Nowy spektrograf Echelle w Piwnicach

T. Tomov

TCfA

June 07, 2010

Sponsors

- T. Brożek
- E. Ragan
- M. Więcek TCfA
- Producer

Testing and maintaining

- B. Wikierski
- Z. Wyrzykowski
- T. Brożek
- E. Ragan
- K. Suchomska
- P. Konorski

In the beginning

The prototype

In the beginning

The final product

T. Tomov (TCfA)

Nowy spektrograf Echelle w Piwnicach

Mounting on the TSC and location of the parts

Fibre injection and guiding unit

Nowy spektrograf Echelle w Piwnicach

Mounting on the TSC and location of the parts

Spectrograph, power supply and calibration unit

T. Tomov (TCfA)

Mounting on the TSC and location of the parts

Control room

Mounting on the TSC and location of the parts

How it works ?

Fibre injection and calibration unit

- 2" or Schmidt-Cassegrain Telescope interface
- miror based with light going through a hole (75 µm) in the middle
- calibration input (remote controlled)
- FC fibre connectors
- scientific fibre 50 μm
- calibration fibre 200 μm
- guiding camera
- In our case additionally
 - 0.63× focal reducer (*f*/9.45)

Spectrograph

- fibre-fed
- cross-dispersed echelle
- f = 125 mm collimator (f/5)
- *R*2 high efficiency echelle grating
- coated prism cross-disperser
- resolving power $R \sim 10000$
- visible domain (around 4500 7000 Å)
- choice of imaging camera

Calibration unit

- ThAr lamp with high voltage power supply for precise calibration
- flat lamp for echelle order geometry and blaze processing

Imaging camera – QSI 532s+

QSI (Quantum Scientific Imaging) 532s+

- Canon f = 85 mm lens adapter
- Kodak KAF-3200ME

Imaging camera – QSI 532s+

Feature	Model 532s		Model 532ws	
Standard CCD Image Sensor	KAF-3200ME		KAF-3200ME	
Shutter	Mechanical, exposure range: 0.03 seconds to 240 minutes			
Internal Color Filter Wheel	No		Yes - 5 Position, 1.25" std filters	
Camera Body Configuration	Medium Enclosure	()	Full Enclosure	Ŵ
Dimensions	W4.45" x H4.45" x D2.00" (add 0.23" for T-Mount)		W4.45" x H4.45" x D2.50" (add 0.23" for T-Mount)	
Weight, without Nosepiece	34 oz. / 950g		40 oz. / 1120g	
Optical Back Focus (without Filters in path)	0.90" with T mounting adapter 0.68" with C mounting adapter 0.68" w/o mounting adapter		1.40" with T mounting adapter 1.18" with C mounting adapter 1.18" w/o mounting adapter	
Thermœlectric CCD Cooling	Temperature regulation +/- 0.1°C, @ 0°C to -40°C CCD temperature			
In free air, Fans @ Full Speed	Typically 38°C below ambient air with 85% cooling power			
With Opt Liquid Cooling - Fans Off	Typically 45°C below circulating liquid with 85% cooling power (adds 0.75" to camera depth)			
Cooling Fan Control	Intelligent, user configurable			

Imaging camera – QSI 532s+

Camera Gain	1.3 electrons per ADU			
Digital Resolution	16 bits			
Total System Read Noise	Typically <8 electrons RMS (CCD specification limited)			
Pixel Dark Current	<0.5 electron per second at 0°C <0.05 electron per second at -25°C			
Full Image Read and Download Time	Typically <8 seconds (host computer dependent)			
Binning Modes	Symmetrical on-chip 2x2 and 3x3, user selectable			
Status and Notification	User configurable multi-color LED status indicator and multifunction audible beeper. Over-temperature and high/low voltage alarms.			
Power Consumption	12v, 1.5A (18 watts) at max cooling, max fans and filter moving (25 AC watts max with included 90-240V AC power supply)			
Operating Environment	Temperature: -20°C to 30°C, Humidity: 10% to 90% non-condensing			
Computer Connectivity	USB 2.0 (USB 1.1 compatible)			
Other Ports	Optically isolated 4 channel control port for telescope guiding or other application specific control			
T Mounting Adapter	Standard adapter - T-Thread, 42mm x .75mm			
C Mounting Adapter (1" x 32TPI)	Optional, C-Mount lens focus compatible (17.5mm backfocus)	Optional, for non-lens adapters and accessories (standard C-Mount lens does not reach focus)		
Nosepiece	Standard, T-Adapter to 2 ^e nosepiece Optional, T-Adapter to 1.25 ^e nosepiece			

Software

- based on open source AudeLA platform
- automated acquisition procedure with full remote control of the spectrograph and the calibration unit
- process spectra on the fly
- generate standard FITS spectra files, export in text format
- view spectra
- reprocessing by batch of the spectra

Gain and readout noise

- operating temperature 0° C
- six pairs of master bias and master flat field images were used
- all CCD and regions without hot pixels were measured

The estimated gain was 1.34 electrons per ADU and the readout noise was 10.52 electrons r.m.s.

