J. - CI66. _605Wh

120

rt

THE ASTROPHYSICAL JOURNAL, 166:605-619, 1971 June 135
© 1971 The University of Chicago All rights reserved Printed in USA

REALIZATION OF ACCURATE CLOSE-BINARY LIGHT
CURVES: APPLICATION TO MR CYGNI

RoBERT E. WiLsoN AND EDWARD J. DEVINNEY
Department of Astronomy, University of South Florida, Tampa
Received 1970 December 21; revised 1971 January 26

ABSTRACT

A general procedure for computing monochromatic light curves of close eclipsing-binary systems is
presented, with allowance for rotational and tidal distortion, the reflection effect, limb darkening, and
gravity darkening. All basic techniques used to compute light curves are specified. Solution of the inverse
problem (finding the elements from observations) is accomplished by differential corrections, and prob-
able errors are obtained for all adjustable parameters. No rectification of any kind is used or needed.
Because of the basic flexibility of the scheme, present limitations (e.g., synchronous rotation only, black-
body physics) may be improved upon with reasonable convenience, as time permits. The procedure has
been applied to B and V observations of MR Cyg, and the results of the differential corrections adjust-
ments are given. With the use of available spectroscopic observations and model-atmosphere results by
Mihalas, the components are placed in the H-R diagram. Although the primary seems to be on the main
sequence, the secondary is found to be above the main sequence—an observation which suggests that
the secondary may still be in the gravitational-contraction phase.

I. INTRODUCTION

Nearly all light curves of eclipsing systems displaying sensible proximity effects are
analyzed by use of the model proposed by Russell. This model assumes that the binary
components are similar ellipsoids, similarly situated, and it requires the isophotes
to be similar in shape to the boundary of the star. While the model represents only an
approximation to a real binary system, it has the useful property of being transformable
to a spherical system of cosine limb-darkened stars. This rectified system may then be
analyzed by the methods developed by Russell and others for spherical stars. These
“spherical” parameters are easily related to those of the Russell model. However,
systematic error is propagated into the values so determined because the model does not
represent the true shapes of the stars, postulates an unrealistic distribution of light
over the components, and treats the problem of mutual irradiation in an indirect way.
These peculiarities render it of dubious value for determining such astrophysically
interesting parameters as limb- and gravity-darkening coefficients for binaries exhibiting
even modest proximity effects. An example of the difficulties which can arise is that oc-
casionally the analysis yields a negative luminosity for one of the components. While the
Russell model serves a limited purpose well, it is not suited to improvements which
would make it physically more realistic.

Improved models have been studied by Kopal (1959), who investigated the light
changes of stars subject to tidal and rotational distortion, with limb and gravity darken-
ing. His treatment of the reflection effect differs only slightly from Russell’s. In principle,
Kopal’s outline of ideas could be used to calculate light curves, but so far this has not
been done, undoubtedly due to the intractability of the formulae. However, introduction
of numerical procedures at certain key points overcomes these difficulties and allows one
to proceed to a more improved model than the one suggested by Kopal. In fact, the
method given below can accommodate advanced refinements of the theories of stellar
structure and atmospheres, as required.

Lucy (1968) made the first attempt at direct calculation of light curves, using a code
limited to “overcontact” systems describable by a single value of the potential. Only
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bolometric light curves were computed, and mutual irradiation was neglected. Hill and
Hutchings (1970) concentrated on this latter aspect, using a direct computational method
which treated the primary as spherical, and tried to determine the effective temperatures
of the semidetached system of Algol. Their paper is open to specific criticism on several
grounds, but we postpone this to avoid unduly lengthening this communication. The
distortion of both components is properly treated in the approach we describe here, which

also includes the photometric effects of proximity. Figure 1 displays representative
examples of results of the light-curve program.
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F16. 1.—Results of the light-curve program. WL means wavelength, and the other listed parameters

are defined in the text. The system showing greater distortion is virtually a contact binary. Drafting

noise is responsible for any lack of smoothness. Noise due to the program would be unnoticed even on
quite a larger scale.
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No. 3, 1971 CLOSE-BINARY LIGHT CURVES 607

The ideal method of comparing the model with observations of a binary system would
be that which yields the most probable values of the model parameters. This set mini-
mizes the sum of the squares of the observed-minus-computed light values. We show
below how it is possible to effect this minimization for our directly calculated light curves.
In order for a proper adjustment to be obtained, the calculated light curves must have
quite small systematic and random errors compared with the probable error of observa-
tion. Of course, if the computational errors are only smaller than the errors of good
observations, say by a factor of 2, it may be worthwhile to make a trial-and-error adjust-
ment of the parameters, and perhaps to estimate their allowable range of variation, for a
subjectively satisfactory fit to the data. Only a rigorous adjustment procedure, however,
is capable of properly accounting for correlations among various parameters of the model.
In contrast, the estimating technique does not reliably account for correlations, and its
use will always result in error estimates which are too small. We shall see that the intro-
duction of more realistic models does not preclude obtaining true least-squares solutions
of observed light curves.

