Making sense of stars,

part II

- Spectral classification

We just found one piece of the puzzle: Mass luminosity relation

Another piece is stellar spectra

If stars were black bodies, we would easily measure their temperature.

$$
\lambda(\mathrm{nm}) \approx \frac{3 \times 10^{6}}{T(\mathrm{~K})}
$$

But they are not quite

Stellar
Classification

06.5 B0 B6 A1 A5 FO F5 G0 G5 K0 K5 M0 M5

$\stackrel{I}{\mathrm{H}} \quad \stackrel{\mathrm{F}}{\mathrm{H}}$
${ }^{\prime}$
$\stackrel{\mathrm{H}}{\mathrm{H}}$

Spectral Classification of Stars

Timeline:

Edward C. Pickering (I846-1919) and Williamina P. Fleming 1890s (1857-191I) label spectra alphabetically according to strength of Hydrogen (Balmer) lines, beginning with "A" (strongest).

1890s
Antonia Maury (1866-I952) developed a classification scheme based on the "width" of spectral lines. Would place "B" stars before "A" stars.

1901 Annie Cannon (1863-194I), brilliantly combined the above. Rearranged sequence, O before B before A, added decimal divisions (A0...A9) and consolidated classes. Led to classification scheme still used by astronomers today!

Spectral Classification of Stars

Timeline:

1901 Annie Cannon (I863-194I), brilliantly combined the above. Rearranged sequence, O before B before A, added decimal divisions (A0...A9) and consolidated classes. Led to classification scheme still used by astronomers today!

OBAFGKM (Oh Be A Fine Guy/Girl, Kiss Me)

"Early Type" Stars : Stars near the beginning
of Sequence

$$
\begin{aligned}
& \text { "Late Type" Stars : Stars near the end of } \\
& \text { the Sequence. }
\end{aligned}
$$

One can mix the definitions: K0 star is an "early-type" K star. B9 is a "late-type" B star.
19||-19|4 Annie Cannon classified 200,000 spectra, listed in the Henry Draper Catalog.
During 1990s Two new letters added to Sequence for very cool, Brown-Dwarf stars.
" L " spectral types ($\mathrm{T}=1300-2500 \mathrm{~K}$) and " T " types (T < 1300 K).
OBAFGKMLT (Oh Be A Fine Guy/Girl, Kiss Me - Less Talk !)

Spectral Classification of Stars

	Spectral Type	Characteristics
	O	Hottest blue-white stars, few lines. Strong He II (He^{+}) absorption lines. He I (neutral helium) stronger).
	B	Hot blue-white. He I (neutral Helium), strongest at B2. H I (neutral Hydrogen) stronger.
Hotter	A	White stars. Balmer absorption lines strongest at A0 (Vega), weaker in later-type A stars. Strong Ca II (Ca^{+}) lines.
	F	Yellow-white stars. Ca II lines strengthen to later types. F-stars. Balmer lines strengthen to earlier type F-stars.
	G	Yellow stars (Sun is a G5 star). Ca II lines become stronger. Fe I (neutral iron) lines become strong.
Cooler$\downarrow$$\downarrow$	K	Cool orange stars. Ca II (H and K) lines strongest at K 0 , becoming weaker in later stars. Spectra dominated by metal absorption lines.
	M	Cool red stars. Spectra dominated by molecular absorption bands, e.g., TiO (titanium oxide). Neutral metal lines strong.
	L	Very cool, dark red (brown dwarfs). Brighter in Infrared than visible. Strong molecular absorption bands, e.g., CrH, FeH, water, CO . TiO weakening.
	T	Coolest stars. Strong methane (CH_{4}), weakening CO bands.

Spectral Classification of Stars

Physical explanation? Maybe different chemical composition?

Temperature (K)

Similar composition of atmospheres for 90% of the stars

```
TABLE 6-2
The Most Abundant Elements in the Sun
```

Element	Percentage by Number of Atoms	Percentage by Mass
Hydrogen	91.0	70.9
Helium	8.9	27.4
Carbon	0.03	0.3
Nitrogen	0.008	0.1
Oxygen	0.07	0.8
Neon	0.01	0.2
Magnesium	0.003	0.06
Silicon	0.003	0.07
Sulfur	0.002	0.04
Iron	0.003	0.1

Spectral Classification of Stars Physical Description

Stars are not composed of pure hydrogen, but nearly all atoms (mostly H, He, and metals = anything not H or He).

