ0 , (D.7)
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we conclude for axisymmetric connections

ω1
A = −ωA

1 = exp(−µA)ψ,AΘ
1 − exp(−ψ)µ,AΘA (D.8)

ωA
B = −ωB

A = exp(−µB)µA,B Θ
A − exp(−µA)µB,AΘ

B . (D.9)

The following ansatz solves the structure equations for the six connection forms
of the Lorentz connection for axisymmetric and stationary spacetimes (ω0

i = ωi
0,

ωi
j = −ω j

i)

ω0
1 = −

1

2
exp(ψ − ν − µ2) ω,2Θ

2 − 1

2
exp(ψ − ν − µ3)ω,3Θ

3 (D.10)

ω0
2 = exp(−µ2) ν,2Θ

0 − 1

2
exp(ψ − ν − µ2) ω,2Θ

1 (D.11)

ω0
3 = exp(−µ3) ν,3Θ

0 − 1

2
exp(ψ − ν − µ3) ω,3Θ

1 (D.12)

ω1
2 = exp(−µ2) ψ,2Θ

1 + 1

2
exp(ψ − ν − µ2) ω,2Θ

0 (D.13)

ω1
3 = exp(−µ3) ψ,3Θ

1 + 1

2
exp(ψ − ν − µ3) ω,3Θ

0 (D.14)

ω2
3 = exp(−µ3)µ2,3Θ

2 − exp(−µ2)µ3,2Θ
3 . (D.15)

These relations can be contracted in a way which shows the features of the general
decomposition found in Sect. 2.8

ω0
A = ∇A ln(α)Θ0 − K A1Θ

1 (D.16)

ω1
A = (∇Aψ)Θ

1 + 1

2α
(R∇Aω)Θ

0 = ω̄1
A +

1

2α
(R∇Aω)Θ

0 (D.17)

ω2
3 = (∇3µ2)Θ

2 − (∇2µ3)Θ
3 = ω̄2

3 , (D.18)

where Kij is the extrinsic curvature (remember that cij ≡ 0 in a stationary spacetime),
given in orthonormal basis,

Kî ĵ =
1

2α
(βi; j + β j;i) . (D.19)

With the definition of the covariant derivative for β = (−ω expΨ, 0, 0)

βi; j = e j(β)− ωm
i (e j)βm (D.20)

we obtain the following form for the extrinsic curvature

Kî ĵ = −
R

2α

⎛⎝0 ∇2ω ∇3ω

∇2ω 0 0
∇3ω 0 0

⎞⎠ , (D.21)

which shows that Tr(K) = 0. ∇Aα = eµA∂µα denotes the derivative along the
meridional vector field eA and R = exp(ψ) is the cylindrical radius.
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The expressions for the connection one-forms are just a special case of the
general 3+1 split derived in Sect. 2.8

ω0
i = (∇i lnα)Θ0 − Kij Θ

j (D.22)

ωi
j = ω̄i

j + Hi
j Θ

0 , (D.23)

where the matrix H is antisymmetric (for stationary spacetimes)

Hij = 1

α
β[i| j] . (D.24)

β is often called the vector potential of the gravitomagnetic field and the antisym-
metric matrix H defines then the gravitomagnetic field itself, quite in analogy to the
magnetic field in electrodynamics. All components of the connection therefore have
a quite clear physical or geometrical interpretation.

D.2 The Curvature of Time Slices

For the calculation of the Ricci tensor of the hypersurface we need the curvature of
the meridional plane

Ω̄2
3 = dω̄2

3 + ω̄2
1 ∧ ω̄1

3 (D.25)

and the curvature of the other 3D directions

Ω̄1
A = dω̄1

A + ω̄1
B ∧ ω̄B

A . (D.26)

For this purpose we define two poloidal vectors (A = 2, 3)

Q A ≡ exp(−µA)ω,A , ΨA ≡ exp(−µA)ψ,A = ∇Aψ . (D.27)

In terms of these quantities we can write for any function F
(
x2, x3

)
d(FΘ̄1) =

∑
A

exp(−ψ − µA) (F expψ),A Θ̄
A ∧ Θ̄1

=
∑

A

1

R
∇A[RF] Θ̄A ∧ Θ̄1 (D.28)

d(FΘ̄A) =
∑

B

exp(−µA − µB)(expµA F),B Θ̄
B ∧ Θ̄A

=
∑

B

exp(−µA)∇B[exp(µA)F] Θ̄B ∧ Θ̄A . (D.29)

So we need the exterior derivatives of ω1
2, ω1

3 and of ω2
3. Using this rule in con-

junction with the above connection form we obtain
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dω̄1
2 + ω̄1

3 ∧ ω̄3
2 =

1

R
∇A[RΨ2] Θ̄A ∧ Θ̄1

−Ψ3∇3µ2 Θ̄
1 ∧ Θ̄2 + Ψ3∇2µ3 Θ̄

1 ∧ Θ̄3 (D.30)

dω̄1
3 + ω̄1

2 ∧ ω̄2
3 =

1

R
∇A[RΨ3] Θ̄A ∧ Θ̄1

+Ψ2∇3µ2 Θ̄
1 ∧ Θ̄2 − Ψ2∇2µ3 Θ̄

1 ∧ Θ̄3 (D.31)

dω̄2
3 + ω̄2

1 ∧ ω̄1
3 = −

[
exp(−µ2)∇3[exp(µ2)∇3µ2]

+ exp(−µ3)∇2[exp(µ3)∇2µ3]
]
Θ̄2 ∧ Θ̄3 . (D.32)

With these expressions the curvature of the hypersurfaces can be written in closed
form

Ω̄1
2 = −

[
1

R
∇2[RΨ2] + Ψ3[∇3µ2]

]
Θ̄1 ∧ Θ̄2

+
[
− 1

R
∇3[RΨ2] + Ψ3[∇2µ3]

]
Θ̄1 ∧ Θ̄3 (D.33)

Ω̄1
3 = −

[
1

R
∇3[RΨ3] + Ψ2[∇2µ3]

]
Θ̄1 ∧ Θ̄3

+
[
− 1

R
∇2[RΨ3] + Ψ2[∇3µ2]

]
Θ̄1 ∧ Θ̄2 (D.34)

Ω̄2
3 = −

[
exp(−µ2)∇3[exp(µ2)∇3µ2]
+ exp(−µ3)∇2[exp(µ3)∇2µ3]

]
Θ̄2 ∧ Θ̄3 . (D.35)

The curvature tensor of a three-surface has nine independent components and satisfies
in our case R1213 = R1312 and R1223 = 0 = R1323.

With these expression we can calculate the six components of the Ricci tensor
of the hypersurface, R̄ij = Ω̄m

i (em, e j),

R̄11 = Ω̄2
1(e2, e1)+ Ω̄3

1(e3, e1) = Ω̄1
2(e1, e2)+ Ω̄1

3(e1, e3) =
= − 1

R
∇2[RΨ2] − Ψ3[∇3µ2] − 1

R
∇3[RΨ3] − Ψ2[∇2µ3] (D.36)

R̄22 = Ω̄1
2(e1, e2)+ Ω̄3

2(e3, e2)

= − 1

R
∇2[RΨ2] − Ψ3[∇3µ2] − exp(−µ2)∇3[exp(µ2)∇3µ2]

− exp(−µ3)∇2[exp(µ3)∇2µ3] (D.37)

R̄33 = Ω̄1
3(e1, e3)+ Ω̄2

3(e2, e3)

= − 1

R
∇3[RΨ3] − Ψ2[∇2µ3] − exp(−µ2)∇3[exp(µ2)∇3µ2]

− exp(−µ3)∇2[exp(µ3)∇2µ3] (D.38)

R̄12 = Ω̄2
1(e2, e2)+ Ω̄3

1(e3, e2) = 0 (D.39)



D.2 The Curvature of Time Slices 603

R̄13 = Ω̄2
1(e2, e3)+ Ω̄3

1(e3, e3) = 0 (D.40)

R̄23 = Ω̄1
2(e1, e3)+ Ω̄3

2(e3, e3) = − 1

R
∇3[RΨ2] + Ψ3[∇2µ3] . (D.41)

By summation we get the Ricci scalar on the hypersurface

R̄ = R̄11 + R̄22 + R̄33

= −2

[
1

R
∇2[RΨ2] + Ψ3(∇3µ2)+ 1

R
∇3[RΨ3] + Ψ2(∇2µ3)

]
−2 exp(−µ2)∇3[exp(µ2)∇3µ2] − 2 exp(−µ3)∇2[exp(µ3)∇2µ3]

= −2

[
1

R
∇2[RΨ2] + Ψ3(∇3µ2)+ 1

R
∇3[RΨ3] + Ψ2(∇2µ3)

]
−2∆(µ2, µ3) , (D.42)

where we have defined the second-order elliptic operator

∆(µ2, µ3) = exp(−µ2)∇3[exp(µ2)(∇3µ2)]
+ exp(−µ3)∇2[exp(µ3)(∇2µ3)] .

(D.43)



E Equations of GRMHD

E.1 Electromagnetic Fields

A complete description of the electromagnetic field is provided by the Faraday tensor
Fµν, which is related to the electric and magnetic field, Eµ and Bµ, measured by an
observer with four-velocity O

Fµν = OµEν − OνUµ + O�η
�µνσ Bσ . (E.1)

Both, electric and magnetic fields are orthogonal to O and are recovered from the
Faraday tensor by means of the following relations

Eµ = FµνOν (E.2)

and

Bµ = 1

2
ηµν�σOνF�σ = Oν ∗ Fνµ . (E.3)

The dual of the electromagnetic tensor is defined as

∗Fµν = 1

2
ηµν�σ F�σ , (E.4)

or expressed as

∗Fµν = OµBν − OνBµ + ηµν�σO�Eσ . (E.5)

ηµν�σ = [µν�σ]/√−g is the total antisymmetric tensor related to the volume
element (see Sect. 2.3).

We now decompose the Faraday tensor into electric and magnetic components
measured by Eulerian observers n by means of

Eµ = Fµνnν , Bµ = − ∗ Fµνnν . (E.6)

Both fields are purely spatial, Eµnµ = 0 = Bµnµ. This is equivalent to decompose
the Faraday tensor into

Fµν = nµEν − nνFµ + n�η
�µνσ Bσ . (E.7)
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This electromagnetic part simplifies if we adopt the ideal MHD approximation:
the electric field as measured in the plasma frame vanishes due to the high conduc-
tivity of the plasma. In SRMHD this is the famous relation E + v × B = 0. The
covariant expression for this condition is (Ohm’s law)

Uµ Fµν = 0 . (E.8)

But even in GR, we may still define magnetic fields as measured in plasma frame

bµ = −1

2
ηµν�σ UνF�σ . (E.9)

In the case of ideal MHD, this relation can easily be inverted to give

Fµν = U�η
�µνσ bσ . (E.10)

Taking the dual, we obtain

∗Fµν = bµUν − bνUµ . (E.11)

The magnetic field bµ only lives in three-space, since Uµbµ = 0. Inserting this into
the expression (10.160) yields the energy–momentum tensor of the electromagnetic
part in terms of the comoving magnetic field

Tµν(ED) =
b2

4π
UµUν + b2

8π
gµν − 1

4π
bµbν . (E.12)

This expression is very similar to the classical EM tensor except for the contribution
to the energy density. In summary, we have found the stress–energy tensor for
a plasma

Tµν =
(
�0 + ε + P + b2

4π

)
UµUν +

(
P + b2

8π

)
gµν − 1

4π
bµbν . (E.13)

This is the stress–energy tensor which we need for the equations of motion.
We may find the relations between magnetic fields in the plasma frame and the

observer’s frame by defining a projection operator Pµν = gµν +UµUν. Since bµ is
orthogonal to Uµ, we find Pµν bν = bµ. It follows therefore from the definition of
Bµ that

PµνBν = Pµνn�(b
�Uν − bνU�) = −n�U

� bµ . (E.14)

Hence we have

bµ = − PµνBν

nνUν
. (E.15)
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We can now evaluate the time and spatial components

bt = Ui Bi/α = W(v · B)
α

(E.16)

bi = Bi/α+ btUi

Ut
= Bi +W2(v · B)vi

W
, (E.17)

where Ut = W/α. Finally, the modulus of the plasma magnetic field can be written
as

b2 = B2 + α2(bt)2

W2
= B2 +W2(v · B)2

W2
, (E.18)

where B2 = Bi Bi .
Maxwell’s equations follow from the homogeneous equations

∇ν ∗ Fµν = 0 = 1√−g
∂ν[√−g ∗ Fµν] , (E.19)

where
√−g = α√γ . The time component gives the divergence condition

1√
γ
∂i[√γ Bi] = 0 . (E.20)

The spatial components give the induction equation in conservative form

1√−g
∂t[√γ Bi] + 1√−g

∂ j
[√−g

(
U jbi −Uib j)] = 0 . (E.21)

On the other hand we also find

U jbi −Uib j = V j Bi − V i B j , (E.22)

where V i = vi − βi/α. The induction equation can therefore be written in the form

1√−g
∂t[√γ Bi] + 1√−g

∂ j
[√−g

(
V j Bi − V i B j)] = 0 . (E.23)

This form of the induction equation is equivalent to the conservative formulation of
the Newtonian MHD.

E.2 Conservative Formulation of GRMHD

Similar to the approach chosen to model pure hydrodynamical flows in Sect. 3.1,
we shortly discuss the time evolution of magnetohydrodynamic fields based on
a conservative schemes. Baryon number conservation gives
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1√−g
∂t
[√
γD

]+ 1√−g
∂ j

[√−gDV j] = 0 , (E.24)

where D = �0 αUt = �0W is a relativistic mass density. Similar to the hydro case,
we introduce the momentum fluxes measured by Eulerian observers

Si = −nµTµi = αT t
i = [�0h + b2/4π]W2 vi − αbtbi/4π , (E.25)

as well as the total energy density

τ = nµnνT
µν − D = α2T tt − D = �h∗W2 − PT − α2(bt)2 − D , (E.26)

where PT = P + b2/8π is the total pressure in the plasma and h∗ = h + b2/4π�0

the total enthalpy. The system is completed by means of an equation of state in the
form of P = (Γ − 1)�0e.