II. ADOPTED MODEL

Insofar as the tidal distortion is concerned, the model we adopt here is identical with
the classical Roche model for close binaries in synchronous rotation. That is, equipoten-
tials in the system are computed on the assumption of complete central condensation for
both components. Obvious future refinements would include allowance for a polytropic
mass distribution and for nonsynchronous rotation, neither of which should be extraor-
dinarily difficult since the general computational scheme is very flexible. Even without
these modifications, however, the present model is clearly a substantial improvement on
a model of similar triaxial ellipsoids. In fact, not only are the figures of the stars better
represented, but the general approach permits a more direct treatment of the reflection
effect and a much more satisfactory treatment of gravity darkening than we find in the
Russell model.

A system will be described by the inclination 7, monochromatic L; and L; luminos-
ities of the components, limb-darkening coefficients x; and =x,, gravity-darkening
exponents g; and g, temperatures Ty and T, mass ratio ¢ = ms/m,, and surface poten-
tials ©; and Q.. If we set g1 = g2, as in the Russell model, we note that we have saved two
parameters since we must count the Fourier coefficients of the variation in the maxima
(Ao, A1, A2) and the spectral types of both components as Russell model parameters.!
T (or possibly T3) would only rarely be adjustable since in almost all cases we would
know the spectral type of at least one component. Normally, therefore, we shall have
only ten adjustable parameters, and, if we have a spectroscopically determined mass
ratio, there will be only nine. Notice that by including both luminosities instead of the
luminosity ratio as free parameters, we eliminate the necessity for having a special
normalization of the light curve. In effect, then, the second luminosity replaces the Aq
Fourier coefficient as a free parameter. Of course, only the ratio of luminosities has
physical significance, so we give as final elements the values of L, and L; normalized such
that their sum equals unity.

III. ADJUSTMENT PROCEDURE

One often hears the comment that it is the inverse problem of computing the parame-
ters from the observations rather than computing light curves from given parameters
which really bars the way to progress toward improved models of eclipsing systems. It
appears to have escaped general notice that there exists a rather simple—indeed, almost
trivial—solution to this problem. One merely need apply the well-known method of

1 The minimum set of Russell model parameters is thirteen. One possible set is 7, Li/Ls, 40, 41, A2,

%1, %3, N, any three among a1, by, as, b: and the two spectral types. For detailed definitions see Russell
and Merrill (1952).
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differential corrections (cf. Wyse 1939; Irwin 1947), using the expression for the total
differential of the light values,

al

., 0l al al

Al 4+ axlel + aszxg + aL.AL‘ +...,

as the equation of condition for a linear least-squares analysis. Of course, one needs a good
starting approximation to the solution, but this has not proved unduly difficult in our
experience to date. The result is a set of corrections Az, Ax;, etc., to the starting elements
which, provided the corrections are suitably small and the model basically correct, yields
the most probable values for the elements and their probable errors. Why this solution to
an apparently insuperable problem was not appreciated earlier is not readily apparent,
unless it was due to a failure to realize that the various partial-derivative coefficients
dl/di, 9/ 9x1, etc., need not be expressible in analytic form since they are easily evaluated
by finite differences. To be sure, we are not completely satisfied with the accuracy with
which we now compute these derivatives, but the accuracy is adequate for most practical
purposes and we expect it to be improved considerably in the near future. Our differen-
tial-corrections program is written so that any subset of the elements can be held fixed
while the others are adjusted. One can iterate if a question arises concerning the closeness
of the initial solution, so that a true least-squares fit should be achieved. We realize, of
course, that the problem of their possibly being in a “local minimum” (which may not be
the deepest minimum) of the variance in the nine- or ten-dimensional parameter space
may prevent reaching the best solution. It is for this reason that differential corrections,
or any other least-squares procedure, should never be viewed as a replacement for
graphical or nomograph techniques, but should properly be used as a supplement to
them for the purpose of reaching a final solution which is impersonal and which makes
use of all the information inherent in the observations.