Typically I He atom for every 10 H atoms (and even fewer metals).

Helium (and metals) provide more electrons, which can recombine with ionized H .

So, it takes higher temperatures to achieve same degree of H ionization when He and metals are present.

Abundance is $=\log _{10}\left(N_{\text {element }} / N_{H}\right)+12$.
l.e.,Abudance of Oxygen $=8.83$, which means:
$8.83=\log 10\left(\mathrm{No}_{\mathrm{O}} / \mathrm{N}_{\mathrm{H}}\right)+12$
$\mathrm{No}_{\mathrm{o}} / \mathrm{N}_{\mathrm{H}}=10^{8.83-12}=0.000676 \approx 1 / 1480$
There is one Oxygen atom for every 1480 H atoms !

Most Abundant Elements in the Solar Photosphere.

Element	Atomic \#	Log Relative Abundance
H	l	12.00
He	2	10.93 ± 0.004
O	8	8.83 ± 0.06
C	6	8.52 ± 0.06
Ne	10	8.08 ± 0.06
N	7	7.92 ± 0.06
Mg	12	7.58 ± 0.05
Si	14	7.55 ± 0.05
Fe	26	7.50 ± 0.05
S	16	7.33 ± 0.11
Al	13	6.47 ± 0.07
Ar	18	6.40 ± 0.06
Ca	20	6.36 ± 0.02
Ng	11	6.33 ± 0.03
Ni	28	6.25 ± 0.04

Spectral Classification of Stars Physical Description

Need to use Statistical Mechanics to understand the physical state and conditions of the huge number of atoms (and molecules) in the atmospheres of stars.

Maxwell-Boltzmann velocity distribution function, number of particles with temperature T per unit volume having speeds between v and $v+d v$:

$$
n_{v} d v=n[m /(2 \pi k T)]^{3 / 2} \exp \left(-m v^{2} / 2 k T\right) \times 4 \pi v^{2} d v
$$

n is the total number density (particles per unit volume),

$$
n_{v}=\partial n / \partial v,
$$ m is the particle mass.

Maxwell-Boltzmann distribution for hydrogren at

$$
T=10,000 \mathrm{~K}
$$

Spectral Classification of Stars Physical Description

Maxwell-Boltzmann velocity distribution function, number of particles with temperature T per unit volume having speeds between v and $v+d v$:

$$
n_{v} d v=n[m /(2 \pi k T)]^{3 / 2} \exp \left(-m v^{2} / 2 k T\right) \times 4 \pi v^{2} d v
$$

Most probable speed (mode) comes for $\mathrm{d}\left(\mathrm{n}_{\mathrm{v}}\right) / \mathrm{dv}=0$, which gives:

$$
\mathrm{v}_{\mathrm{mp}}=\sqrt{2 \mathrm{kT} / \mathrm{m}}
$$

Average, Root-mean-squared (rms) speed is:

$$
\mathrm{v}_{\mathrm{rms}}=\sqrt{3 \mathrm{kT} / \mathrm{m}}
$$

Maxwell-Boltzmann
distribution for hydrogen at

$$
T=10,000 \mathrm{~K}
$$

Spectral Classification of Stars Physical Description

Boltzmann Equation: Distribution of electrons in atomic orbital levels. General result: orbitals of higher energy are less likely to be occupied by electrons.
$s_{a}=$ set of quantum numbers of state with energy E_{a}.
$s_{b}=$ set of quantum numbers of state with energy E_{b}.

$$
\frac{\mathrm{P}\left(\mathrm{~s}_{\mathrm{b}}\right)}{\mathrm{P}\left(\mathrm{~s}_{\mathrm{a}}\right)}=\frac{\exp \left(-\mathrm{E}_{\mathrm{b}} / 2 \mathrm{kT}\right)}{\exp \left(-\mathrm{E}_{\mathrm{a}} / 2 \mathrm{kT}\right)}=\exp \left(-\left[\mathrm{E}_{\mathrm{b}}-\mathrm{Ea}\right] / 2 \mathrm{kT}\right)
$$

The above is the ratio of the probability that the system is in state s_{b} to the probability that it is in state s_{a}. Term $\exp (-\mathrm{E} / \mathrm{kT})$ is the Boltzmann factor.