The spatial components of the energy–momentum conservation provide momen-
tum conservation

1√−g
∂t[√γ Si] + 1√−g

∂ j[√−gT j
i ] = Tµν

(
∂gνi
∂xµ

− Γ σνµgσi

)
, (E.27)

and the time-component gives the energy equation

1√−g
∂t[√γτ] + 1√−g

∂ j[√−g(αT t j − DV j)]

= α
(

Tµt ∂ logα

∂xµ
− TµνΓ t

νµ

)
. (E.28)

The GRMHD equations have therefore the form of a hyperbolic system, similar
to (3.32),

1√−g

(
∂[√γU]
∂t

+ ∂[
√−gFi]
∂xi

)
= S , (E.29)

which are obtained by combining the plasma equations with the induction equation
(E.23). The state vector of GRMHD now consists of eight variables

U = (D, Si , τ, Bi)T , (E.30)

explicitly given by the vector in the state space

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D
S1

S2

S3

τ

B1

B2

B3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�0W
(�0h + b2/4π)W2v1 − αbtb1/4π
(�0h + b2/4π)W2v2 − αbtb2/4π
(�0h + b2/4π)W2v3 − αbtb3/4π
(�0h + b2/4π)W2 − PT − α2(bt)2/4π − D
B1

B2

B3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (E.31)
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The corresponding fluxes F are now given by

Fi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

DV i

S1V i − b1 Bi/4πW + PT δ
i
1

S2V i − b2 Bi/4πW + PT δ
i
2

S3V i − b3 Bi/4πW + PT δ
i
3

τV i + PTv
i − αbt Bi/W

B1V i − Bi V 1

B2V i − Bi V 2

B3V i − Bi V 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (E.32)

where V i ≡ vi−βi/α. The energy–momentum tensor in the sources S now includes
both parts, plasma and electromagnetic fields

S =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
Tµν∂µgν1 − Γ �νµg�1

Tµν∂µgν2 − Γ �νµg�2

Tµν∂µgν3 − Γ �νµg�3

α(Tµt∂µα− TµνΓ t
νµ)

0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (E.33)

E.3 Numerical Schemes

Recovery of Primitive Variables

Conservative MHD schemes require methods to transform between conserved vari-
ables U and primitive variables P. The time integration of GRMHD determines the
three-momenta

Si = (�0h + b2/4π)W2vi − αbtbi/4π , (E.34)

the mass-density D and the energy τ . The associated four-momentum vector defined
as

Pµ = −nνT
ν
µ = αT t

µ (E.35)

has then the following form

Pµ = W(�0h + b2/4π)Uµ − (P + b2/8π)nµ − αbtbµ/4π . (E.36)

It is useful to remember the two relations

b2 = 1

W2

(
B2 + (UµBµ)2

)
, nνBν = −UµBµ . (E.37)
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Noble et al. [311] discuss the mathematical properties of the inverse transformation
and present six numerical methods for performing the inversion. Comparisons be-
tween the methods are made using a survey over phase space, a two-dimensional
explosion problem, and a general relativistic MHD accretion disk simulation.

In the first method, we solve two algebraic equations simultaneously for
H = W2h�0 and v2. The momentum vector can be written, using B → B/

√
4π, and

the relation (E.42) in the following form

S = (H + B2) v− (S · B)
H

B (E.38)

and the energy as

τ = B2

2
(1+ v2)+ S · B

2H
+ H − D− P(e, �0) . (E.39)

The first equation can be solved to get v2 as an explicit function of H

v2(H) = S2 H2 + (S · B)2(B2 + 2H)

(B2 + H)2 H2
. (E.40)

The energy equation provides then a second relation if we adopt a simple EoS

τ = B2

2
(1+ v2)+ S · B

2H
+ H − D−

(
Γ − 1

Γ

[
(1− v2)H − �0

])
. (E.41)

The final step is to find v by using S. Starting with the expressions for bt , bi and
b2 in the definition of S one finds

S = (H + B2) v− (v · B)B . (E.42)

This shows that the relativistic momentum flow S has, besides kinematic factors,
two relativistic corrections, the magnetic energy density B2/4π and a Poynting
contribution ∝ v · B. Since v · B = (S · B)/H , we can use this to solve for the
velocity field in terms of conserved variables

v = 1

H + B2

[
S+ (S · B)

H
B
]
. (E.43)

Koide et al. [231] have proposed an alternative procedure to solve a combined
system for the variables x = W − 1 and y = W(v · B) which is given as

x(x + 2)

[
ΓRx2 + (2ΓR − d)x + ΓR − d + e+ Γ

2
y2
]

(E.44)

= (Γx2 + 2Γx + 1)2
[

f 2(x + 1)2 + 2σy + 2σxy + g2 y2][
Γ(R − g2)x2 + (2ΓR − 2Γg2 − d)x + ΓR − d + e− g2 + Γ

2
y2
]

y

= σ(x + 1)(Γx2 + 2Γx + 1) , (E.45)



E.3 Numerical Schemes 611

where R = D + τ , d = (Γ − 1)D, e = (1 − Γ/2)B2/4π, and σ = B · S. These
algebraic equations are solved at each grid point using a two-variable Newton–
Raphson iteration method. The primitive variables are then reconstructed from x, y,
D, S, τ , and B with the following expressions

W = 1+ x (E.46)

P = (Γ − 1)
[
τ − xD− (2− 1/W2)B2/8π + (y/W)2/2]

Wx(x + 2)+ 1
(E.47)

v = S+ (y/W)B
D+ [

τ + P + B2/2W2 + (y/W)2/2] . (E.48)

On Numerical Implementations

There are many possible ways to numerically integrate the GRMHD equations. As in
the Newtonian case, nonconservative schemes enjoyed wide use in the astrophysical
community (e.g. ZEUS3D and NIRVANA2). They permit the integration of the
internal energy density ε rather than the total energy equation. This is advantageous
in regions of a plasma flow where the internal energy is small compared to the total
energy, which is in fact the common situation in nonrelativistic astrophysics. De
Villiers and Hawley [133] have developed a nonconservative scheme of GRMHD
following a ZEUS-like approach. Modern approaches to solve GRMHD are however
based on the above conservative formulation. This guarantees a true momentum and
energy conservation.

Since we update U rather than P, we must solve at the end of each timestep for
P(U). This can be done in various ways. The simplest approach is to use Newton–
Raphson routines with the value of P given by the previous time-step as an initial
guess. Here, only five equations need to be solved, since Bi are analytically given.
The Newton–Raphson procedure requires an expensive evaluation of the Jacobian
∂U/∂P and is in general limited in accuracy, i.e. it is a source of numerical noise. The
evaluation of P(U) is at the heart of each numerical procedure for solving SRMHD
or GRMHD. This procedure must be robust and CPU friendly.

A further important step is the evaluation of the fluxes F. Gammie et al. [166] use
a MUSCL type scheme with HLL fluxes (Harten et al. [194]). The fluxes are defined
at zone faces. A slope-limited linear extrapolation from the zone center gives the
values PR and PL for the primitive variables at the right and left sides of each zone
interface. From PR and PL one calculates the maximum right- and leftgoing wave
speeds and the fluxes FR = F(PR) and FL = F(PL). In the PPM reconstruction
scheme, a quartic polynomial interpolation is used to obtain the primitive variables
to the left and right of the grid cell interface. The relativistic version of the PPM
algorithm can be found in Marti and Müller [271].

The exact solution of the Riemann problem in special relativistic magnetohydro-
dynamics (SRMHD) is discussed in [172]. Both initial states leading to a set of only
three waves analogous to the ones in relativistic hydrodynamics, as well as generic
initial states leading to the full set of seven MHD waves are considered. Because of
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its generality, the solution presented could serve as an important test for numerical
codes solving the MHD equations in relativistic regimes.

Time-Stepping Procedure

To advance time-steps, the higher order algorithms discussed in Sect. 3.1 can be
applied. They are not repeated here.

Constrained Transport

Shock-capturing schemes do not guarantee ∇ · B = 0 for all time-steps. Some
constrained transport schemes are needed to maintain ∇ · B = 0. Procedures of
this type are discussed by Toth [398]. The flux-interpolated constrained transport
(flux-CT) scheme introduced by Toth [398] is quite favorable for coding. In this
algorithm, the numerical flux of the induction equation computed at each point is
replaced with a linear combination of the numerical fluxes computed at each point
and neighboring points. This procedure does not require a staggered mesh.
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Problems in Chapter 2

2.1 The exterior derivative of ω = ∗A is an n-form, given by

(dω)ai1···in−1 = (d ∗ A)ai1···in−1

= n∇[a(Abηbi1···in−1])
= n ηb[i1···in−1∇a]Ab . (F.1)

Since

dω = f η = ∗ f , (F.2)

with its dual

f = (−1)s ∗ ∗ f = (−1)s ∗ dω , (F.3)

we obtain in our case

∗dω = ∗d ∗ A

= 1

n! η
ai1···in−1(ηb[i1···in−1∇a]Ab)

= 1

(n − 1)! (−1)s (n − 1)! δa
b ∇a Ab

= (−1)s ∇a Aa . (F.4)

From the definition of the Levi-Civita tensor we obtain

dω = (∇a Aa)
√|g| dn x . (F.5)

2.3 See [2].

2.4 For this, see classical textbooks on general relativity; see also Sect. 6.4.3.

Problems in Chapter 3

3.1 For the solution of this problem we use the covariant expression (3.32) and
calculate the Christoffel symbols for the various coordinate systems. In cylindrical
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coordinates (r, φ, z), the equations of special relativistic hydrodynamics (3.11) are
given by

∂D

∂t
+ 1

r

∂(rDvr)

∂r
+ 1

r

∂(Dvφ)

∂φ
+ ∂(Dvz)

∂z
= 0 (F.6)

∂Sr

∂t
+ 1

r

∂[r(Srvr + P)]
∂r

+ 1

r

∂(Srvφ)

∂φ
+ ∂(Srvz)

∂z
= P

r
+ �0hW2v2

φ

r
(F.7)

∂Sφ
∂t
+ 1

r

∂(rSφvr)

∂r
+ 1

r

∂(Sφvφ + P)

∂φ
+ ∂(Sφvz)

∂z
= −�0hW2vrvφ

r
(F.8)

∂Sz

∂t
+ 1

r

∂(rSzvr)

∂r
+ 1

r

∂(Szvφ)

∂φ
+ ∂(Szvz + P)

∂z
= 0 (F.9)

∂τ

∂t
+ 1

r

∂[r(Sr − Dvr)]
∂r

+1

r

∂(Sφ − Dvφ)

∂φ
+ ∂(Sz − Dvz)

∂z
= 0 . (F.10)

The discretized equation for cylindrical coordinates is given as

dUi, j,k

dt
= −ri+1/2Fr

i+1/2, j,k − ri−1/2Fr
i−1/2, j,k

ri∆r

−Fφi, j+1/2,k − Fφi, j−1/2,k

ri∆φ

−Fz
i, j,k+1/2 − Fz

i, j,k−1/2

∆z
+ Si, j,k , (F.11)

3.2 In spherical coordinates (r, θ, φ), the equations of special relativistic hydrody-
namics (3.11) are given by

∂D

∂t
+ 1

r2

∂(r2 Dvr)

∂r
+ 1

r sin θ

∂(sin θDvθ)

∂θ
+ 1

r sin θ

∂(Dvφ)

∂φ
= 0 (F.12)

∂Sr

∂t
+ 1

r2

∂[r2(Srvr + P)]
∂r

+ 1

r sin θ

∂(sin θSrvθ)

∂θ
+ 1

r sin θ

∂(Srvφ)

∂φ

= 2P

r
+ �0hW2(v2

θ + v2
φ)

r
(F.13)

∂Sθ
∂t
+ 1

r2

∂(r2Sθvr)

∂r
+ 1

r sin θ

∂[sin θ(Sθvθ + P)]
∂θ

+ 1

r sin θ

∂(Sθvφ)

∂φ

= P cot θ

r
− �0hW2(v2

φ cot θ − vrvθ)

r
(F.14)
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∂Sφ
∂t
+ 1

r2

∂(r2Sφvr)

∂r
+ 1

r sin θ

∂(sin θSφvθ)

∂θ
+ 1

r sin θ

∂(Sφvφ + P)

∂φ

= −�0hW2vφ(vr + vθ cot θ)

r
(F.15)

∂τ

∂t
+ 1

r2

∂[r2(Sr − Dvr)]
∂r

+ 1

r sin θ

∂[sin θ(Sθ − Dvθ)]
∂θ

+ 1

r sin θ

∂(Sφ − Dvφ)

∂φ
= 0 . (F.16)

The discretized equation for spherical coordinates is given as

dUi, j,k

dt
= −r2

i+1/2Fr
i+1/2, j,k − r2

i−1/2Fr
i−1/2, j,k

r2
i ∆r

− sin θ j+1/2Fθi, j+1/2,k − sin θ j−1/2Fθi, j−1/2,k

ri sin θ j∆θ

−Fφi, j,k+1/2 − Fφi, j,k−1/2

ri sin θ j∆φ
+ Si, j,k . (F.17)

3.3 Spherically symmetric motion of gas with velocity β = v/c corresponds to
four-velocity uα = (W,Wβ, 0, 0) in spherical coordinates (c = 1). Rest-mass con-
servation gives

1

r2

d

dt

(
r2�W

)+W�
∂β

∂r
= 0 , (F.18)

where d/dt is the convective derivative defined by d
dt ≡ ∂

∂t + β ∂∂r . Similarly,
∇µT µ

α = 0 yields

1

r2

d

dt

(
r2Whuα

)+Whuα
∂β

∂r
+ ∂α p = 0 , (F.19)

where h = e + p. This gives two independent equations (α = 0, 1). Choose
∇µT µ

1 = 0 as one equation, and the projection uα∇µT µ
α = 0 as the other. Show

that conservation of momentum and energy may be expressed by

1

r2

d

dt

(
r2W2hβ

) = −∂p

∂r
−W2hβ

∂β

∂r
(F.20)

1

r2

d

dt

(
r2Wh

) = W
dp

dt
−Wh

∂β

∂r
. (F.21)

Apply equations (F.18) and (F.20) to the blast (the gas between FS and RS), and
make the approximation ∂β/∂r = 0, i.e.