IV. OUTLINE OF PROCEDURES FOR COMPUTING LIGHT CURVES

Since realization of accurate binary-star models has previously been prevented more by
lack of a suitable scheme for effecting the computations than by lack of understanding
of the physics of the problem, we shall describe the logical organization of our program
for computing light curves.

In order to maintain maximum flexibility and adaptability, the computations are
performed by replaceable subroutines which, in turn, have been designed to be altered
with minimum difficulty. The basic simplicity which underlies the entire procedure,
however, and which makes possible ready assimilation of future refinements, is that all
pertinent physical quantities are computed locally on the tidally distorted components.
The flux seen by the observer is then found by summing the flux in his direction contrib-
uted by a large number of discrete surface elements spaced approximately uniformly over
the components, excluding those which lie over the horizons and those in eclipse.

We typically generate the polar coordinates 7, 8, ¢, of several thousand to several tens
of thousands of points over the surface equipotentials defined by the equation (Kopal
1959, p. 127)

Q=r"+4q(Q— 207+ =M+ 3¢+ DA - ), 1)

where ¢ = ma/my, \, v are direction cosines, and Q is a linear function of the true potential
¥. Use of the Q-function allows a great simplification compared with using the actual
potentials because only the mass ratio, rather than the individual masses, appears. The
origin of coordinates is taken at the mass center of the component eclipsed at primary
minimum. Equation (1) is solved for (6, ¢, ¢, 2) by the Newton-Raphson method,
starting at the pole of each component and using each computed radius as the initial
approximation to the next radius. The convergence is such that only one or two iterations
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are required to reach the specified accuracy of 0.00001 in 7. While iterating the radii for
the component covered at secondary eclipse, the origin of coordinates is temporarily
placed at its center. We next compute numbers proportional to the rectangular com-
ponents of the gradient of potential at each surface point. For this purpose we can use
99/ dx, 9Q/dy, and dQ/dz since these are proportional to the corresponding ¥-derivatives.
These calculations are rather simple since the Q-derivatives are no more complicated
than the Q-function itself and no iteration is involved. Since the present model has two
planes of symmetry, it is only necessary actually to compute and store the radii and
potential gradient components for one-fourth of each component. We also avoid actually
storing the 8, ¢ coordinates of the surface points because these can be identified by the
storage locations assigned to the radii. Such economy is essential if the program is to be
run on any but the largest machines.

It has been traditional to equate the luminosity ratio of the components to the flux
ratio seen from some particular line of sight. These ratios are equal for the Russell model
(similar ellipsoids), but for real binaries the latter is often significantly dependent on
phase. We take the luminosity ratio to be the ratio of the fluxes for components 1 and 2
integrated over their surfaces in the absence of the reflection effect. In the bolometric
case this is, of course, equal to the ratio of their rates of energy generation. To compute
the flux from each surface element, it is necessary to work with a local intensity, so we
have a subroutine which computes the mean normal emergent intensity required to yield
the 4 steradian luminosity of a component when the resulting local fluxes are suitably
integrated over the surface of the star.

The most difficult part of the problem is that of summing the flux in the observer’s
direction while correctly accounting for horizon and eclipse effects as well as gravity
darkening, limb darkening, the reflection effect, and all obliquity factors without being
able to use the simplified geometry afforded by sphere or ellipsoid models. Our subroutine
LicHT does this for an arbitrarily specified phase angle, so that numerous calls to LiGHT
are made in computing a light curve. In order to have available a function describing the
projected limb of the eclipsing component when summing the light of the eclipsed com-
ponent, the star closer to the observer is always handled first. The cosine of v is first
computed for each surface element, where v is the angle between the local surface normal
and the line of sight. The surface normals are defined by the stored components of the
potential gradient, with proper mirror imaging for those which have negative y- or z-
components. Those points with negative cos v lie on the side away from the observer and
do not contribute to the summed flux. The first point beyond the horizon on each row of
points is treated in a special way. Its projected coordinates in the plane of the sky are
stored for later use in representing the boundary of the star. An analytic function for the
boundary is then obtained by interpolating among the points for equal spacing and
computing the Fourier coefficients up to 56 through the usual relations

an =223 1, cos néw, (2)
T k=1

b = 22 D fr s ny (3)
T k=1

where there are m interpolated boundary points and fx, ¢ are the polar coordinates of
the kth point in the plane of the sky. For each point visible to the observer we then
compute the monochromatic gravity darkening G, monochromatic reflection effect R,
and the limb darkening D. The flux in the observer’s direction is then given by

AF, = 72 sin 0 cos ¥ GDRI A8A¢/cos . 4)
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Here I is the mean normal emergent intensity required to produce the 4= steradian lumi-
nosity of the star, as mentioned above, and need be computed only once for each com-
ponent; 8 is the angle between the surface normal and the radius from the center; and
cos 8 may be readily computed since we have the components of both these vectors. The
fluxes are summed along each row before adding the total for previous rows, in order to
ensure adequate resolution in the sums without using double-precision arithmetic.