Example: Hydrogen in ground state, $\mathrm{E}_{\mathrm{a}}=-13.6 \mathrm{eV}$ corresponds

$$
\text { to } \mathrm{s}_{\mathrm{a}}=\left\{\mathrm{n}=\mathrm{I}, \ell=0, \mathrm{~m}_{\ell}=0, \mathrm{~m}_{\mathrm{s}}=+\mathrm{l} / 2\right\} .
$$

Limits: Consider $\mathrm{E}_{\mathrm{b}}>\mathrm{E}_{\mathrm{a}}$, energy of state s_{b} is greater than state s_{a}.
As T goes to 0 , - $\left[\mathrm{E}_{\mathrm{b}}-\mathrm{Ea}\right] / 2 \mathrm{kT}$ goes to minus infinity, and $\mathrm{P}\left(\mathrm{s}_{\mathrm{b}}\right) / \mathrm{P}\left(\mathrm{s}_{\mathrm{a}}\right)$ goes to zero.
As T goes to infinity, $-\left[\mathrm{E}_{\mathrm{b}}-\mathrm{Ea}_{\mathrm{a}}\right] / 2 \mathrm{kT}$ goes to zero, and $\mathrm{P}\left(\mathrm{s}_{\mathrm{b}}\right) / \mathrm{P}\left(\mathrm{s}_{\mathrm{a}}\right)$ goes to one (all atomic energy levels available with equal probability).

Spectral Classification of Stars Physical Description

In most cases, energy levels may be degenerate, where more than one quantum state has same energy. If s_{a} and sb are degenerate then $\mathrm{E}_{\mathrm{a}}=\mathrm{E}_{\mathrm{b}}$, but $\mathrm{s}_{\mathrm{a}} \neq \mathrm{s}_{\mathrm{b}}$.

Define g_{b} to be the number of states with energy E_{b}. g_{b} is the statistical weight of the energy level.

Example: Hydrogen

Ground state has a twofold degeneracy. That is, there are two states with different quantum numbers that have the same energy, $\mathrm{E}_{\mathrm{l}}=-13.6 \mathrm{eV} . \quad \mathrm{g}_{\mathrm{l}}=2$.

The first excited state has $E_{2}=-3.40 \mathrm{eV}$. There are eight quantum states with this energy. Therefore, $g_{2}=8$.

Ground states s_{1}				$\begin{array}{\|c} \text { Energy } \mathbf{E}_{\mathbf{1}} \\ \hline(\mathrm{eV}) \\ \hline \end{array}$
n	ℓ	m_{ℓ}	m_{s}	
I	0	0	+1/2	-13.6
I	0	0	-1/2	-13.6
First Excited States \mathbf{s}_{2}				Energy E2
n	ℓ	m_{ℓ}	m_{s}	(eV)
2	0	0	+1/2	-3.40
2	0	0	-1/2	-3.40
2	1	I	+1/2	-3.40
2	1	I	-1/2	-3.40
2	1	0	+1/2	-3.40
2	I	0	-1/2	-3.40
2	I	-1	+1/2	-3.40
2	I	-1	-1/2	-3.40

Spectral Classification of Stars Physical Description

$$
\frac{P\left(E_{b}\right)}{P\left(E_{a}\right)}=\frac{g_{b} \exp \left(-E_{b} / k T\right)}{g_{a} \exp \left(-E_{a} / k T\right)}=\left(g_{b} / g_{a}\right) \exp \left(-\left[E_{b}-E_{a}\right] / k T\right)
$$

Thus, for the atoms of a given element in a specified state of ionization, the ratio of the \# of atoms N_{b} with energy E_{b} to the number of atoms N_{a} with energy E_{a} in different states of excitation is given by the Boltzmann Equation.

$$
\frac{N_{b}}{N_{a}}=\frac{g_{b} \exp \left(-E_{b} / k T\right)}{g_{a} \exp \left(-E_{a} / k T\right)}=\left(g_{b} / g_{a}\right) \exp \left(-\left[E_{b}-E_{a}\right] / k T\right)
$$