W(t, r) = Γ(t) , rr < r < r f , (F.22)

where rr(t) and r f (t) are the instantaneous radii of RS and FS, respectively. Then
integration of equations (F.18) and (F.20) over r between RS and FS (at t = const)
yields
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Γ

r2

d

dr

(
r2 Σ Γ

) = �r(β − βr)Γ
2 + 1

4
� f (F.23)

1

r2

d

dr

(
r2 HΓ 2) = hr (β − βr)Γ

2 + pr (F.24)

Γ

r2

d

dr

(
r2 H Γ

) = Γ 2 dP

dr
+ (hr − pr)(β − βr)Γ

2 + 3

4
p f , (F.25)

where Σ ≡ ∫ r f
rr
� dr, H ≡ ∫ r f

rr
h dr, and P ≡ ∫ r f

rr
p dr. In the derivation of these

equations we used the identity for a function f(t, r) and F(t) = ∫ r f
rr

f(t, r) dr,∫ r f (t)

rr (t)

d f

dt
dr = dF

dt
− f f (β f − β)− fr(β − βr) . (F.26)

Here f f (t) ≡ f(t, r f [t]) and fr(t) ≡ f(t, rr[t]); βr = drr/dt and β f = dr f /dt are
the velocities of RS and FS in the lab frame. The relativistic blast is a very thin shell,
r f − rr ∼ r/Γ 2 � r, and we used r f ≈ rr ≈ r when calculating the integrals. In the
integrated equations we took into account that Γ � 1. Then the jump conditions at
the FS give β f − β = 1/4Γ 2 and h f = 4p f � � f . The convective derivative d/dt
has been replaced by β d/dr ≈ d/dr and Γ 2β by Γ 2 in the second equation.

Problems in Chapter 4

4.1 The perturbed orbital equation can be written as

d2u1

dφ2
+ u1 = 3G2 M2

L2
(1+ e cosφ)2

= 3G2 M2

L2

[
(1+ e2/2)+ 2e cosφ + (e2/2) cos 2φ

]
. (F.27)

This equation can be solved by means of the identity

d2

dφ2
(φ cosφ)+ φ sinφ = 2 cosφ . (F.28)

A solution to the perturbed equation is then given by

u1 = 3G2 M2

L2

[
1+ e2/2+ eφ sinφ − e2

6
cos 2φ

]
. (F.29)

The first term is simply a constant offset, and the third term oscillates around zero.
The second term represents a secular perturbation which accumulates over the orbits.
The full solution can therefore be written as

u = 1+ e cosφ + 3G2 M2e

L2
φ sinφ . (F.30)
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This expression can be rewritten as an equation for an ellipse with an angular period
deviating from 2π

u = 1+ e cos[(1−∆)φ] , (F.31)

where we have defined

∆ = 3G2 M2

L2
. (F.32)

We have therefore found that a planet suffers a perihelion advance each orbit by an
angle

∆φ = 2π∆ = 6πG2 M2

L2
. (F.33)

4.2 The Christoffel symbols for Schwarzschild are

Γ t
tr = G M

r(r−2G M) Γ r
tt = G M

r3 (r − 2G M) Γ r
rr = − G M

r(r−2G M)

Γ θrθ = 1
r Γ r

θθ = −(r − 2G M) Γ
φ
rφ = 1

r

Γ r
φφ = −(r − 2G M) sin2 θ Γ θφφ = − sin θ cos θ Γ

φ
θφ = cos θ

sin θ .

(F.34)

The geodesics equations give then the following relations

d2t

dλ2
+ 2G M

r(r − 2G M)

dt

dλ

dr

dλ
= 0 (F.35)

d2r

dλ2
+ G M

r3
(r − 2G M)

(
dt

dλ

)2

− G M

r(r − 2G M)

(
dr

dλ

)2

−(r − 2G M)

[(
dθ

dλ

)2

+ sin2 θ

(
dφ

dλ

)2]
= 0 (F.36)

d2θ

dλ2
+ 2

r

dr

dλ

dθ

dλ
− sin θ cos θ

(
dφ

dλ

)2

= 0 (F.37)

d2φ

dλ2
+ 2

r

dr

dλ

dφ

dλ
+ 2

cos θ

sin θ

dθ

dλ

dφ

dλ
= 0 . (F.38)

The third equation shows that a particle with initially θ̇ = 0 in the equatorial plane
will stay in the equatorial plane.

Problems in Chapter 6

6.1 Particle density, energy density and pressure are given for an ideal Fermi gas

n = 8π

(2π�)3

∫ pF

0
p2 dp (F.39)

� = 8π

(2π�)3

∫ pF

0

√
p2 + m2 p2 dp (F.40)

P = 1

3

8π

(2π�)3

∫ pF

0

p2√
p2 + m2

p2 dp . (F.41)
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Chemical equilibrium between protons, neutrons and electrons requires for the chem-
ical potentials

µn = µp + µe , (F.42)

where

µ = εF =
√

p2
F + m2 =

√
Λ2n2/3 +m2 (F.43)

with the definition Λ = (3π2
�)1/3. From the chemical equilibrium we obtain

n p

nn
= 1

8

⎡⎢⎣1+ 2(m2
n−m2

p−m2
e )

Λ2n2/3
n

+ (m2
n−m2

p)
2−2m2

e (m
2
n+m2

p)+4m4
e

Λ4n4/3
n

1+m2
n/Λ

2n4/3
n

⎤⎥⎦
3/2

. (F.44)

With the mass difference Q = mn −m p, and since Q � mn and me � mn , we can
simplify the expression

n p

nn
= 1

8

[
1+ (4Q/mn)(�0/mnnn)

2/3 + 4[(Q2 − m2
e)/m

2
n](�0/mnnn)

4/3

1+ (�0/mnnn)2/3

]3/2

(F.45)

where the density �0 = m4
n/Λ

3 = 6.11× 1015 g/cm3 is a characteristic density. For
the Fermi momentum of the electrons one obtains

p2
F,e = Λ2n2/3

e = m2
n(mnnn/�0)

2/3(n p/nn)
2/3

= (m2
n/4)(mnnn/�0)

4/3 + Qmn(mnnn/�0)
2/3 + Q2 − m2

e

1+ (mnnn/�0)2/3
. (F.46)

Since the maximal momentum of the electron in the classical neutron decay is
pmax =

√
Q2 −m2

e = 1.19 MeV, in neutron stars we have generally pF,e � pmax.
For small neutron densities nn , the proton–neutron ratio decreases with increasing

number density, until it reaches a minimum at the density

�min � �0

(
4(Q2 − m2

e)

m2
n

)3/4

= 1.28× 10−4 �0 = 7.8× 1011 g cm−3 . (F.47)

Beyond this density, n p/nn increases and goes asymptotically to the value of 1/8. At
nuclear densities, one finds typical values of n p/nn � 0.01 and pF,e � 100 MeV.
For much higher densities, muons are created, since pF,e > 105 MeV.

6.2 The maximal mass of a neutron star consisting of noninteracting neutrons
is Mmax = 0.71 M� with a central density �c = 4 × 1015 g/cm3 and a radius
R = 9.6 km.

6.3 Solvers for the TOV equations can easily be found on the web.
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6.6 From the expressions for the Kepler problem one obtains for the time derivative
φ̇, which follows from the angular momentum

L = M1 M2

M1 + M2
r2φ̇ (F.48)

and hence together with the expression for L

φ̇ = (M1 + M2) a
√

1− e2

r2
. (F.49)

In addition, the expression for r implies therefore

ṙ = e sinφ

√
M1 + M2

a(1− e2)
. (F.50)

With these relations one can derive the first and second time derivatives of the
moments of inertia

Ixx = M1x2
1 + M2x2

2 =
M1 M2

M1 + M2
r2 cos2 φ (F.51)

Iyy = M1 M2

M1 + M2
r2 sin2 φ (F.52)

Ixy = M1 M2

M1 + M2
r2 sinφ cosφ (F.53)

I = Ixx + Iyy = M1 M2

M1 + M2
r2 . (F.54)

the following expressions

İxx = − 2M1 M2√
(M1 + M2)a(1− e2)

r cosφ sinφ (F.55)

Ïxx = − 2M1 M2

a(1− e2)
(cos 2φ + e cos3 φ) (F.56)

İyy = 2M1 M2√
(M1 + M2)a(1− e2)

r (sinφ cosφ + e sinφ) (F.57)

Ïyy = 2M1 M2

a(1− e2)
(cos 2φ + e cosφ + e cos3 φ + e2) (F.58)

İxy = 2M1 M2√
(M1 + M2)a(1− e2)

r (cos2 φ − sin2 φ + e cosφ) (F.59)

Ïxy = − 2M1 M2

a(1− e2)
(sin 2φ + e sinφ + e sinφ cos2 φ) . (F.60)

From here we get the third time derivatives
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¨̇I xx = 2M1 M2

a(1− e2)
(2 sin 2φ + 3e cos2 φ sinφ) φ̇ (F.61)

¨̇I yy = − 2M1 M2

a(1− e2)
(2 sin 2φ + e sinφ + 3e cos2 φ sinφ) φ̇ (F.62)

¨̇I xy = − 2M1 M2

a(1− e2)
(2 cos 2φ − e cosφ + 3e cos3 φ) φ̇ (F.63)

¨̇I = − 2M1 M2

a(1− e2)
e sinφ φ̇ . (F.64)

These quantities determine the energy loss

−dE

dt
= 1

5

[
¨̇I ik
¨̇I ik − 1

3
( ¨̇I)2

]
= 1

5

[
( ¨̇I xx)

2 + ( ¨̇I yy)
2 + 2( ¨̇I xy)

2 − 1

3
( ¨̇I)2

]
. (F.65)

6.9 The Crab Nebula is a unique cosmic lab with an extremely broad spectrum of
nonthermal radiation (radio and optical emission is strongly polarized). The spectrum
extends through 20 decades in frequency space, ranging from radio wavelengths
to gamma-ray emission. It is commonly assumed that the synchrotron nebula is
powered by electrons and positrons generated by the central pulsar and terminated
by a standing reverse shock at a distance of about 0.1 pc from the pulsar (Fig. 1.8).
A discussion of the global spectrum of the Crab Nebula (Fig. F.1) can be found in
Aharonian and Atoyan [24] and Aharonian et al. [25].

Fig. F.1. Energy spectrum of the Crab Nebula compiled from the literature. The solid and
dashed curves correspond to synchrotron and inverse Compton emission, respectively. Figure
adapted from [25]
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6.10 We start with the Boltzmann equation for massless particles (photons or
neutrinos)

pα
∂ f

∂xα
+ Γ αβγ pβ pγ

∂ f

∂pα
=

(
d f

dτ

)
coll
, (F.66)

where f is the invariant neutrino (photon) distribution function, pα the neutrino four-
momentum and Γ the Christoffel symbols for the metric of a neutron star. Since
the collision term is only known in a comoving frame, we transform to comoving
momenta pα

paeαa
∂ f

∂xα
+ eαaω

a
bc pb pc ∂ f

∂pα
=

(
d f

dτ

)
coll
, (F.67)

with basis vectors ea for the comoving observer. The connection coefficients are
those derived in Sect. 4.2

ω1
00 = exp(−λ) (∂rΦ) (F.68)

ω1
22 = −

exp(−λ)
r

= ω1
33 = −ω2

21 = −ω3
31 (F.69)

ω2
33 = −

cot θ

r
= −ω3

32 . (F.70)

The neutrino four-momentum can be parametrized by

pa = Ê
(

1, µ,
√

1− µ2 cosχ,
√

1− µ2 sinχ
)
, (F.71)

where µ is the cosine of the angle between the neutrino momentum and the radial
direction, Ê is the neutrino energy in the comoving frame. With these quantities, the
Boltzmann equation is simply given by

Êet
0
∂ f

∂t
+ Êer

1
∂ f

∂r
− Êµet

0
∂ f

∂r
Ê2µω1

00
∂ f

∂ Ê

− Ê(1− µ2)(ω1
00 + ω1

22)
∂ f

∂µ
=

(
d f

dτ

)
coll
. (F.72)

As with photon distributions, one defines the nth moments

Mn = 1

2

∫ 1

−1
dµµn f , Qn = 1

2

∫ 1

−1
dµµn

(
d f

dτ

)
coll
. (F.73)

They satisfy the following evolution equations

Ê

(
et

0
∂M0

∂t
+ er

1
∂M1

∂r

)
−Ê2 ω2

00
∂M1

∂ Ê

−2Ê(ω1
00 + ω1

22)M1 = Q0 (F.74)

Ê

(
et

0
∂M1

∂t
+ er

1
∂M2

∂r

)
−Ê2 ω2

00
∂M2

∂ Ê

+Ê(ω1
00 + ω1

22) (M0 − 3M2) = Q1 . (F.75)
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We now introduce the number density Nν, the number flux Fν and the number source
term SN , together with the mean neutrino energy density Jν, energy flux Hν, pressure
Pν and energy source term SE by means of the definitions

Nν = 1

2π2

∫ ∞

0
M0 Ê2 dÊ (F.76)

Fν = 1

2π2

∫ ∞

0
M1 Ê2 dÊ (F.77)

SN = 1

2π2

∫ ∞

0
Q0 Ê d Ê (F.78)

Jν = 1

2π2

∫ ∞

0
M0 Ê3 dÊ (F.79)

Hν = 1

2π2

∫ ∞

0
M1 Ê3 dÊ (F.80)

Pν = 1

2π2

∫ ∞

0
M2 Ê3 dÊ (F.81)

SE = 1

2π2

∫ ∞

0
Q0 Ê2 dÊ . (F.82)

After integration over the neutrino energy and by using the continuity equation, one
recovers the neutrino (photon) transport equations