For the component away from the observer the computations are identical except
that we need not save the boundary points but must check each point to determine if it
is within the projected boundary of the nearer component. Taking as origin the center of
the eclipsing component, we simply compare the projected radius to the point with the
radius given by the Fourier boundary function found earlier. We also apply a correction
for fractional areas eclipsed, which is quite important since the primary limitation on
accuracy is the boundary quantization. We also apply a “fast test” to detect cases in
which it is obvious that no eclipse is taking place. This makes it possible to bypass many
program steps and compute much faster for points in the maxima. This test compares
sin? 6 (here 6 is the orbital phase angle) with sin? 0,.x, Where 0.« is the angle of external
tangency for the case of two spherical components, each of which is 2 percent larger than
the back radius (i.e., the radius along the line of centers but opposite to the direction of
the other component) of the corresponding distorted component.

To treat gravity darkening we first find the ratio of the local bolometric flux to that at
the pole,

Flocal
o L Q)e
et = vy, (s)

where v has been normalized to the pole. We shall refer to the exponent as g, instead of
8, to avoid confusion with the 8 in equation (4). For von Zeipel (1924) gravity darkening,
g = 1, but it should have smaller values for stars with convective envelopes (Lucy 1967).
The local temperature may then be computed from Stefan’s law

_ Floca,l>0'25
T10eal = Tpole Foore 6)

Planck’s law then gives the ratio G of the local monochromatic normal emergent intensity
to that at the pole.

The geometry of the reflection effect we now use contains some simplifications. Al-
though the distortion of the irradiated component is fully accounted for, the irradiating
component is treated as a point source, and the irradiated region is limited to those
points within view of the point source. Based on our experience to date in fitting observed
light curves, we believe that these simplifications introduce only very minute errors. We
consider our geometrical treatment to be far better than that in the Russell model,
where light is, in effect, added to the back hemispheres—a procedure which complicates
the interpretation in several ways. Naturally we apply the reflection for both components
so that the total (not just differential) reflection appears in our computed light curves.
The local effect is found by considering the energy balance between the local bolometric
energy flux of the affected component and the bolometric energy incident from the other
component, taking due account of the tilt of the local surface element with respect to the
source of irradiation, and of distance effects. This requires a prior computation of the
ratio of bolometric luminosities, which is found from the ratio of monochromatic lumi-
nosities (independent variables) and the difference of their bolometric corrections (Harris
1963). A new temperature is then computed from the local temperature previously found
for the gravity effect, by Stefan’s law

Toow = Towal(L1/La)boro (geometrical factors)]0-® .
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With this new temperature we can compute the ratio R of the local monochromatic
surface brightness to that which would exist in the absence of the reflection effect, and
this is the R which appears in equation (4).

At present we use only the linear cosine limb-darkening law,

J=J(1l —x+ xcosv). (7)

It would be a trivial modification to use a more accurate law such as the one recom-
mended by Klinglesmith and Sobieski (1970), but equation (7) has the advantage of
containing only one adjustable parameter. Since only a very few eclipsing systems have
been reliably analyzed for the linear coefficient, there appears to be no cause for haste in
seeking second-order terms. In addition, Grygar (1963) has shown that it would be very
difficult to find these terms with sufficient accuracy to distinguish among various atmo-
sphere models, except perhaps for very early-type stars.

Our program can deal with the case of “overcontact” or dumbbell-shaped binaries,
such as considered by Lucy (1968). For those radii from the center of each component
which pass through the connecting neck, a “flag” (value = —1) is inserted in the ap-
propriate memory location. When a radius of —1 is encountered in summing the bright-
ness, the light of the point is omitted from the summation. Quantitative comparison of
these light curves with those of W UMa stars will be discussed in a future paper. We
have plans for reducing the running time of the program, and it seems that a factor of 10
or more may be achieved by the use of various tricks. It should therefore be practical to
correct differentially all parameters without the use of normal points within the next year.