For the same type cameras R. Berry and C. Buil estimated the gain 1.33 and 1.34 respectively and the readout noise 10.5 and 11.9 respectively

For the KAF-3200ME chip Kodak specifies a readout noise between 7 and 12

Residual pattern noise

- operating temperature -20° C
- an average of 256 bias frames was used
- then 256 rows (604 – 860) were averaged

There is a difference $\sim 2\%$ in ADU between the edges and the center of the chip

The semi-random patterns amplitude is less than 1% of the readout noise

Dark current

- averaged bias and 1000-seconds dark frames were used
- region free of hot pixels was measured

Temperatura	Średni <i>dark current</i>
[°C]	[elektron/piksel/sekundę]
0	0.036
-5	0.014
-10	0.0056
-15	0.0012
-20	0.0005

The result is much better in comparison to the camera specification (<0.05 electron per second at $-25^\circ\,\text{C})$

Pixels statistics

- operating temperature -20° C
- 256 bias frames and 256 dark frames with 60 sec exposure were used
- ✓ 99.8% of the pixels follow a Gaussian distribution
- ✓ 0.2% of the pixels show a long-tailed distribution toward higher values
- ✓ total number of pixels 3214848
- 1 pixel 9157 ADU
- ✓ 22 pixels -> 1000 ADU
- ✓ 209 pixels -> 100 ADU
- ✓ 4209 pixels -> 10 ADU
- ✓ 8076 pixels -> 4 ADU

The hottest hot pixel had a dark current of 204 electrons/pixel/second (average 0.0005 at -20° C) The dark current at -20° C for 99.8% of the pixels on the CCD is practically negligible

"Good" pixels

- bias frames and 1000-seconds dark frames were used
- region entirely free of hot pixels was used

At temperatures of -15° C and lower, dark frames nearly match the values found in bias frames

Temperature behaviour of hot pixels

- 1000-seconds dark frames were used
- six pixels close to saturation or more than halfway to saturation at 0° C, and three pixels with values below 5000 ADU were measured

All hot pixels become cool with lower temperature, but the rate of decrease differ

Exposure behaviour of hot pixels

 averaged dark frames with exposures ranging from 10 sec to 1000 sec were used

The dark current of high-value hot pixels is non-linear with respect to exposure time

Linearity

- averaged, dark corrected flat field frames with different exposures were used
- region free of hot pixels was used
- The points are fitted with a straight line and the plot looks linear

Kodak specifies that the deviation from a straight line fit between 2% and 90% of saturation can reach 1%

Object, ThAr and flat field frames

- the spectral region can be slightly changed playing with the camera focus
- with the present set-up the best usable orders are from 32 to 50
- $\bullet\,$ i.e. from \sim 4300 Å to \sim 7200 Å

Object, ThAr and flat field frames

- the spectral region can be slightly changed playing with the camera focus
- with the present set-up the best usable orders are from 32 to 50
- i.e. from \sim 4300 Å to \sim 7200 Å

Object, ThAr and flat field frames

- the spectral region can be slightly changed playing with the camera focus
- with the present set-up the best usable orders are from 32 to 50
- $\bullet\,$ i.e. from \sim 4300 Å to \sim 7200 Å

Data processing

we used two ways to process the data

- $\checkmark~$ the standard IRAF way
- the pipeline script written by P. Konorski

We did not find any differences in the order extraction and the wavelength calibration between these two methods

Data processing

• thanks to P. Konorski an atlas of the ThAr lamp in the region \sim 4200 - 7700 Å was prepared

T. Tomov (TCfA)

Nowy spektrograf Echelle w Piwnicach

Comparison with the Poznan echelle spectrograph

• the Poznan echelle spectrograph is a replica of MUSICOS with a resolving power $R \sim 35000$

Nowy spektrograf Echelle w Piwnicach

Comparison with the Poznan echelle spectrograph

• the Poznan echelle spectrograph is a replica of MUSICOS with a resolving power $R \sim 35000$

Equivalent widths

• the equivalent widths of 104 lines measured in the spectrum of Arcturus were compared with the data of Mäckle et al. 1975

Equivalent widths

- CU Vir observations
 - fast rotating Ap star
 - $P \sim 0.4^{d}$ 5

Radial velocities

The standard RV of Arcturus is $-5.3\pm0.3\,km\,s^{-1}$

RV of Arcturus measured by the use of the IRAF task *rvidlines*

Date	RV	Mean err	N of lines
	${\rm kms^{-1}}$	km s ⁻¹	
11.03.2010	-5.62	0.10	105
24.03.2010	-6.17	0.13	82
17.04.2010	-6.38	0.12	114
Mean	-6.06	0.12	

RV of Arcturus measured with cross-correlation techniques

Date	Resolving power	RV	Mean err
		km s ⁻¹	km s ⁻¹
11.03.2010	20000	-6.10	0.82
11.03.2010	12000	-6.14	0.70
24.03.2010	20000	-5.69	0.76
24.03.2010	12000	-5.69	0.75
17.04.2010	20000	-6.24	0.82
17.04.2010	12000	-6.25	0.82
Mean		-6.02	0.78

Exposure times

A very, very, very rough estimation of the exposure times