∂[Nν/nB]
∂t

+∂[4πr2 expΦ Fν]
∂r

= expΦ
SN

nB
(F.83)

∂[Jν/nB]
∂t

+Pν
∂[1/nB]
∂t

+ exp(−Φ) ∂[4πr2 exp(2Φ) Hν]
∂r

= expΦ
SE

nB
. (F.84)

The flux of energy L(r) per unit time through a spherical shell at distance r from
the center is proportional to the gradient of the temperature

L(r) = −4πr2κ(r)
∂[exp(Φ)T ]

∂r
exp(−Φ)

√
1− 2m(r)

r
, (F.85)

where the factor exp(−Φ)√1− 2m(r)/r corresponds to the relativistic correction
of the time-scale (redshift) and the shell thickness. For this purpose, it is useful to
introduce the shell volume A(r) defined by

∂A

∂r
= 4πr2n√

1− 2m(r)/r
, (F.86)
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where n(r) is the baryon number density. With this shell variable, one can write the
energy balance and the thermal energy transport as

∂

∂A
[L(A) exp(2Φ)] = −1

n

[
εν exp(2Φ)+ cV

∂[T expΦ]
∂t

]
(F.87)

∂

∂A
[T(A) exp(Φ)] = − 3κ�

4acT 3

L expΦ

4πr2
. (F.88)

These equations are supplemented by the stellar structure equations for the mass
distribution m(A) and the potential Φ(A)

∂m

∂A
= �

n

√
1− 2m(A)

r
(F.89)

∂Φ

∂A
= 4πr3 P + m(A)

4πr2n

1√
1− 2m(A)/r

. (F.90)

The pressure profile follows from the hydrodynamical equilibrium (see Sect. 2.7)

∂P

∂A
= −(�+ P)

∂Φ

∂A
. (F.91)

6.11 For systems consisting of a radio pulsar and a white dwarf, it is ex-
tremely difficult to measure the periastron advance, since these systems are
highly circular. Then also time dilation and gravitational redshift are difficult
to measure. The only relativistic effect, which can be used, is the Shapiro
time delay. If the range and shape of the Shapiro delay can be measured,
this gives the mass Mc of the companion (WD) and the inclination sin i. To-
gether with the mass function, this provides an accurate measurement of the
neutron star mass in such systems. With this method, the two post-Keplerian
parameters have been measured for the millisecond pulsar PSR J1909–3744
(P = 2.95 ms, Pb = 1.533449 d, projected semimajor axis a sin i = 1.89799
lt-s) [216]: (i) the range parameter r = G Mc/c3 = (1.004 ± 0.011) µs and
(ii) the shape parameter s = sin i = 0.99822 ± 0.00011. This gives the mass
of the white dwarf Mc = (0.2038 ± 0.0022)M� and the orbital inclination
i = (86.58 ± 0.11) degrees. Therefore, we get the neutron star mass Mn =
(1.438± 0.024)M�.

The eccentricity of the system is extremely low, e = 1.35 × 10−7. This corre-
sponds to ω̇ predicted by GR in the range of 0.14 deg yr−1. Since this mass of the
neutron star in a recycled system is only slightly higher than the masses observed
for other systems, it appears that the production of a millisecond pulsar is possible
with the accretion of less than 0.2 M�. Most of the mass would be lost from the
system.



624 F Solutions

Problems in Chapter 7

7.1 Since
√
γ = exp(ψ + µ2 + µ3), we find

αDiv

[∇ψ
α

]
= 1√

γ

{
∂A

[√
γ

α
gAB∂Bψ

]}
= α√

γ

{
expµ3

α
∂2[exp(ψ − µ2)∂2ψ] + expµ2

α
∂3[exp(ψ − µ3)∂3ψ]

+exp(ψ − µ2)

α
(∂2ψ) expµ3(∂2µ3)

+exp(ψ − µ3)

α
(∂3ψ) expµ2(∂3µ2)

−exp(ψ − µ2 + µ3)

α2
(∂2ψ)(∂2α)

−exp(ψ − µ3 + µ2)

α2
(∂3ψ)(∂3α)

}
= 1

R
∇A[RΨA] + Ψ3∇3µ2 + Ψ2∇2µ3 − 1

α
(∇AΨ)(∇Aα) . (F.92)

7.2 The components of the Riemann tensor in the orthonormal frame follow from
the curvature two-form

Ωa
b =

1

2
Ra

bcd Θ
c ∧Θd , (F.93)

with the following expressions

R1010 = −Ψ2(∇2ν)− Ψ3(∇3ν)− 1

4

R2

α2
(∇ω · ∇ω) (F.94)

R2020 = − 1

α
∇2(∇2α)− (∇3ν)(∇3µ2)+ 3

4

R2

α2
(∇2ω)

2 (F.95)

R3030 = − 1

α
∇3(∇3α)− (∇2ν)(∇2µ3)+ 3

4

R2

α2
(∇3ω)

2 (F.96)

R3020 = − 1

α
∇3(∇2α)+ (∇3ν)(∇2µ3)+ 3

4

R2

α2
(∇3ω)(∇2ω) (F.97)

R1212 = 1

R
∇2(RΨ2)+ Ψ3(∇3µ2)+ 1

4

R2

α2
(∇2ω)

2 (F.98)

R1313 = 1

R
∇3(RΨ3)+ Ψ2(∇2µ3)+ 1

4

R2

α2
(∇3ω)

2 (F.99)

R2323 = exp(−µ2)∇3[exp(µ2)∇3µ2]
+ exp(−µ3)∇2[exp(µ3)∇2µ3] = ∆(µ2, µ3) (F.100)

R1213 = 1

R
∇3(RΨ2)− Ψ3(∇2µ3)+ 1

4

R2

α2
(∇2ω)(∇3ω) (F.101)
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R1023 = −1

2
exp(−µ3)/α)∇2[(R exp(µ3)∇3ω]

+1

2
exp(−µ2)∇3[(R exp(µ2)/α)∇2ω] (F.102)

R2012 = R

α
(∇2ω)(Ψ2 −∇2ν/2)+ 1

2α
∇2[R∇2ω]

+ R

2α
(∇3ω)(∇3µ2) (F.103)

R2013 = 1

2α
∇2[R∇3ω] + R

2α
(∇2ω)[2Ψ3 −∇3µ2 −∇3ν] (F.104)

R3013 = 1

2α
∇3[R∇3ω] + R

α
(∇3ω)[Ψ3 −∇3ν/2]

+ R

2α
(∇2ω)(∇2µ3) . (F.105)

The following components vanish identically

R1012 = 0 = R1013 = R1002 = R1003 = R2023 = R3023 = R1223 = R1323 . (F.106)

From these curvature, you can directly obtain the Ricci tensors.

7.4 For the calculation of the hydrodynamical equilibrium in the metric field of a
rotating star

P,A + P√−g
∂A

[√−g
]
= T BC ∂B(gCA)− Tµν Γ B

µν gBA , (F.107)

we need the Christoffel symbols (A = 2, 3)

Γ A
00 = −

1

2
exp(−2µ)∂A[ω2 exp 2Ψ − α2] (F.108)

Γ A
11 = −(∂AΨ) exp(2Ψ − 2µ) , Γ A

22 = ∂Aµ (F.109)

Γ A
01 =

1

2
exp(−2µ)∂A(ω expΨ) , Γ A

33 = −∂Aµ . (F.110)

By inserting these relations into the above equation, we obtain

P,A = −P

[
∂Aν + ∂AΨ + 1

2
exp(−2ν)∂A(ω

2 exp 2Ψ − exp 2ν)

− ω∂A(ω exp 2Ψ)− exp 2Ψ(exp−2Ψ − ω2 exp−2ν)

]
−(�+ P)(ut)2

[
−1

2
exp(−2ν)∂A(ω

2 exp 2Ψ − exp 2ν)

+Ω∂A(ω exp 2Ψ)−Ω2 exp 2Ψ∂AΨ

]
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= −(�+ P)∂A lnα

−(�+ P)(ut)2 exp 2Ψ
[
(ω−Ω)2∂Aν − (ω−Ω)∂Aω

−(ω−Ω)2∂AΨ
]
. (F.111)

In the last bracket we add and subtract the term (ω−Ω)∂AΩ

P,A = −(�+ P)∂A lnα

−(�+ P)
γ 2

α2
exp 2Ψ

[
(ω−Ω)2∂Aν − (ω−Ω)∂A(ω−Ω)

−(ω−Ω)2∂AΨ − (ω−Ω)∂AΩ
]

= −(�+ P)∂A lnα

+1

2
(�+ P)

γ 2

α2
exp 2ν ∂A[exp(2Ψ − 2ν)(ω−Ω)2]

+(�+ P)
γ 2

α2
exp 2Ψ(ω−Ω)∂AΩ . (F.112)

Since the three-velocity is given by

V 2 = exp(2Ψ − 2ν)(ω−Ω)2 (F.113)

with the Lorentz factor γ = 1/
√

1− V 2 and ut = γ/α, we obtain

P,A = −(�+ P)∂A lnα

+1

2
(�+ P)γ 2 ∂A[V 2 − 1]

+(�+ P)(ut)2 exp 2Ψ(ω−Ω)∂AΩ . (F.114)

Now, we use the identity

(ut)2 exp 2Ψ(ω−Ω) = −ut [g01ut + g11u1] = −utuφ . (F.115)

With this, the equilibrium condition can be written as

P,A = (�+ P)
[
∂A ln

(γ
α

)
− utuφ ∂AΩ

]
. (F.116)

Problems in Chapter 8

8.1 From the discussion in Sect. 4.4, we get the two expressions for bound orbits

τ = 1

L

∫
dφ

u2
= 1

L

∫
dφ

dχ

dχ

u2
(F.117)

and
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t = E

L

∫
dφ

dχ

dχ

u2(1− 2Mu)
. (F.118)

Using the explicit solution, we can bring this to the form

τ = l3/2

√
M

√
1− µ(3+ e2)

∫ π

χ

dχ

(1+ e cosχ)2
√

1− 2µ(3+ e cosχ)
(F.119)

and

t = l3/2

√
M

√
(2µ− 1)2 − 4µ2e2 (F.120)

×
∫ π

χ

dχ

(1+ e cosχ)2
√

1− 2µ(3+ e cosχ)
√

1− 2µ(1+ e cosχ)
.

With the definition of the Newtonian period

P =
√

4π2l3

(1− e2)3G M
, (F.121)

the factors in front of the integrals can be written as

1

2π
P (1− e2)3/2

√
1− µ(3+ e2) (F.122)

and

1

2π
P (1− e2)3/2

√
(2µ− 1)2 − 4µ2e2 . (F.123)

In the case e = 0, the orbit is a circle with radius rc given by

rc = l , µ = M/rc . (F.124)

Angular momentum L and energy E of the orbit are related to the parameter l and e
given by

L2 = Mrc

1− 3M/rc
,

E2

L2
= (1− 2M/rc)

2

Mrc
. (F.125)

The first equation gives a quadratic equation for the radius

r2
c − L2rc/M + 3L2 = 0 (F.126)

with the solutions

rc = L2

2M

[
1±

√
1− 12M2/L2

]
. (F.127)
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Therefore, no circular orbit is possible for L/M < 2
√

3, and for the minimum
allowed value of L/M we find

rc = 6M , E2 = 8/9 , L/M = 2
√

3 . (F.128)

The larger of the roots locates the minimum of the effective potential curve, while the
smaller root locates the maximum in the effective potential. Therefore, the circular
orbit with the larger radius will be stable, the orbit of the smaller radius unstable.

The periods for one complete revolution of these circular orbits, measured in
proper time and coordinate time t, are

τperiod = P

√
1− 3µ

1− 6µ
(F.129)

and

tperiod = P√
1− 6µ

. (F.130)

Note that tperiod →∞ for rc → 6M.

8.2 In cosmology, dark energy is a hypothetical form of energy which permeates
all of space and has strong negative pressure. According to the theory of relativity,
the effect of such a negative pressure is qualitatively similar to a force acting in
opposition to gravity at large scales. Invoking such an effect is currently the most
popular method for explaining the observations of an accelerating Universe as well
as accounting for a significant portion of the missing mass in the Universe.

Two proposed forms for dark energy are the cosmological constant Λ, a con-
stant energy density filling space homogeneously, and quintessence, a dynamic field
whose energy density can vary in time and space. Distinguishing between the alter-
natives requires high-precision measurements of the expansion of the Universe to
understand how the speed of the expansion changes over time. The rate of expansion
is parameterized by the cosmological equation of state. Measuring the equation of
state of dark energy is one of the biggest efforts in observational cosmology today.
Other ideas for dark energy have come from string theory, brane cosmology and the
holographic principle.