Many tests were made to ensure the correct functioning of the program. Initially we
made checks on the radii and gradient components to be sure that they varied as ex-
pected. The consistency of the system geometry was verified in several ways. For ex-
ample, both components reach the inner Lagrangian point for precisely the critical value
of the potential. All subprograms were thoroughly tested separately as well as together.
Among the specific tests of the light-curve program were the following. The light curve
for a well-separated, limb-darkened pair with negligible proximity effects was checked
against a light curve for the same system computed by an independent spherical model
program which, in turn, had been checked against the Merrill (1950) tables. With each
component represented by 4636 surface points, agreement was of the order of one part in
1000 in the worst case. We have ideas for improving this accuracy without increasing the
number of surface points, but it seems adequate for the present. This worst-case
configuration (annular eclipse) does not occur for MR Cyg, the system we study here. The
largest errors in the theoretical light curves of MR Cyg are less than 0.0002 fractional
light units. A case for 0° inclination showed no light variation, as expected. Also, the
symmetry about 0° and 180° phase angle is virtually perfect. A very interesting test was
for a system having zero limb darkening but full von Zeipel gravity darkening. A
central eclipse for such a system should show an apparent limb brightening in the an-
nular phases because the disk of the larger star is relatively dim at the center since this is
the region of maximum gravity darkening at phase angle 0°. The computed light curve
showed, as expected, an annular phase in which the curvature was concave downward.
Our least-squares subprogram, used in the differential-corrections program, was tested
on a problem with known answers. It did find the correct parameters and probable
errors. As a final point we should mention that increasing the number of surface elements
by a large factor introduces no systematic changes in the light curves, but merely im-
proves their precision.

V. MR CYGNI PARAMETER ADJUSTMENTS

Considerable thought went into our selection of the first binary to be studied in terms
of this model. The system MR Cyg, as observed by Hall and Hardie (1969), has nearly
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all of the characteristics one would prefer in such a test sample. The observations are
accurate and well distributed in phase, and the light variation repeats well and shows no
obvious complications. Of course, these are filtered observations—a point which excluded
some otherwise acceptable examples. The proximity effects are large enough so that we
may have significant departures from the Russell model, and the spectral types (middle
to late B) are in the range of relatively well-understood model stellar atmospheres. The
B spectral types are important also because the envelopes should be fully radiative, so
that the simple theory of gravity darkening (von Zeipel 1924) should apply for these
stars if it applies for any. Finally, double-lined radial-velocity observations exist (subject
to a qualification to follow), which potentially provide important information for placing
the components in the H-R diagram. The system is less than ideal in one respect, namely,
that the eclipses are probably not complete, although nearly so. The reference made by
Hall and Hardie to a complete solution evidently applies only to their nomograph
(Merrill 1953) solution, because their subsequent adjustments led to partial eclipses
both in their final solution and in their separate B and V solutions. Only in U do their
elements correspond to complete eclipses—a point not explicitly mentioned by them.
Our results definitely indicate partial, though geometrically deep, eclipses.

We first made a fairly large number (prehaps 15-20) of trial-and-error adjustments in
B and V, using the elements given by Hall and Hardie as an initial guide. It is almost
certain that fewer trials would be needed for a system with complete eclipses, and it may
be that experience will reduce their number in future work. Not all parameters were
adjusted, since it was necessary to complete the project under certain constraints of time
and computer availability. In these adjustments we tried to stay close to the theoretically
expected darkening coefficients for stars of the estimated spectral types (cf. Grygar 1965).
The effective temperature of the hot component was fixed at 18000° K (cf. Harris 1963),
and the gravity-darkening exponent was fixed at 1.00, corresponding to von Zeipel
darkening. It was at all times clear that a gravity exponent significantly less than 1.00
would degrade the quality of the fit by decreasing the photometric ellipticity. If any
thing, the ellipticity effect in the computed light curves was a trifle too small. The agree-
ment between the computed and observed ellipticity effects is certainly satisfactory at
present, but one definitely would not want to decrease the gravity exponent. One could
not simply increase the sizes of the components in compensation because the eclipse
durations would then be too great. This may be the most substantial demonstration of
the existence of gravity darkening to date, for the light curves cannot be satisfied at all
with g~ 0. A comparison (Rucinski 1969) of theoretical and observed gravity-darkening
effects through the Fourier coefficients in the maxima of four systems showed apparently
satisfactory agreement. Unfortunately, this study neglected the reflection effect, which
is almost certainly important.

