IRAF Wstępna Redukcja Obrazów

Toma Tomov CA UMK Torun

Basic preliminary reduction steps

Removing overscan and bias and image trimming

Dark current correction
Flatfielding the images
Bad pixels fixing

What to use

For most of the preliminary reduction steps we use the package noao.imred.ccdred

imred.ccdred:	
badpiximage -	Create a bad pixel mask image from a bad pixel file
ccdgroups -	Group CCD images into image lists
ccdhedit -	CCD image header editor
ccdinstrument -	Review and edit instrument translation files
ccdlist -	List CCD processing information
ccdmask -	Create bad pixel mask from CCD flat field images
ccdproc -	Process CCD images
ccdtest -	CCD test and demonstration package
combine -	Combine CCD images
darkcombine -	Combine and process dark count images
flatcombine -	Combine and process flat field images
mkfringecor -	Make fringe correction images from sky images
mkillumcor -	Make flat field illumination correction images
mkillumflat -	Make illumination corrected flat fields
mkskycor -	Make sky illumination correction images
mkskyflat -	Make sky corrected flat field images
setinstrument -	Set instrument parameters
zerocombine -	Combine and process zero level images

In the beginning

Before to begin take a look on A User's Guide to CCD Reductions with IRAF (Philip Massey)

How to start

My suggestion is to start with the headers !

Set in the image headers all the information you will need by using ccdinstrument package or by hand using hedit or asthedit packages

A good header is half of the work

BITPIX =	16	/ number of bits per data pixel
NAKIS =	2	/ number of data axes
MAXIS1 =	1568	/ length of data axis 1
MAXIS2 =	512	/ length of data axis 2
EXTEND =	T	/ FITS dataset may contain extensions
DOMMENT	FITS (Flexible Image '	Transport System) format defined in Astronomy and
DOMMENT	Astrophysics Supplement	nt Series v44/p363, v44/p371, v73/p359, v73/p365.
DOMMENT	Contact the NASA Scien	nce Office of Standards and Technology for the
COMMENT	FITS Definition docum	ent #100 and other FITS information.
BZBRO =	32768	/ offset data range to that of unsigned short
BSCALE =	1	/ default scaling factor
DBJECT =	'KU And LRS_g2_2.0_GG	385' / Object name
BSBRVAT=	'MCDONALD'	/ Observatory
DBSBRVBR=	'Resident Astronomer'	/ Observers
EXPTIME =	24.000	/ Actual integration time
DARKTIME=	24.151	/ Total elapsed time
IMAGETYP=	'object '	/ Object, dark, bias, etc.
DATE-OBS=	'2002-12-08'	/ Date (vvvv-mm-dd) of obs.
JT =	'04:58:07.57'	/ Universal time
ST =	103:09:11.001	/ Sidereal time
MJD =	52616.20699500	/ Modified julian date
RA =	100:06:58.371	/ Right ascension
DBC =	'+43:06:11.8'	/ Declination
BQUINOX =	2000.00	/ Equinox of coordinate system
POINT =	'mean '	/ Point type
= AH	'+03:02:08.04'	/ Hour angle
ZD =	'37.90 '	/ Zenith distance
AIRMASS =	1.27	/ Airmass
AZIMUTH =	302.10	/ Azimuth
PARANGLE=	276.70	/ Parallactic angle
STRUCTAZ=	302.52	/ Azimuth of telescope structure
K_STRT =	-5.826085B+01	/ X position of tracker at start of exposure
Y_STRT =	6.260340B+02	/ Y position of tracker at start of exposure
Z_STRT =	1.580782B+01	/ Z position of tracker at start of exposure
RHO_STRT=	-2.691200B+00	/ Rho position of tracker at start of exposure
THE_STRT=	2.864300B+00	/ Theta position of tracker at start of exposure
PHI_STRT=	-2.644000B-01	/ Phi position of tracker at start of exposure
RHO_OFFS=	5.00	/ Rho position offset
TELESCOP =	'het '	/ Telescope name
HOSTCOMP =	'lrs '	/ Host computer name
HOSTOPS =	'SunOS 5.6'	/ Host computer operating system
ROGRAM =	'ICB V2-30May2002'	/ Data acquistion program
DETECTOR=	'SF1 '	/ Detector name
DETSIZE =	'3072x1024'	/ Detector size for DBTSBC
MICROCOD=	'SF1 2009'	/ Detector microcode name
CONTTYPE=	'McDonald Obs. V2'	/ Detector controller type
BP =	'V2.0 #2 Rev B'	/ Backplane ID
?S =	'V2.0 #2 Rev B'	/ Power supply ID
CD =	'V2.0 #2 Rev B'	/ Clock driver ID
FC =	'V2.0 #2 Rev B'	/ Temperature controller ID