8.3 The Riemann tensors for spherically symmetric spacetimes can be found in
Sect. 4.2.1.

8.4 For this purpose, we define two new potentials

X = χ + ω =
√
∆+ aδ

[r2 + a2 + a
√
∆δ]√δ (F.131)

Y = χ − ω =
√
∆− aδ

[r2 + a2 − a
√
∆δ]√δ . (F.132)

The equations
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−µ
δ
(µ2 + µ3),2 + r − M

∆
(µ2 + µ3),3 = 2

(X + Y)2
(X,2Y,3 + Y,2 X,3) (F.133)

and

2(r − M)
∂

∂r
(µ2 + µ3) +2µ

∂

∂µ
(µ2 + µ3)

= 4

(X + Y)2
(∆X,2Y,2 − δX,3Y,3) −3

M2 − a2

∆
− 1

δ
. (F.134)

Making use of the solutions for X and Y with their derivatives, one obtains after
some calculations the two equations

−µ
δ
(µ2 + µ3),2 + r − M

∆
(µ2 + µ3),3 = µ

�2∆δ

[
(r − M)(�2 + 2a2δ)− 2r∆

]
(F.135)

and

(r − M)
∂

∂r
(µ2 + µ3)+ µ ∂

∂µ
(µ2 + µ3) = 2− (r − M)2

∆
− 2

rM

�2
. (F.136)

These two equations are solved by means of the ansatz

exp(µ2 + µ3) = �2

√
∆
. (F.137)

The solutions for the two meridional metric functions are therefore

exp(2µ2) = �2/∆ , exp(2µ3) = �2 . (F.138)

8.7 The Riemann tensors for the Kerr solution obey the following symmetries

R1213 = R0302 , R1330 = R1202 , R0202 = −R1313 (F.139)

R0303 = −R1212 , R2323 = −R0101 = R0202 + R0303 . (F.140)

A straightforward calculation gives the following tetrad components

R0101 = −R2323 = −Mr

�6
(r2 − 3a2 cos2 θ) (F.141)

R0202 = −R1313

= Mr

Σ2�6
(r2 − 3a2 cos2 θ) [2(r2 + a2)2 + a2∆ sin2 θ] (F.142)

R0303 = −R1212

= − Mr

Σ2�6
(r2 − 3a2 cos2 θ) [(r2 + a2)2 + 2a2∆ sin2 θ] (F.143)
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R0123 = aM cos θ

�6
(3r2 − a2 cos2 θ) (F.144)

R0213 = aM cos θ

Σ2�6
(3r2 − a2 cos2 θ)[2(r2 + a2)2 + a2∆ sin2 θ] (F.145)

R0312 = aM cos θ

Σ2�6
(3r2 − a2 cos2 θ)[(r2 + a2)2 + 2a2∆ sin2 θ] (F.146)

R0302 = R1213

= −aM cos θ

Σ2�6
(3r2 − a2 cos2 θ) 3a

√
∆(r2 + a2) sin θ (F.147)

R0212 = R1330

= −Mr cos θ

Σ2�6
(r2 − 3a2 cos2 θ) 3a

√
∆(r2 + a2) sin θ . (F.148)

These components become singular only for θ = π/2 and r = 0. This is the ring
singularity for the Kerr solution.

8.8 Ray-tracers are suitably developed by applying object-oriented methods (C++
classes).

8.9 The equations of motion in the gravitational field of a gravastar can be solved
by

dt

ds
= E

(
1

f
− f ω̃2

�2

)
+ L

f ω̃

�2
(F.149)

dφ

ds
= −E

f ω̃

�2
+ L

f

�2
(F.150)

For motion in the equatorial plane we have(
dr

ds

)2 exp(2γ)

f
= E2

f
− f

�2
(L − ω̃E)2 ≡ V(�) (F.151)

which defines an effective potential V(�). Circular orbits follow from the condition
V = 0 = dV/d� which determine the energy and angular momentum

E =
√

f√
1− f 2x2/�2

(F.152)

L = E(p+ ω̃) (F.153)

with the definitions

p = �2
(
−l +

√
l2 + m − m2�2

)
/n (F.154)

l = f ˙̃ω (F.155)

m = ḟ / f (F.156)

n = f − �2 ḟ (F.157)

ḟ ≡ d f/d�2 (F.158)
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The innermost stable circular orbit (ISCO) follows from d2V/d�2 = 0.

Problems in Chapter 9

9.1 The spin evolution of black holes is discussed in [299].

9.2 The evolution of a massive black hole pair is first given by the action of dynamical
friction by a uniform background of light stars with isotropic velocity distribution.
These black holes form a bounded pair (binary), and the binding energy of the binary
increases over time through dynamical friction. If the dynamical friction remains
effective until the separation of the two black holes in the binary becomes small
enough for the gravitational radiation to shrink the separation further, the two black
holes will merge. Such mergings of two massive black holes would emit strong
gravitational wave which will be observable through space-based gravitational wave
detectors such as LISA. For more details, see [290]

9.3 If the stellar population of the bulge contains black holes formed in the final
core collapse of ordinary stars with M ≥ 30M�, then about 25,000 stellar mass
black holes should have migrated by dynamical friction into the central parsec of the
Milky Way, forming a black hole cluster around the central supermassive black hole.
These black holes can be captured by the central black hole when they randomly
reach a highly eccentric orbit due to relaxation, either by direct capture (when their
Newtonian peribothron is less than four Schwarzschild radii), or after losing orbital
energy through gravitational waves. The overall depletion timescale is ∼ 30 Gyr, so
most of the 25,000 black holes remain in the central cluster today. The presence of
this black hole cluster would have several observable consequences. First, the low-
mass, old stellar population should have been expelled from the region occupied
by the black hole cluster due to relaxation, implying a core in the profile of solar-
mass red giants with a radius of ∼ 2 pc (i.e. 1′). The observed central density cusp
(which has a core radius of only a few arcseconds) should be composed primarily
of young (≤ 1 Gyr) stars. Second, flares from stars being captured by supermassive
black holes in other galaxies should be rarer than usually expected because the older
stars will have been expelled from the central regions by the black hole clusters
of those galaxies. Third, the young (≤ 2 Gyr) stars found at distances ∼ 3–10 pc
from the Galactic center should be preferentially on highly eccentric orbits. Fourth,
if future high-resolution K-band images reveal sources microlensed by the Milky
Way’s central black hole, then the cluster black holes could give rise to secondary
(“planet-like”) perturbations on the main event. For more details, see [298].

During five years of Chandra observations, Muno et al. [306] have identified
seven X-ray transients located within 23 pc of Sgr A*. These sources each vary in
luminosity by more than a factor of 10 and have peak X-ray luminosities greater
than 5×1033 ergs s−1, which strongly suggests that they are accreting black holes or
neutron stars. The peak luminosities of the transients are intermediate between those
typically considered outburst and quiescence for X-ray binaries. Remarkably, four
of these transients lie within only 1 pc of Sgr A*. This implies that, compared to the
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numbers of similar systems located between 1 and 23 pc, transients are overabundant
by a factor of > 20 per unit stellar mass within 1 pc of Sgr A*. It is likely that the
excess transient X-ray sources are low-mass X-ray binaries that were produced,
as in the cores of globular clusters, by three-body interactions between binary star
systems and either black holes or neutron stars that have been concentrated in the
central parsec through dynamical friction. Alternatively, they could be high-mass
X-ray binaries that formed among the young stars that are present in the central
parsec.

9.6 The light cylinder surfaces are given by the solution of the equation

(ΩF − ω)2#2
L = c2α2 (F.159)

for given ΩF = bΩH with b ≤ 1. With the expressions for α(r, θ), ω(r, θ) and
ω̃(r, θ) this can be transformed to an implicit equation for rL = rL(θ).

9.7 The general expression for the redshifted energy flux SE and the angular
momentum flux about the axis of rotation SL are given by the energy–momentum
tensor

SE = 1

4π

[
α(E× B)− ω(E ·m)E− ω(B ·m)B+ 1

2
ω(E2 + B2)m

]
,

SL = 1

4π

[
−(E ·m)E− (B ·m)B+ 1

2
(E2 + B2)m

]
. (F.160)

Since the toroidal component of the fluxes are irrelevant, we only need to consider
the poloidal components

Sp
L = −

#

4π
|BT |Bp = I

2πα
Bp, (F.161)

Sp
E =

α

4π
Ep × BT + ωSp

L =
I

2π

(
ω

α
Bp − 1

#2
Ep ×m

)
.

Thus, at the neutron star surface where α = α(rs) �= 0,

−SL · n → dJ

dΣsdt
= − I

2πα
B⊥ = − I

4π2α#
(∇Ψ × eφ) · n (F.162)

−SE · n → dM

dΣsdt
= − I

2π

[
ω

α
B⊥ − 1

#
(EP × eφ) · n

]
= − I

2πα
ΩF B⊥ = ΩF

dJ

dΣsdt

where n denotes the unit vector outer normal to the neutron star surface. Now
note that when the spin J of the rotating neutron star and the magnetic field B are
parallel, B⊥ > 0, I > 0 whereas when J and B are antiparallel, B⊥ < 0, I < 0
due to their definitions (16) and (19). Namely, the magnetic flux (and B) is defined
to be positive/negative when it directs upward/downward while the poloidal current
is defined to be positive/negative when it directs downward/upward as we noted
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earlier. Thus one always has IB⊥ > 0, and hence from eq.(41) above, we always
have

−SL · n = − I

2πα
B⊥ < 0, (F.163)

−SE · n = − I

2πα
ΩF B⊥ < 0.

Since the angular momentum and the energy flux going into the neutron star surface
are all negative, this means that the rotating neutron star (i.e. the pulsar) experiences
magnetic braking torque, namely spins-down and as a result, always loses part of its
rotational energy (at the surface).

9.8 (i) Substituting E = Ep = −(ΩF − ω)/(2πα)∇Ψ into the Maxwell equation
∇ × (αE) = (B · ∇ω)m, one can readily realize that

(B · ∇)ΩF = 0 (F.164)

indicating that ΩF is constant on magnetic surfaces, i.e. ΩF = ΩF(Ψ), which
represents the generalized Ferraro’s isorotation law.
(ii) Combining

– the freezing-in condition: ET + 1
c (v× B)T = 0 ,

– the particle conservation: ∇ · (αγnv) = 0 ,
– the Maxwell equation: ∇ · B = 0

one ends up with up = γvp = η
(
Bp/αn

)
and hence from

uT = γvT = η
(

1

αn
BT

)
+ γ

[
ΩF − ω
α

]
eφ (F.165)

it follows that

u = γv = η

αn
B+ γ

[
ΩF − ω
α

]
eφ , (F.166)

where the quantity η represents the particle flow along the magnetic flux or the
particle-to-magnetic field flux ratio.
Then plugging u back into the particle number conservation yields

0 = ∇ · (αnu) = ∇ · (ηB)

= η(∇ · B)+ (B · ∇)η = (B · ∇)η , (F.167)

which implies that η must be constant on magnetic surfaces as well, i.e. η = η(Ψ).
(iii)–(iv)
Let ξµ be a Killing field associated with an isometry of the background spacetime
metric, then ∇ν(Tµνξµ) = 0. Since stationary and axisymmetric spacetimes have
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two Killing fields kµ = (∂/∂t)µ and mµ = (∂/∂φ)µ, respectively, the energy flux
and angular momentum flux vector

PµE = −Tµνkν , PµL = Tµνmν (F.168)

are covariantly conserved. Thus using,

Tµνp + Tµνem = nµ uµuν + Pgµν + 1

4π

{
Fµα Fνα − 1

4
gµνFαβFαβ

}
(F.169)

uµ = (γ, γv) =
(
γ,
η

nα
B+ γ

[
ΩF − ω
α

]
eφ

)
(F.170)

and

P A
E = −T A

t = nu A E , (A = r, θ) (F.171)

P A
L = T A

φ = nu A L , (F.172)

one gets two more integrals of motion [72, 97, 98]

E = E(Ψ) = ΩF I

2π
+ µη (αγ + ωuφ), (F.173)

L = L(Ψ) = I

2π
+ µη uφ

together with the total loss of energy and angular momentum given by

Wtot =
∫ Ψmax

0
E(Ψ) dΨ , (F.174)

Ktot =
∫ Ψmax

0
L(Ψ) dΨ . (F.175)

(v) The entropy conservation ∇α(nsuα) = 0 reduces, for stationary axisymmetric
case, to

∇ · (αnsu) = 0 . (F.176)

Thus using

u = η

αn
B+ γ

[
ΩF − ω
α

]
eφ , (F.177)

one gets

0 = ∇ · (αnsu) = ∇ · (ηsB) (F.178)

= s∇ · (ηB)+ η (B · ∇)s = ηB · ∇)s
which implies that the entropy per particle s must be constant on magnetic surfaces
as well, s = s(Ψ). To summarize, for the stationary axisymmetric case, there are
five-integrals of motion (constants on magnetic surfaces)
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{ΩF(Ψ), η(Ψ), s(Ψ), E(Ψ), L(Ψ)} . (F.179)

We shall now show that once the poloidal magnetic field Bp and the five-integrals
of motion given above are known, the toroidal magnetic field Bφ and all the other
plasma parameters characterizing a plasma flow can be determined. To do so, we
solve the two conservation laws and the toroidal component

uφ = η

αn
Bφ + γ

[
ΩF − ω
α

]
# = − 2ηI

α2n#
+ γ

[
ΩF − ω
α

]
# (F.180)

for the Lorentz factor γ , the angular momentum uφ and the poloidal current flux
function I to get [72, 98]

γ(Ψ, r) = E

αηµ

α2(1−ΩF L/E)− M2(1− ωL/E)

α2 − (ΩF − ω)2#2 − M2
(F.181)

uφ(Ψ, r) = E

#ηµ

(1−ΩF L/E)(ΩF − ω)#2 − M2L/E

α2 − (ΩF − ω)2#2 − M2
(F.182)

I(Ψ, r) = 2πη
α2 L − (ΩF − ω)#2(E − ωL)

α2 − (ΩF − ω)2#2 − M2
. (F.183)

The quantity

M2 ≡ 4πµη2

n
= α2u2

p

u2
A

(F.184)

is the square of the Mach number of the poloidal velocity u p = ηBp/nαwith respect
to the Alfvén velocity u A = Bp/

√
4πnµ. The above expressions have critical points,

where the denominator vanishes, i.e. at positions along the flow, where

α2(rA)− (ΩF − ω(rA))
2#2

A = M2
A . (F.185)

These are the Alfvén points along the flow. For given rotation, this equation has two
solutions, an inner Alfvén point and an outer one. In order to get regular expressions
at the Alfvén points, the nominators also have to vanish. This fixes the total angular
momentum L

M2
A L/E = #2

A(ΩF − ω(rA))(1−ΩF L/E) . (F.186)

In order to determine this Mach number, consider

γ 2 − u2 = γ 2 − γ 2v2 = γ 2(1− v2) = 1 (F.187)

and into this relation, we substitute the above expressions to get

FK

#2 D2
= 1

64π4

M4(∇Ψ)2
#2

+ α2η2µ2 , (F.188)

where
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D = α2 − (ΩF − ω)2#2 − M2 (F.189)

FK = α2#2(E −ΩF L)2[α2 − (ΩF − ω)2#2 − 2M2]
+M4[#2(E − ωL)2 − α2L2] . (F.190)

D is the generalization of the light cylinder function defined for force-free mag-
netospheres. This is the Bernoulli equation. We bring the wind equation into di-
mensionless form by scaling radii with the asymptotic light cylinder, RL = c/ΩF ,
x = #/RL ,

α2x2 FK (x;M2, ε)

D2(x;M2)

(
E

µ

)2

= α2x4 + B2
px4

16π2µ2η2
M4 . (F.191)

The parameter ε = ΩF L/E is a measure for the inertia of the plasma, with ε = 1
in the force–free limit. The last term on the right-hand side can be scaled to the foot
point of the magnetic flux surface

Φ−1
Ψ (x) =

Bp#
2

Bp,∗#2∗
. (F.192)

One of the essential parameters which determine the plasma flow along the flux tube
is then given by Michel’s magnetization parameter σ∗ defined as follows [97, 98]

σ∗(Ψ) = (Bp,∗#2∗ )c
4πµη(Ψ)R2

L(Ψ)
. (F.193)

The asymptotic Lorentz factor achieved in the plasma flow along a given flux surface
is then essentially determined by the magnetization [98]. Highly relativistic flows
are achieved for σ∗ � 1.