Example: For a gas of hydrogen atoms, at what temperature will equal numbers of atoms have electrons in the ground state $(n=1)$ and in the first excited state ($n=2$). For hydrogen, the degeneracy is $g_{n}=2 n^{2}\left(g_{1}=2, g_{2}=8, g_{3}=18, \ldots\right)$. Setting $N_{2}=N_{1}$ in the Boltzmann equation gives,

$$
\begin{gathered}
I=\left(g_{b} / g_{a}\right) \exp \left(-\left[\mathrm{E}_{\mathrm{b}}-\mathrm{E}_{\mathrm{a}}\right] / \mathrm{kT}\right)=(8 / 2) \exp (-[-3.40 \mathrm{eV}-(-13.6 \mathrm{eV})] / \mathrm{kT}) \\
10.2 \mathrm{eV} / \mathrm{kT}=\ln (4) \quad \text { or } T=85,000 \mathrm{~K}!
\end{gathered}
$$

Spectral Classification of Stars Physical Description

Ratio of the number of hydrogen atoms in the first excited state $\left(\mathrm{N}_{2}\right)$ to the total number of hydrogen atoms $\left(\mathrm{N}_{1}+\mathrm{N}_{2}\right)$ using the Boltzmann equation.

Spectral Classification of Stars Physical Description

Saha Equation: Need to incorporate the relative number of atoms in different stages of ionization.

Let X_{i} be the ionization energy needed to remove an electron from an atom (or ion). For example, to convert neutral hydrogen $\left(\mathrm{HI}=\mathrm{H}^{0}\right)$ to ionized hydrogen $\left(\mathrm{HII}=\mathrm{H}^{+}\right)$you can have X_{i} $=13.6 \mathrm{eV}$ for hydrogen in the ground state, or $\mathrm{X}_{\mathrm{i}}=3.40 \mathrm{eV}$ for hydrogen in the first excited state, etc.

Average must be taken over the orbital energies to allow for the possible partitioning of the atom's electrons among its orbitals. This is done by calculating the partition function, Z , for the initial and final atoms.
Z is the weighted sum of the number of ways the atom can arrange its electrons with the same energy. More energetic (less likely) receive less weight from the Boltzmann factor $\exp (-\mathrm{E} / \mathrm{kT})$.
Let E_{j} be the energy of the jth energy level and g_{j} be the degeneracy of that level, then,

$$
\begin{aligned}
& Z_{i}=\sum g_{\mathrm{i}} \exp \left(-\left[\mathrm{E}_{\mathrm{j}}-\mathrm{E}_{\mathrm{l}}\right] / \mathrm{kT}\right) \\
& \text { where sum is over all } \mathrm{j}=\mathrm{I} \text { to } \infty .
\end{aligned}
$$

Spectral Classification of Stars Physical Description

$$
\begin{aligned}
& Z=\sum g_{j} \exp \left(-\left[E_{j}-E_{1}\right] / \mathrm{kT}\right) \\
& \text { where sum is over all } \mathrm{j}=1 \text { to } \infty .
\end{aligned}
$$

Using the Partition Functions Z_{i} and Z_{i+1} for the atom in its initial (i) and final (i+l) stages of ionization, the ratio of the \# of atoms in stage ($\mathrm{i}+\mathrm{I}$) to those in stage (i) is

$$
\frac{N_{i+1}}{N_{i}}=\frac{2 Z_{i+1}}{n_{e} Z_{i}}\left(\frac{2 \pi m_{e} k T}{h^{2}}\right)^{3 / 2} \exp \left(-x_{i} / k T\right)
$$

This is the Saha Equation (named for Megh Nad Saha, 1894-1956, Indian astrophysicist) who worked it out.
n_{e} is the \# of free electrons (those not bound to atoms). As n_{e} goes up, the ratio of N_{i+1} to N_{i} goes down because more unbound electrons are available to combine with
 ionized atoms.

Spectral Classification of Stars Physical Description

Spectral Classification of Stars Physical Description

Using $\mathrm{P}_{\mathrm{e}}=\mathrm{n}_{\mathrm{e}} \mathrm{kT}$, (Ideal gas law) can rewrite Saha equation as,

$$
\frac{N_{i+1}}{N_{i}}=\frac{2 k T Z_{i+1}}{P_{e} Z_{i}}\left(\frac{2 \pi m_{e} k T}{h^{2}}\right)^{3 / 2} \exp \left(-X_{i} / k T\right)
$$

Combine Saha and Boltzmann Equations.