SP	=	'v2.0	#2	Rev	A'	1	Digital signal processor ID
ASP1	=	'V2.0	#2	Rev	C'	1	Analog Signal Processor #1 ID
PH	=	'V2.0	#2	Rev	в'	1	Penthouse ID
MPLIFIE	3=	'2		r		1	Amplifier(s) in use
ASPGAIN	=				1	1	ASP gain setting
INTEGRAT	-				1	1	Integrator setting
BTTEMP	-				-105.00	1	Detector temperature (Celsius)
RYOTEME	=				-192.48	1	Cold sink temperature (Celsius)
ONTTEME	=				13.40	1	Controller temperature (Celsius)
BERVOPWE	=				0.57	1	Servo heater power (watts)
ICCDS	=				1	1	Number of CCDs in detector
(AMP S	=				1	1	Number of amplifiers used
INSTRUME	3=	'lrs		r		1	Instrument
INSPAOFE	=				-0.45	1	Instrument position angle offset
OSANGLE	3=				271.25	1	Position angle of a column on the sky
PERTURE	3=	'slit!	2.0	Ţ		1	Aperture
ROBBPOS	3=	[none	e g:	iven]	r r	1	Probe position file
ISPERSE	3=	'gr600	3	r		1	Disperser
BCKER	=	'15		r		1	Decker
INSFOCUS	3=	'101		r -		1	Instrument focus
COSUM	=	'2 2		<u>.</u>		1	On-chip summation
INSFILTE	3=	'GG38!	5	т.		1	Instrument filters
DISPAXIS	3=				1	1	Dispersion axis: 1-along line, 2-along column
TAL_REV	=	2001-	-09-	-281		1	Date of associated LRS Master Calibrations
RDNOISE2	2=				5.10	1	Readout noise for amplifier 2 (electrons)
EAIN2	=				1.8320	1	Gain for amplifier 2 (electrons per ADU)
COSIZE	=	' 30722	<10.	24'		1	CCD size
COSBC	=	1[1:1]	536,	,1:51	L2]'	1	Orientation to full frame
MPSBC	=	1[1:30	072,	, 1 : 10	024]'	1	Amplifier section
BTSBC	Ŧ	1[1:30	072,	,1:10	024]'	1	Detector section
RIGSBC	=	1[1:30	072,	,1:10	024]'	1	Original size full frame
DATASEC	=	1[1:1]	536,	,1:51	L2]′	1	Image portion of frame
RIMSBC	=	1 [1:1!	536,	, 1 : 51	L2]'	1	Region to be extracted
BIASSBC	=	'[1540	0:1!	568,1	L:512]'	1	Overscan portion of frame
AN ADD AND ADD ADD ADD ADD ADD ADD ADD A							

		665
SIMPLE =	Т	/(logical) file is basic fits format
BITPIX =	16	/(integer) number of bits per pixel
NAXIS =	2	/(integer) number of axes
NAXIS1 =	1024	/(integer) pixels on fastest varying axes
NAXIS2 =	256	/(integer) number of pixels on next axis
FAXIS1 =	10	/(integer) device origin of first pixel
FAXIS2 =	2	/(integer) device origin of first pixel
BAXIS1 =	1	/(integer) binning factor on first axis
BAXIS2 =	1	/(integer) binning factor on next axis
TIME-BEG=	22:01:31.100	/(character) exposure start time
TIME-END=	22:06:31.010	/(character) exposure end time
CAMGAIN =	0	/(numeric) camera gain setting
ZEROLEY =	0	/(integer) Yalue of true data zero
DATE-OBS=	'01/08/00'	/(character) date of data aquisition
BND	1990 - LAWER R. A. (1897 - 1997)	/ end of fits header data

How to examine the images

Examine a flatfield exposure using implot and determine the area of the chip that contains good data and the area of the chip that contains good overscan information

First pass through ccdproc

- Enter the proper biassec and trimsec into ccdproc parameters
- Combine the individual bias frames using zerocombine to produce an averaged, combined bias image (Zero, for example)
- Process all the frames to remove the overscan and average bias, and to trim the images (first pass through ccdproc). Be sure that you have the appropriate switch settings (overscan+, trim+, zerocor+, darkcor-, flatcor-, illum-, fring-) and that the name of the combined bias frame has been entered for the zero calibration image (zero=Zero)

Dark current correction

In most cases it is not necessary to correct for the dark current

Preparing a master flat

Combine your flat-field exposures using flatcombine. Suggested parameters are scale=mode reject=crreject gain=gain rdnoise=rdnoise. This will reject cosmic rays and scale by the mode

Second pass through ccdproc

- For spectroscopic data, normalize the combined flat-field exposure along the dispersion axis by dividing it by a low-order fit using for example response (twodspec.longslit) or apnormalize or apflatten (1)
- Process all the program frames using the normalized combined flat-field exposure: flatcor+ flat=norFlat.imh. This will flatten your data to the first approximation (second pass through ccdproc)

Illumination correction

If you need to correct your data for any illumination problem create an illumination correction:

- Combine all blank sky or twilight frames with combine scaling and weighting by mode
- For spectroscopic data use illum in the twodsp.longslit package to create a slit llumiination correction from the combined sky flat
- Finish flattening your data by turning on the illumination correction switch and specifying the illumination correction function in ccdproc (third and final pass)

Be careful with the fringes

Some CCD chips produce interference fringes when they are illuminated by monochromatic light. The fringes are strong and good visible in the near-IR

Bad pixels mask

Processing spectroscopic observations we may wish to fix bad pixels as a final step. To do this we need a bad pixels mask. It is not so easy to create such a mask. Because of this we will use a bad pixels mask provided by the HET staff.