To summarize, once Bp, ΩF(Ψ), η(Ψ), s(Ψ), E(Ψ), L(Ψ) are known, the
characteristics of the plasma flow, I, γ, uφ, u p, M2 can be determined by the
above wind equation (F.188). For more details, see [98, 157, 158].

Problems in Chapter 10

10.1 MRI Dispersion Relation
The complete dispersion relation for MRI can be found in [49]. We consider per-
turbations of the form exp(i[k · x− ωt]). The perturbed MHD equations lead to the
following dispersion relation[

ω2 −(k · VA)
2] [ω4 − k2(c2

S + V 2
A)ω

2 + (k · VA)
2k2c2

S

]
−
[
κ2ω4 − ω2(κ2k2(c2

S − V 2
Aφ)+

(
k · VA)

2 dΩ2

d ln R

)]
−k2c2

S(k · VA)
2 dΩ2

d ln R
= 0 . (F.194)
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κ is the epicycle frequency defined as

κ2 = dΩ2

d ln R
+ 4Ω2 . (F.195)

This is a third-order equation in ω2 which has three solution branches. In the non-
rotating case, these solutions are the normal MHD waves, the Alfvén waves and the
slow and fast magnetosonic waves. For Keplerian rotation, the slow wave becomes
unstable forΩ2 = (k · VA)

2/3. For this, make a plot of ω2 vs.Ω2.
In the Boussinesque approximation, c2

S →∞, the dispersion relation is simpli-
fied to a biquadratic equation

ω4 − ω2 [κ2 + 2(k · VA)
2]+ (k · VA)

2
(
(k · VA)

2 + dΩ2

d ln R

)
= 0 . (F.196)

ω2 will be negative, if

(k · VA)
2 < − dΩ2

d ln R
. (F.197)

Make a plot of the growth rate in units of Keplerian angular velocity as a function
of the wavenumber, k · VA.

10.2 Ring Diffusion
The calculation is straightforward.

10.3 Relativistic Keplerian Disks
References for a modern treatment of relativistic Keplerian disks can be found
in [253].

10.4 Radiative Transfer around Rotating Black Holes
(i) The metric tensor of the Kerr geometry in cylindrical coordinates is given by

gtt = −1+ 2M

R
− Mz2

R3

(
1+ 2a2

R2

)
(F.198)

gtφ = −2aM

r
+ aMz2

r3

(
3+ 2a2

r2

)
(F.199)

gφφ = r2 + a2 + 2Ma2

r
− a2z2

r2

(
1+ 5M

r
+ 2Ma2

r3

)
(F.200)

gRR = 1

A
− z2

r2A2

[
M

r

(
3− 4M

r

)
− a2

r2

(
3− 6M

r
+ 2a2

r2

)]
(F.201)

gRz = z

RA

(
2M

R
− a2

R2

)
(F.202)

gzz = 1+ z2

R2A

(
2M

R
− 2Ma2

R3
+ a4

R4

)
. (F.203)

(ii) The dominant part of the radial Euler equation leads to
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(Ut)2 Γ 2
tt + 2UtUφ Γ 2

tφ + (U R)2 Γ 2
φφ = 0 . (F.204)

Together with the normalization condition UµUµ = −1, this yields the desired
results for Ut and Uφ.
(iii) The transformation matrices L are explicitly given by

L =

⎛⎜⎜⎝
−Ut −Uφ 0 0
L1

t Lφφ 0 0
0 0 1/

√
A 0

0 0 0 1

⎞⎟⎟⎠ (F.205)

and the inverse relation

L̄ =

⎛⎜⎜⎝
Ut L̄t

φ 0 0
Uφ L̄φφ 0 0
0 0

√
A 0

0 0 0 1

⎞⎟⎟⎠ , (F.206)

where

Lφt = −
√

A
B

√
M
R Lφφ = R

√
A
B

(
1+ a

R

√
M
R

)
L̄ t
φ = 1√

AB

(
1+ a2

R2 − 2a
R

√
M
R

)
, L̄φφ = 1

R
√

AB

(
1− 2M

R + a
R

√
M
R

) (F.207)

(iv) The vector mi is given by

mi = ν2
[
ωi

tt + (ωi
tk + ωi

kt)n
k + ωi

jkn jnk
]

(F.208)

with the expression for transfer equation

mi ∂ f

∂ p̄i
= mt ∂ f

∂ν
+

[
mt

√
1− µ2 −m1 sinχ − m2 cosχ

] √
1− µ2

µν

∂ f

∂µ

+−m1 cosχ +m2 sinχ

ν
√

1− µ2

∂ f

∂χ
. (F.209)

(v) The lowest order in the transfer equation has the expression

ν
√

A
√

1− µ2 cosχ
∂ f

∂R
+ νµ ∂ f

∂z
+ ν

r
√

B

[√
M

r
+ E√

A

√
1− µ2 sinχ

]
∂ f

∂φ

+3A

2B

√
M

r3
(1− µ2) sinχ cosχ ν2 ∂ f

∂ν
(F.210)

−
[

3A

2B

√
M

r3
(1− µ2) sinχ + A− 1

r
√

A

]
νµ

√
1− µ2 cosχ

∂ f

∂µ

+
[

3A

2B

√
M

r3
cos2 χ − sinχ

r
√

A
√

1− µ2

(
1− M

r
− µ2F

)
− 2

√
M

r3

]
ν
∂ f

∂χ
= Q̄ ,
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where

E = 1− 2M

r
+ a

r

√
M

r
, F = 1+ M

r
− a2

r2
. (F.211)

For an axisymmetric radiation field, we have

∂ f

∂φ
= 0 ,

∫ 2π

0
sinχ f dχ = 0 . (F.212)

After integration of the transfer equation over χ, we obtain the simple equation

µν3 ∂ f

∂z
= µ ∂ Īν

∂z
= ν2 Q̄ , (F.213)

where Īν = Īν(R, z, µ) is the specific intensity as measured in the local plasma
frame LRFM.
(viii) The relevant interactions between plasma and photons near the horizon of a
black hole are Bremsstrahlung and Compton scattering, which gives the scattering
operator in the plasma frame

ν2 Q̄ = κ f f �0[Bν − Īν]

+κT�0
ν

me

∂

∂ν

[
νTe Bν

∂

∂ν

(
Īν
Bν

)
+ Īν

2ν2
( Īν − Bν)

]
. (F.214)

κ f f is the Bremsstrahlung opacity and κT = 0.4 cm2/g the Thomson opacity. The
differential operator describes Compton scattering in the Fokker–Planck approxi-
mation [13].

10.6 The solution of this problem is discussed in [36].
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Accretion disk: Flat disk of matter spiraling down onto the surface of a star or
into a black hole. Often, the matter originated on the surface of a companion star in
a binary system. Viscosity within the disk generates heat and saps orbital momentum,
causing material in the disk to spiral inward, until it impacts in an accretion shock on
the central body if the body is a star, or slips toward the event horizon if the central
body is a black hole. The most spectacular accretion disks found in nature are
those of active galactic nuclei and quasars, which are believed to be supermassive
black holes at the center of galaxies. The accretion disk of a black hole is hot
enough to emit X-rays just outside of the event horizon. In the modern view, an
accretion disk is a quasistationary solution of radiative magnetohydrodynamics,
provided the initial configuration has sufficient gas, angular momentum and magnetic
fields.

Active galactic nucleus (AGN): The central region of a galaxy that shows unusual
energetic activity.

Angular resolution: The ability of a telescope to distinguish two adjacent objects on
the sky, or to study the fine details on the surface of some object; often synonymous
with “clarity” or “sharpness.”

Arcsecond (arcsec): A unit of angular measure of which there are 60 in 1 arcminute
(or therefore 3600 in 1 arc degree).

Binary star system: A system which consists of two stars orbiting about their
common center-of-mass, held together by their mutual gravitational attraction. Most
stars are found in binary star systems.

Black hole: A dense, compact object whose gravitational pull is so strong that,
within a certain distance of it, nothing can escape, not even light. Black holes are
thought to result from the collapse of certain very massive stars at the ends of their
evolution. Current theories predict that all the matter in a black hole is piled up in
a single point (or ring, when rotating) at the center, but we do not understand how
this central singularity works. To properly understand the black hole center requires
a fusion of the theory of gravity with the theory that describes the behavior of matter
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on the smallest scales, called quantum mechanics. This unifying theory has already
been given a name, quantum gravity, but how it works is still unknown.

Blazars: A class of active galaxies that exhibit rapidly variable emission from the
radio through gamma-ray band. The radiation is predominantly from jets moving
near the speed of light. Blazars are thought to be radio galaxies with their jets oriented
toward Earth.

Cataclysmic system: Cataclysmic variables are a class of binary stars containing
a white dwarf and a companion star. The companion star is usually a red dwarf,
although in some cases it is another white dwarf or a slightly evolved star (subgiant).
Several hundreds of cataclysmic variables are known. The stars are so close to each
other that gravity of the white dwarf distorts the secondary, and the white dwarf
accretes matter from the companion.

Cauchy horizon: A Cauchy horizon is a light-like boundary of the domain of
validity of a Cauchy problem (a boundary value problem of the theory of partial
differential equations). One side of the horizon contains closed space-like geodesics
and the other side contains closed time-like geodesics. The simplest example is the
internal horizon of a Reissner–Nordstr"om black hole. It also appears in the Kerr
black hole.

CFL condition: The Courant–Friedrichs–Levy condition, usually abbreviated to
the CFL condition, says that in any time-marching computer simulation the time-
step must be less than the time for some significant action to occur, and preferably
considerably less. For example, if we have a computer simulation of a satellite
orbiting a planet, the discrete time interval which we use must obviously be less than
the orbital period on common sense grounds. For the sake of stability, it must be less
than one quarter of the orbital period, and, in practice, one will take a step of about
one fortieth of the orbital period. The CFL condition was originally formulated in
the context of compressible fluid flows. If we divide the flow volume up into cells,
then we need a time-step less than the time taken for a sound wave to cross one of
the cells.

Chandrasekhar mass: The upper limit to the mass of a white dwarf, equals
(5.87/µ2)M�, where µ is the mean number of nucleons per electron. For Fe we
have µ = 56/26.

Chandra X-ray Observatory (CXO): Formerly called AXAF, Chandra was
launched July 23, 1999, and is with XMM–Newton the largest and most sophis-
ticated X-ray observatory to date. NASA’s Chandra X-ray Observatory was named
in honor of the late Indian–American Nobel laureate, Subrahmanyan Chandrasekhar.
The Chandra spacecraft carries a high-resolution mirror, two imaging detectors, and
two sets of transmission gratings. Important Chandra features are: an order of mag-
nitude improvement in spatial resolution, and good sensitivity from 0.1 to 10 keV.
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Color superconductivity: Color superconductivity is a phenomenon predicted to
occur in quark matter if the baryon density is sufficiently high (well above nu-
clear density) and the temperature is not too high (i.e. below 1012 kelvin). Color-
superconducting phases are to be contrasted with the normal phase of quark matter,
which is just a weakly interacting Fermi liquid of quarks. Unlike an electrical su-
perconductor, color-superconducting quark matter comes in many varieties, each of
which is a separate phase of matter. In forming the Cooper pairs, there is a 9 × 9
color–flavor matrix of possible pairing patterns. The differences between these pat-
terns are very physically significant: different patterns break different symmetries of
the underlying theory, leading to different excitation spectra and different transport
properties. In theoretical terms, a color-superconducting phase is a state in which the
quarks near the Fermi surface become correlated in Cooper pairs, which condense.
In phenomenological terms, a color-superconducting phase breaks some of the sym-
metries of the underlying theory, and has a very different spectrum of excitations
and very different transport properties from the normal phase.

Compton Gamma Ray Observatory (CGRO): The Compton Gamma Ray Obser-
vatory was the second of NASA’s Great Observatories. CGRO, at 17 tonnes, was
the heaviest astrophysical payload ever flown at the time of its launch on April 5,
1991 aboard the space shuttle Atlantis. Compton was safely deorbited and re-entered
the Earth’s atmosphere on June 4, 2000. CGRO had four instruments that covered
six decades of the electromagnetic spectrum, from 30 keV to 30 GeV. In order of
increasing spectral energy coverage, these instruments were the Burst And Transient
Source Experiment (BATSE), the Oriented Scintillation Spectrometer Experiment
(OSSE), the Imaging Compton Telescope (COMPTEL), and the Energetic Gamma
Ray Experiment Telescope (EGRET).

Compton scattering: The scattering, or collision, of a photon with an electron.