Consider the ionization of a star's atmosphere composed of pure hydrogen with $\mathrm{P}_{\mathrm{e}}=20 \mathrm{~N} \mathrm{~m}^{-2}$. Calculate $\mathrm{N}_{\mathrm{II}} /$ Ntotal $=\mathrm{N}_{\mathrm{II}} /\left(\mathrm{N}_{\mathrm{I}}+\mathrm{N}_{\mathrm{II}}\right)$. Consider range of $T=5000$ to $25,000 \mathrm{~K}$.

Calculate partition functions:

$Z_{\text {II }}$ is just that for a single (ionized) proton, $Z_{\text {II }}=I$.
For Z_{I}, energy difference of the ground and the first excited states is $(-3.40 \mathrm{eV})-(-13.6 \mathrm{eV})=10.2 \mathrm{eV}$. This is much greater than kT (=0.43-2.2 eV for range above), so $\exp (-\Delta \mathrm{E} / \mathrm{kT})<0.0 \mathrm{I} \ll \mathrm{I}$. Therefore, $Z=\sum g_{j} \exp \left(-\left[E_{j}-E_{I}\right] / k T\right)$ simplifies greatly, and $Z_{I} \approx g_{I}=2$.

Spectral Classification of Stars Physical Description

Spectral Classification of Stars Physical Description

Note that $\mathrm{N}_{2} \neq \mathrm{N}_{\mathrm{II}}$!
The strength of the Balmer lines depends on $\mathrm{N}_{2} / \mathrm{N}_{\text {total }}$. (Fraction of hydrogen in first excited state to total.) Because most neutral hydrogen is in either first excited state or ground state, we can approximate $\mathrm{N}_{1}+\mathrm{N}_{2} \approx \mathrm{~N}_{\mathrm{I}}$ and then

$$
\frac{N_{2}}{N_{\text {total }}}=\left(\frac{N_{2}}{N_{1}+N_{2}}\right)\left(\frac{N_{I}}{N_{\text {tot }}}\right)=\left(\frac{N_{2} / N_{1}}{1+N_{2} / N_{1}}\right)\left(\frac{1}{1+N_{\text {II }} / N_{\mathrm{I}}}\right)
$$

Hydrogen gas produces most intense Balmer lines at $T=9900 \mathrm{~K}$ (excellent agreement with observations).

Diminishing strength of the Balmer lines at higher T is due to ionization of hydrogen at T > 10,000 K.

Spectral Classification of Stars Physical Description

Spectral Classification of Stars Physical Description

Stars are not composed of pure hydrogen, but nearly all atoms (mostly H, He, and metals = anything not H or He).

Typically I He atom for every 10 H atoms (and even fewer metals).

Helium (and metals) provide more electrons, which can recombine with ionized H .

So, it takes higher temperatures to achieve same degree of H ionization when He and metals are present.

Abundance is $=\log _{10}\left(N_{\text {element }} / N_{H}\right)+12$.
l.e.,Abudance of Oxygen $=8.83$, which means:
$8.83=\log 10\left(\mathrm{No}_{\mathrm{O}} / \mathrm{N}_{\mathrm{H}}\right)+12$
$\mathrm{No}_{\mathrm{o}} / \mathrm{N}_{\mathrm{H}}=10^{8.83-12}=0.000676 \approx 1 / 1480$
There is one Oxygen atom for every 1480 H atoms !

Most Abundant Elements in the Solar Photosphere.

Element	Atomic \#	Log Relative Abundance
H	l	12.00
He	2	10.93 ± 0.004
O	8	8.83 ± 0.06
C	6	8.52 ± 0.06
Ne	10	8.08 ± 0.06
N	7	7.92 ± 0.06
Mg	12	7.58 ± 0.05
Si	14	7.55 ± 0.05
Fe	26	7.50 ± 0.05
S	16	7.33 ± 0.11
Al	13	6.47 ± 0.07
Ar	18	6.40 ± 0.06
Ca	20	6.36 ± 0.02
Ng	11	6.33 ± 0.03
Ni	28	6.25 ± 0.04

Spectral Classification of Stars Physical Description

Consider a Sun-like star with $\mathrm{T}=5777 \mathrm{~K}$ and $500,000 \mathrm{H}$ atoms for each Calcium (Ca) atom with $\mathrm{P}_{\mathrm{e}}=1.5 \mathrm{~N} \mathrm{~m}^{-2}$. Calculate relative strength of Balmer and singly ionized Ca (Ca II).