Comptonization: The X-ray power-law component in galactic black hole candidates
and AGN is attributed to black-body photons being up-scattered by electrons (that
is, the photons gain energy from the electrons via the inverse Compton process),
as they traverse a hot plasma with a Maxwellian electron temperature 10–100 keV.
Comptonization is saturated, where the photons are in thermal equilibrium with
the electrons. Then a cutoff in the spectrum occurs at ∼ 3kBTe, where Te is the
temperature of the hot electrons.

Continuous spectrum: Spectrum in which the radiation is distributed over all fre-
quencies, not just a few specific frequency ranges. A prime example is the black-body
radiation emitted by a hot, dense body.

Core: The central region of a planet, star, neutron star, or a galaxy.

Corona: The outermost atmosphere of a star (including the Sun) or of an accretion
disk, millions of kilometers in extent, and consisting of highly rarefied gas heated to
temperatures of millions of degrees.
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Cosmic radiation: Very energetic radiation from outer space which hits the Earth’s
atmosphere and can still be detected near the surface after various transformations.
It consists mostly of highly energetic particles (protons, helium cores, heavy atomic
nuclei and leptons) and X-rays and gamma radiation. Only a small fraction of cosmic
radiation is produced in the Sun, the rest has its origin in partly still unknown sources
inside and outside of the Milky Way.

Cosmological constant: A modification of the equations of general relativity that
represents a possible repulsive force in the Universe. The cosmological constant
could be due to the energy density of the vacuum.

Cygnus A: This galaxy is the brightest radio source (as indicated by the letter A)
in the constellation Cygnus (Swan). The supermassive black hole in its center is
a billion times heavier than the Sun. Although the galaxy is relatively distant (300
times further away than the Andromeda Galaxy), it appears to us as the second
brightest radio source in the entire sky. This is because the black hole generates
tremendous energy as it consumes large amounts of material. Nearby electrons are
accelerated in this process, emitting strong radio waves as they spiral outward in
magnetic fields.

Cygnus X-1: This is the brightest X-ray source (indicated as X-1) in the constellation
Cygnus (Swan). It consists of a bright blue star and a black hole that orbit around
each other. The black hole pulls gas off the surface of this star. This gas heats up and
shines in X-rays as it falls towards the black hole.

Density: A measure of the compactness of the matter within an object, computed
by dividing the mass by the volume of the object.

Eccentricity: A measure of the flatness of an ellipse, equal to the distance between
the two foci divided by the length of the major axis.

Eddington luminosity: The limit beyond which the radiation force on matter is
greater than the gravitational force. This limit is independent on the radius of the
emitting surface. The corresponding luminosity is LEd = 4πG Mm pc/σT is propor-
tional to the mass M of the object.

Electron-volt (eV ): The energy gained by an electron accelerated by a potential
of 1 volt. One electron-volt corresponds to a frequency ν = 2.418 × 1014 Hz in
electromagnetic radiation, or a temperature of 11.606 K.

Ergosphere: The region of a rotating Kerr black hole between the static surface and
the event horizon. In this region, everything is forced to rotate in the same sense as
the black hole, although you can still escape.



Glossary 645

Escape velocity: The speed necessary for an object to escape the gravitational pull
of an object. Anything that moves away from the object with more than the escape
velocity will never return.

Event horizon: Imaginary spherical surface surrounding a black hole, with radius
equal to the Schwarzschild radius, within which no event can be seen heard, or
known about by an outside observer.

Excited state: The state of an atom when one of its electrons is in a higher energy
orbital than the ground state. Atoms can become excited by absorbing a photon of
a specific energy, or by colliding with a nearby atom.

Fluorescence: The absorption of a photon of one energy, or wavelength, and re-
emission of one or more photons at lower energies, or longer wavelengths.

Gamma-ray: Region of the electromagnetic spectrum, beyond X-rays, correspond-
ing to radiation of very high frequency and very short wavelength.

Gamma-ray burst (GRB): An outburst that radiates tremendous amounts of energy
equal to or greater than a supernova, in the form of gamma-rays and X-rays, with
a duration from a few milliseconds to thousands of seconds. GRBs are isotropically
distributed on the Sky.

Gamma-Ray Large Area Space Telescope (GLAST): GLAST is a next gen-
eration high-energy gamma-ray observatory designed for making observations of
celestial gamma-ray sources in the energy band extending from 10 MeV to more
than 100 GeV to be launched in 2007. It follows in the footsteps of the CGRO-
EGRET experiment, which was operational between 1991 and 1999. The GLAST
LAT has a field of view about twice as wide (more than 2.5 steradians), and sen-
sitivity about 50 times that of EGRET at 100 MeV and even more at higher ener-
gies.

Globular cluster: Tightly bound, roughly spherical collection of a few hundred
thousand of stars spanning about 100 lightyears. Globular clusters are distributed in
the haloes around the Milky Way and other galaxies.

Gluons: Term for exchange particles of the strong interaction (derived from glue).
There are eight different gluons transmitting the force between the quarks. They are
electrically neutral and massless.

Gravitational instability: A condition whereby an object’s (inward-pulling) gravi-
tational potential energy exceeds its (outward-pushing) thermal energy, thus causing
the object to collapse.
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Gravitational lensing: Banding of light from a distant object by a massive fore-
ground object (a star, a galaxy, or a cluster of galaxies).

Gravitational redshift: A prediction of Einstein’s general theory of relativity. Pho-
tons lose energy as they escape the gravitational field of a compact object. Because
a photon’s energy is proportional to its frequency, a photon that loses energy suffers
a decrease in frequency, or redshift, in wavelength.

Gravitational wave: The gravitational analog of an electromagnetic wave, whereby
gravitational radiation is emitted at the speed of light from any mass that undergoes
rapid acceleration.

GRS 1915+105: GRS 1915+105 is a microquasar, a galactic object that has been
associated with relativistic jets and extremely variable radio, infrared, and X-ray
emission. It is thought to be a binary system containing a black hole that is accreting
matter from a stellar companion.

Hertzsprung–Russell (HR) diagram: A plot of luminosity vs. temperature for
a group of stars that can be used to classify the evolutionary state of stars.

Horizontal branch: Region of the HR diagram where post-main-sequence stars
again reach hydrostatic equilibrium. At this point, the star is burning helium in its
core, and hydrogen in a shell surrounding the core.

Hybrid (neutron) stars: Neutron stars consisting of normal matter in the outer parts
and a quark-matter core. Quark matter is probably in a color-superconducting state
(2SC or quark–flavor locked (CFL) phase).

INTEGRAL: INTEGRAL (INTErnational Gamma-Ray Astrophysics Laboratory)
is an astronomical satellite for observing the gamma-ray sky. It was selected by
the ESA (European Space Agency) science program committee on June 3rd 1993 as
a medium size mission. The INTEGRAL satellite was launched on October 17, 2002
by a Russian PROTON launcher. It has a highly eccentric orbit with a revolution
period around the Earth of three sidereal days. The perigee is at 10,000 km and the
apogee at 152,600 km with an inclination of 51.6 degrees with respect to the equa-
torial plane. The INTEGRAL science payload consists of two main instruments, the
spectrometer SPI and the imager IBIS supplemented by two subsidiary instruments,
the X-ray monitor JEM-X and the optical monitoring camera OMC.

Interferometry: Technique in widespread use to dramatically improve the resolution
of telescopes, especially radio telescopes. Several radio telescopes observe the object
simultaneously, and a computer analyzes how the signals interfere with each other.

Ionization: The process by which ions are produced, typically by collisions of
electrons, ions, or photons.
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Innermost stable circular orbit (ISCO): This radius marks the location of the
innermost stable circular orbit around a black hole. Outside three Schwarzschild
radii, all circular orbits are stable, meaning that a small blast on the manoeuvering
thrusters by a rocket in circular orbit would not perturb the orbit greatly.

Inverse Compton emission: In physics, Compton scattering or the Compton effect,
is the decrease in energy (increase in wavelength) of an X-ray or gamma-ray photon,
when it interacts with matter. Inverse Compton scattering indicates the effect, where
the photon gains energy (decreasing in wavelength) upon interaction with matter.
Inverse Compton scattering is important in astrophysics. In X-ray astronomy, the
accretion disk surrounding a black hole is believed to produce a thermal spectrum.
The lower energy photons produced from this spectrum are scattered to higher
energies by relativistic electrons in the surrounding corona. This is the origin of the
power-law component in the X-ray spectra (0.2–100 keV) of accreting black holes.
The inverse Compton effect is also important in jets, where relativistic electrons
scatter low-frequency photons to gamma-rays.

Jet: A highly directed flow of gas or plasma that comes from such a flow.

Kepler’s Laws of motion: Three laws which summarize the motions of the planets
about the Sun, or more generally, the motion of one star (neutron star, black hole)
around another under the influence of gravity.

Kerr black hole: An exact solution of Einstein’s field equations that is the metric
outside a spinning event horizon found by Roy Kerr in 1963. It is not the solution
for a spinning neutron star.

Killing field: In differential geometry, a Killing vector field is a vector field on
a Riemannian manifold that preserves the metric. Killing fields are the infinitesimal
generators of isometries; that is, flows generated by Killing fields are continuous
isometries of the manifold. Killing fields are named for Wilhelm Killing. A Killing
vector field satisfies the Killing equation L X g = 0, where L X is the Lie derivative
along X and g is the Riemannian metric on the manifold.

Kiloelectron-volt (keV ): A unit used to describe the energy of X-rays, equal
to a thousand electron-volts. One kiloelectron-volt corresponds to a frequency
ν = 2.418× 1017 Hz in X-rays.

Lagrange point: One of five special points in the plane of two massive bodies
orbiting one another, where a third body of negligible mass can remain in equilibrium.

Leptons: One of the two groups of matter particles. There are three pairs of leptons,
containing each an electrically charged particle and a neutrino: electron and electron
neutrino, muon and muon neutrino, tau and tau neutrino. The leptons are influenced
by the electromagnetic and the weak interaction.
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LHC: Large Hadron Collider, proton collider at CERN (Geneva), which is built
using the old LEP tunnel until 2007.

Light-curve: The variation in brightness of a star with time.

Light deflection: The angle by which a light ray is curved by the gravitational field
of a massive body. General relativity gives a value twice as large as that which
Newtonian physics would provide, assuming that photons have nonzero mass.

Lighthouse model: The leading explanation for pulsars. A small region of the
neutron star, near one of the magnetic poles, emits a steady stream of radiation
which sweeps past Earth each time the star rotates. Thus the period of the pulses is
just the star’s rotation period.

Luminosity: One of the basic properties used to characterize stars. Luminosity is
defined as the total energy radiated by a star each second, at all wavelengths.

Magnetosphere: A zone of charged particles trapped by a planet’s or star’s magnetic
field (neutron star or black hole), lying above the atmosphere.

Magnetar: A magnetar is a neutron star with an extremely strong magnetic field,
typically a thousand times stronger than in a normal neutron star. Its decay powers the
emission of copious amounts of high-energy electromagnetic radiation, particularly
X-rays and gamma-rays.

Magnetorotational instability (MRI): Accretion disks are stable to hydrodynamic
perturbations, and the fluid flow is expected to be laminar. For there to be turbulence,
as required for the standard disk model (α disk), this implies that there is some form
of nonlinear hydrodynamic instability, or angular momentum transport is due to some
other mechanism. Balbus and Hawley proposed in 1991 a mechanism which involves
magnetic fields to generate the turbulence, now called magnetorotational instability
(MRI). Magnetohydrodynamics is subtly different from that of hydrodynamics.
A weak magnetic field acts like a spring. If there is a weak radial magnetic field
in an accretion disk, then two gas volume elements will experience a force acting
on them. The inner element will have a force acting to slow it down. This causes
it to lose energy and angular momentum and move inwards, where due to orbital
mechanics it speeds up. The reverse happens to the outer gas element, which moves
outwards and slows down. As a consequence, the magnetic field spring is stretched,
transferring angular momentum in the process.

Main sequence: A well-defined band on an HR diagram on which most stars tend
to be found, running from the top left of the diagram to the bottom right.

Mass–radius relation: The dependence of the radius of a main-sequence star on its
mass. The radius rises roughly in proportion to the mass.
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Microquasar: Microquasars are stellar mass black holes, that display characteristics
of the supermassive black holes found at the centers of some galaxies. For instance,
they have radio jets. In the Spring of 1994, Felix Mirabel from Saclay, France, and
Luis Rodriguez, from the National Autonomous University in Mexico City, were
observing an X-ray-emitting object called GRS 1915+105 (about 40,000 lightyears
away). Their time series of VLA observations showed that a pair of objects ejected
from GRS 1915+105 were moving apart at an apparently superluminal speed. This
was the first time that superluminal motion had been detected in our own Galaxy.

Millisecond pulsar: A pulsar whose period indicates that the neutron star is rotating
nearly 1000 times each second.

Neutrino oscillations: Possible solution to the solar neutrino problem, in which the
neutrino has a very tiny mass. In this case, the correct number of neutrinos can be
produced in the solar core, but on their way to Earth, some can oscillate, or become
transformed into other particles, and thus go undetected.

Neutron star: A dense ball of neutrons that remains after a supernova has destroyed
the rest of the star. Typically neutron stars are about 20 km across, and contain more
mass than the Sun.

Nonthermal radiation: Radiation released by virtue of a fast-moving charged par-
ticle (such as an electron) interacting with a magnetic force field or other particles;
this process has nothing to do with heat.

Nova: A star that suddenly increases in brightness, often by a factor of as much
as 10,000 then slowly fades back to its original luminosity. A nova is the result of
an explosion on the surface of a white dwarf star, caused by matter falling onto its
surface from the atmosphere of a binary companion.

Nuclear force: The force that binds protons and neutrons within atomic nuclei, and
which is effective only at distances less than about 10−13 centimeter.

Nucleon: Building block of atoms, i.e. a proton or a neutron.

Nucleus: Dense, central region of an atom, containing both protons and neutrons,
and orbited by one or more electrons.

Opacity: A quantity that measures a material’s ability to block electromagnetic
radiation. Opacity is the opposite to transparency.

Parallax: The apparent motion of a relatively close object with respect to a more
distant background as the location of the observer changes.

Parsec: The distance at which a star must lie in order that its measured parallax due
to the Earth’s orbit around the Sun is exactly 1 arcsecond, equal to 3.3 lightyears.
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Period–luminosity relation: A relation between the pulsation period of a Cepheid
variable and its absolute brightness. Measurement of the pulsation period allows the
distance of the star to be determined.

Planetary nebula: The ejected envelope of a red giant star, spread over a volume
roughly the size of our Solar System, with a hot central star that is in the process of
becoming a white dwarf star.

Primordial black holes: A primordial black hole is a hypothetical type of black
hole that is formed not by the gravitational collapse of a star, but by the extreme
density of matter present during the Universe’s early expansion.

Proper motion: The angular movement of a star across the sky, as seen from the
Earth, measured in seconds of arc per year. This movement is a result of the star’s
actual motion through space.

Pulsar: Object that emits radiation in the form of rapid pulses with a characteristic
pulse period and duration. Generally used to describe the pulsed radiation from
a rotating neutron star.

Quality factor: Quantity characterizing the resonance properties of a resonant sys-
tem, for example a resonant circuit or a cavity resonator. It depends on the average
energy of the system and its dissipative power. The higher the quality is, the more
focused is the resonance curve. The bandwidth is correspondingly smaller.

Quantum chromodynamics (QCD): Quantum chromodynamics, the gauge theory
describing the color strong interaction.

Quarks: A fractionally charged, basic building block of protons, neutrons, and other
elementary particles. There are six different quarks. Similar to the leptons, they form
a particle group consisting of three particle pairs: up and down quarks, charm and
strange quarks and top and bottom quarks. In nature, quarks can occur in pairs (quark
and antiquark, known as mesons) or as a three-piece combination of either quarks
or antiquarks.

Quasars: Originally, a distant, highly luminous object that looks like a star. Strong
evidence now exists that a quasar is produced by gas falling into a supermassive
black hole in the center of a galaxy.

Quasinormal modes: Quasinormal modes (QNM) are the modes of energy dissipa-
tion of a perturbed object (neutron star or black hole). In this context, a quasinormal
mode is a formal solution of linearized differential equations (such as the linearized
equations of general relativity constraining perturbations around a black hole so-
lution) with a complex eigenvalue (or frequency). Black holes have many quasi-
normal modes (also called ringing modes) that describe the exponential decrease
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of asymmetry of the black hole in time, as it evolves towards the perfect spherical
shape.

Quasiperiodic Oscillations (QPO’s): Variations in the intensity of X-radiation from
sources that show periodic behavior for short time intervals, and a variety of periods.

Radio galaxy: Type of active galaxy that emits most of its energy in the form of
long-wavelength radiation.

Radio lobe: Roundish region of radio-emitting gas, lying well beyond the center of
a radio galaxy.

Red-giant branch: The section of the evolutionary track of a star that corresponds
to continued heating from rapid hydrogen shell burning, which drives a steady
expansion and cooling of the outer envelope of the star. As the star gets larger in
radius and its surface temperature cools, it becomes a red giant.

Redshift: Change in the wavelength of light emitted from a source moving away from
us. The relative recessional motion causes the wave to have an observed wavelength
longer (and hence redder) than it would if it were not moving. The cosmological
redshift is caused by the stretching of space as the Universe expands.

Relativity, general theory: The theory of gravity formulated by Einstein that de-
scribes how a gravitational field can by replaced by a curvature of spacetime.

Resolution limit: Measure for the smallest intervals a detector can resolve separately.
These can be time intervals (time resolution), differences in energy or wavelength
(energy resolution) or spatial distances (spatial resolution).

RHIC: The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Lab-
oratory is a world-class scientific research facility that began operation in 2000,
following 10 years of development and construction. RHIC drives two intersecting
beams of gold ions head-on, in a subatomic collision. At extremely high energy
densities, QCD predicts a new form of matter, consisting of an extended volume of
interacting quarks, antiquarks, and gluons. This is the quark–gluon plasma (QGP).

Riemann curvature: In differential geometry, the Riemann curvature tensor is
the most standard way to express curvature of Riemannian manifolds, or more
generally, any manifold with an affine connection, including torsion. This curvature
tensor measures noncommutativity of the covariant derivative. It satisfies several
symmetries known as Bianchi identities.

Riemann problem: The Riemann problem is the simplest possible initial value
problem for hyperbolic systems. In one spatial dimension, the Riemann (or shock-
tube) problem is composed of two uniform states in the infinite domain separated
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by a discontinuity at the origin. For the Euler equations, the exact solution of the
Riemann problem is well known, self-similar, and consists of a combination of three
wave types: shocks, rarefaction waves, and contact discontinuities. Apart from being
an important test-bench, the Riemann problem is a basic building block for a large
class of modern numerical methods, called upwind or Godunov schemes.

Roche limit: Often called the tidal stability limit, the Roche limit gives the distance
from a planet at which the tidal force, due to the planet, between adjacent objects
exceeds their mutual attraction. Objects within this limit are unlikely to accumulate
into larger objects. The rings of Saturn occupy the region within Saturn’s Roche
limit.

Roche lobe: An imaginary surface around a star. Each star in a binary system can
be pictured as being surrounded by a tear-shaped zone of gravitational influence, the
Roche lobe. Any material within the Roche lobe of a star can be considered to be
part of that star. During evolution, one member of the binary star can expand so that
it overflows its own Roche lobe, and begins to transfer matter onto the other star.

Rossi X-Ray Timing Explorer (RXTE): The Rossi X-ray Timing Explorer (RXTE)
was launched on December 30, 1995. RXTE features unprecedented time resolution
in combination with moderate spectral resolution to explore the variability of X-ray
sources. Time-scales from microseconds to months are covered in an instantaneous
spectral range from 2 to 250 keV.

Schwarzschild radius: The distance from the center of a nonrotating black hole
such that, if all the mass were compressed within that region, the escape velocity
would equal the speed of light. Once a stellar remnant collapses within this radius,
light cannot escape and the object is no longer visible. See event horizon.

Shock wave: A wave front marked by an abrupt change in pressure caused by an
object or material moving faster than the speed of sound. For example, a sonic boom
produced by an aircraft going faster than the speed of sound.

Shapiro time delay: The Shapiro time-delay effect, or gravitational time-delay
effect, is one of the four classic Solar System tests of general relativity. The time-
delay effect was first noticed in 1964 by Irwin I. Shapiro. Radar signals passing near
a massive object takes slightly longer to travel to a target and longer to return (as
measured by the observer) than it would if the mass of the object were not present.
This also affects the propagation of radio signals emitted by a pulsar in orbit around
another star. This allows us to measure to the mass of the partner star and the orbital
inclination.

Singularity: A point in the Universe where the density of matter and the gravitational
field are infinite, such as the center of a black hole.
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Spacetime: A synthesis of the three dimensions of space and of a fourth dimension,
time; a hallmark of relativity theory.

Spectral class: Classification scheme, based on the strength of stellar spectral lines,
which is an indication of the temperature of a star.

Spectroscopic binary: A binary star system which from Earth appears as a single
star, but is known to contain more than one star because of the back-and-forth
Doppler shifts that are observed as the two stars orbit one another.

Spitzer Space Telescope: NASA’s Great Observatory for infrared astronomy was
launched in August 2003. Formerly named SIRTF (Space Infrared Telescope Facil-
ity), it was renamed in honor of Lyman Spitzer, Jr.

Static limit: The outer boundary of the region around a spinning black hole that is
called the ergosphere.

Stellar-mass black hole: A black hole that formed when a massive star died in
a supernova explosion and is somewhat more massive than our Sun.

Superconductivity: Property of certain metals, or neutron star matter, at low tem-
peratures. The electrical resistance of the conductor vanishes, so that the electrical
current flows without loss. In modern accelerators, often superconducting magnets
and high frequency resonators are used which are operated at temperatures near
absolute zero. At low temperature, many metals become superconductors. A metal
can be viewed as a Fermi liquid of electrons, and below a critical temperature, an
attractive phonon-mediated interaction between the electrons near the Fermi sur-
face causes them to pair up and form a condensate of Cooper pairs, which via the
Anderson–Higgs mechanism makes the photon massive, leading to the characteristic
behavior of a superconductor: infinite conductivity and the exclusion of magnetic
fields (Meissner effect).

Superfluidity: Fermionic condensates are a type of superfluid. As the name suggests,
a superfluid possesses fluid properties similar to those possessed by ordinary liquids
and gases, such as the lack of a definite shape and the ability to flow in response to
applied forces. However, superfluids possess some properties that do not appear in
ordinary matter. For instance, they can flow at low velocities without dissipating any
energy (i.e. zero viscosity). At higher velocities, energy is dissipated by the formation
of quantized vortices, which act as holes in the medium where superfluidity breaks
down.

Supergravity: In theoretical physics, a supergravity theory is a field theory combin-
ing supersymmetry and general relativity. A supergravity theory contains a spin-2
field whose quantum is the graviton. Supersymmetry requires the graviton field to
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have a superpartner. This field has spin 3/2 and its quantum is the gravitino. Su-
pergravity theories are often said to be the only consistent theories of interacting
massless spin 3/2 fields.

Supermassive black hole: A black hole with a mass much greater than the most
massive stars (100 solar masses). The central regions of virtually every galaxy are
thought to contain a supermassive black hole of a million solar masses or more. Our
Milky Way harbors in its center a supermassive black hole (Sag A*) with 3.5 million
solar masses.

Supernova: Explosive death of a star, caused by the sudden onset of nuclear burn-
ing (type I), or gravitational collapse followed by an enormously energetic shock
wave (type II). One of the most energetic events of the Universe, a supernova may
temporarily outshine the rest of the galaxy in which it resides. Supernovae of type Ia
(exploding white dwarfs) are cosmic standard candles used to measure the expansion
law of the Universe.

Supernova remnant: The expanding glowing remains from a supernova explosion.
The Cygnus Loop is an example of a shell-type remnant. As the shock wave from
the supernova explosion plows through space, it heats and stirs up any interstellar
material it encounters, thus producing a big shell of hot material in space. Plerions
resemble the Crab Nebula. These SNRs are similar to shell-type remnants, except
that they contain a pulsar in the middle that blows out electron–positron winds.

Supersymmetry (SUSY): One of the most promising candidates for a theory which
goes beyond the Standard Model. To every particle, a supersymmetric partner is
assigned – an exchange particle for every matter particle and vice versa. Until now,
none of these supersymmetric partner particles was detected, so that no experimental
proof for the theory of supersymmetry exists yet.

Swift: The Swift Gamma-Ray Burst Explorer carries three instruments to enable
the most detailed observations of gamma-ray bursts (GRBs) to date. It carries three
coaligned instruments known as the BAT, the XRT, and the UVOT. The XRT and
UVOT are X-ray and a UV/optical focusing telescopes respectively which pro-
duce subarcsecond positions and multiwavelength light-curves for gamma-ray Burst
(GRB) afterglows. BAT is a wide field-of-view (FOV) coded-aperture gamma-ray
imager that produces arcminute GRB positions onboard within 10 seconds. The
spacecraft executes a rapid autonomous slew that points the focusing telescopes at
the BAT position in typically 50 seconds.

Synchrotron radiation: Type of nonthermal radiation caused by high-speed charged
particles, such as electrons, emitting radiation as they are accelerated in a magnetic
field. In accelerator physics, it is produced when electrons or positrons fly through
deflecting magnets of ring accelerators or through wigglers or undulators. It is used
for analyzing atomic and molecular structures in many natural sciences.
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Time dilation: A prediction of the theory of relativity, closely related to the gravi-
tational redshift. To an outside observer, a clock lowered into a strong gravitational
field will appear to run slow.

Ultraluminous X-ray source (ULX): An ultraluminous X-ray source (ULX) is an
astronomical source of X-rays that is not in the nucleus of a galaxy, and is more
luminous than 1032 watt, brighter than the Eddington luminosity of a 10 solar-mass
black hole. Typically there is about one ULX per galaxy in galaxies which host
ULXs, but some galaxies contain many ULXs. The Milky Way does not contain an
ULX. A survey of ULXs by Chandra observations shows that there is approximately
one ULX per galaxy in galaxies which host ULXs. ULXs are found in all types
of galaxies, including elliptical galaxies, but are more ubiquitous in star forming
galaxies and in gravitationally interacting galaxies.

Visual binary: A binary star system in which both members are resolvable from
Earth.

White dwarf: A star that has exhausted most or all of its nuclear fuel and has
collapsed to a very small size (about the Earth’s size). These stars are not heavy
enough to generate the core temperatures required to fuse carbon in nucleosynthesis
reactions. After it has become a red giant during its helium-burning phase, it will
shed its outer layers to form a planetary nebula, leaving behind an inert core con-
sisting mostly of carbon and oxygen. The white dwarf is supported only by electron
degeneracy pressure. The maximum mass of a white dwarf, beyond which degen-
eracy pressure can no longer support it, is about 1.4 solar masses depending on its
chemical composition.

XMM–Newton: The European Space Agency’s large X-ray observatory, launched
on December 10, 1999, which is capable of sensitive X-ray spectroscopic obser-
vations. XMM–Newton’s name comes from the design of its mirrors, the highly
nested X-ray Multi-Mirrors. XMM–Newton’s highly eccentric orbit (with apogee of
114,000 km away from Earth and a perigee of 7000 km) has been chosen so that its
instruments can work outside the radiation belts surrounding the Earth.

X-ray: Region of the electromagnetic spectrum corresponding to radiation of high
frequency, corresponding to energies from 0.1 keV to 100 keV, and short wave-
lengths, far outside the visible spectrum.

X-ray binary: A binary star system in which a normal star is in orbit around a stellar
remnant. The remnant accretes material from the normal star and produces X-rays
in the process.

X-ray burster: X-ray source that radiates thousands of times more energy than
our Sun, in short bursts that last only a few seconds. A neutron star in a binary
system accretes matter onto its surface until temperatures reach the level needed for
hydrogen fusion to occur. The result is a sudden period of rapid nuclear burning and
release of energy.
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