Hydrogen: Saha equation gives ratio of ionized to neutral atoms.

$$
\frac{N_{I I}}{N_{I}}=\frac{2 k T Z_{i+1}}{P_{e} Z_{i}}\left(\frac{2 \pi m_{e} k T}{h^{2}}\right)^{3 / 2} \exp \left(-X_{i} / k T\right)=7.7 \times 10^{-5}=1 / 13,000
$$

I ionized hydrogen ion (H II) for every 13,000 neutral hydrogen atoms
Hydrogen: Boltzmann equation gives ratio of atoms in first excited state to ground state.

$$
\frac{N_{2}}{N_{1}}=\left(g_{2 / g}\right) \exp \left(-\left[E_{2}-E_{1}\right] / k T\right)=5.06 \times 10^{-9}=1 / 198,000,000
$$

I hydrogen ion in the first excited state for every 198 million hydrogen atoms in the ground state.

Spectral Classification of Stars Physical Description

Calcium: ionization energy X_{I} of CaI is 6.1 I eV (roughly half that of Hydrogen. Again, $X_{I} \gg \mathrm{kT}(\mathrm{kT}=0.5 \mathrm{eV})$, so $\exp \left(-\mathrm{Xi}_{\mathrm{i}} / \mathrm{kT}\right)$ is very small $\left(4.1 \times 10^{-6}\right)$. Complicated derivation, but $Z_{I I}=2.30$ and $Z_{I}=1.32$.

Calcium: $\frac{N_{\text {II }}}{N_{\mathrm{I}}}=\frac{2 \mathrm{kT} \mathrm{Z}_{\mathrm{II}}}{\mathrm{P}_{\mathrm{e}} \mathrm{Z}_{\mathrm{I}}}\left(\frac{2 \pi m_{\mathrm{e}} \mathrm{kT}}{\mathrm{h}^{2}}\right)^{3 / 2} \exp \left(-\mathrm{X}_{\mathrm{I}} / \mathrm{kT}\right)=918$.
Saha Equation gives that 918 singly ionized calcium atoms (Ca II) for every I neutral Calcium atoms

Boltzmann equation gives ratio of atoms in first excited state to ground state. Consider Ca II K line (393 nM): $\mathrm{E}_{2}-\mathrm{E}_{1}=3.12 \mathrm{eV}$ and $\mathrm{g}_{1}=2$ and $g_{2}=4$.

Calcium: $\quad \frac{N_{2}}{N_{1}}=\left(g_{2 /} g_{1}\right) \exp \left(-\left[E_{2}-E_{1}\right] / k T\right)=3.79 \times 10^{-3}=1 / 264$
Out of 264 singly ionized calcium ions (Ca II), all but one are in the ground state (the 263 others are capable of producing the Ca II K line).

Spectral Classification of Stars Physical Description

Combining Saha and Boltzmann equations for Calcium:

$$
\begin{aligned}
\left(\frac{N_{1}}{N_{\text {total }}}\right)_{\text {CaII }} & \approx\left(\frac{N_{1}}{N_{1}+N_{2}}\right)_{\text {CaII }}\left(\frac{N_{\text {II }}}{N_{\text {tot }}}\right)_{\text {Ca }}=\left(\frac{1}{1+N_{2} / N_{I}}\right)_{\text {CaII }}\left(\frac{N_{\text {II }} N_{I}}{1+N_{\text {II }} / N_{I}}\right)_{C a} \\
& =\left(1 /\left(1+3.79 \times 10^{-3}\right)\right) \times(918 /(1+918)=0.995
\end{aligned}
$$

Nearly all the calcium atoms can produce Ca II K emission.
There are $500,000 \mathrm{H}$ atoms for every Ca atom. But only a small fraction $\left(5 \times 10^{-9}\right)$ of these H atoms are neutral and in the first excited state (most in ground state).

$$
500,000 \times\left(5 \times 10^{-9}\right)=1 / 400 .
$$

Approximately 400 times more Ca II ions to produce the Ca II lines than there are neutral
H atoms in the first excited state. This is why the Sun (a G5 star) has strong Ca II and relatively weak Balmer lines.

Spectral Classification of Stars Physical Description

In 1925, Cecilia Payne (1900-1979) calculate the relative abundances of 18 elements in stellar atmospheres (one of the most brilliant PhD theses ever in astronomy).

Temperature (K)