Rather than actually adjust the mass ratio, which would have been difficult by trial
and error, we tried two particular values. We first tried ms/m; = 0.56, as suggested by
Hall and Hardie, and were able to find a marginally acceptable fit to the observations;
but there was a decided improvement when we changed to the value 0.83, which follows
from the double-lined radial-velocity measures made by J. A. Pearce at Victoria, the
elements of which were published by Harper et al. (1935). Hall and Hardie were skeptical
of the validity of this determination because they thought it unlikely that the lines of the
secondary could be measured satisfactorily due to its low fractional luminosity, and also
because the absolute masses would not match the assumed spectral types. Although
these appear to be valid objections, Hall and Hardie did not actually examine Pearce’s
observations, which have now been kindly supplied to us by Dr. Pearce (the measured
velocities) and by Dr. Alan Batten (selected spectrograms). Figure 2 shows the double-
lined radial-velocity curve of MR Cyg, which does seem to establish a rather good value
for the mass ratio. On the other hand, we must admit that we cannot be sure we see the
lines of the secondary component on any of the plates supplied by Batten, and Dr.
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F16. 2.—Previously unpublished radial-velocity curve of MR Cyg observed by J. A. Pearce in 1932.
Filled circles, component 1; open circles, component 2.

Batten tells us that he is not sure he sees them either! Evidently the experience necessary
to measure these lines is very considerable, and we must consider the question of the
mass ratio of MR Cyg an open question at present. However, we are not ready to dismiss
the spectroscopic mass ratio only on the grounds that it dictates low absolute masses,
since it is conceivable that the evolutionary history of such an unusual binary (two B
stars nearly in contact) may have produced a pair of quite exceptional objects.

The parameters thus adjusted were then subjected to our differential-corrections
analysis. For the differential corrections only we used a fine surface grid of 18456 points
on each component. It was necessary to make normal points of five observations each to
keep computing time at a reasonable level, and even so the program ran 75 minutes for
each iteration on the IBM 360-91 computer at Goddard Space Flight Center. We
adjusted seven parameters (2, 1, %2, Ly, Ls, @1, and @), while keeping ms/m;, T, and g
fixed. The program is capable of adjusting these latter parameters, but we felt it prudent
not to adjust them in view of the already long running time. The observations were
weighted on the assumption that scintillation noise (which we take to include variable
transparency) is dominant; that is, the weights were inversely proportional to the square
of the light level. The B and V results are given in Table 1. Probable errors for the radii
may be computed from those in € and the derivative

;,‘% = f(q + 1)1 — )y — ,—12 _ [ i _q(zf)\:i)ﬁ)m —~ qr] g"‘ ,

where X is zero for the polar and side radii, 41 for the point radius, and —1 for the
back radius. The direction cosine » is +1 in the polar case and zero for the other three
cases. Since the corrections from the trial-and-error parameters were satisfactorily small,
we give only the final results. It was quite obvious that the differential-corrections pro-
gram was working properly because we made the check of computing the direct light
curves before and after the adjustments, and in both colors the differential corrections
visibly improved the fit beyond the best previously obtained. The final fit to the V
observations is shown by the theoretical light curve plotted in Figure 3. The mean resid-
ual from the final solution in B or V for a single normal is about 0.006 mag, a value repre-
sentative of the eclipses as well as the maxima.

The reader may notice in Table 1 that the luminosity ratio actually changes in the
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TABLE 1
ELEMENTS AND AUXILIARY INFORMATION IN B AND V

Parameter B p.e. 14 p.e.
i(degrees)........... 82.29 +0.30 83.28 +0.61
Lycoooo oo 0.7698 +0.0087 0.7848 +0.0081
Lo oo 0.2302 +0.0080 0.2152 +0.0076
Kleeee e, 0.75 +0.06 0.62 +0.08
X2ee e — 0.36 +0.21 - 0.11 +0.12
14 I R T 100 . 100 e
B2t 100 100
M) oo 0.435 0.550
Ti(° K) 18000 18000
T2(° K) 13500 13500
M2/M1 .............. 0.83 0.83
Do 3.828 +0.017 3.749 +0.017
Qe i, 3.906 +0.030 4.009 +0.035
r(pole)............. 0.329 .. 0.337 ...
r(point)............ 0.371 0.388
n(side)............. 0.340 0.350
n(back)............ 0.356 0.369
ra(pole)............. 0.290 0.280
r(point)............ 0.322 0.307
ro(side)............. 0.298 0.287
ro(back)............ 0.312 0.299

wrong sense from yellow to blue. This is entirely due to the relatively poor determinacy
of partial-eclipse solutions and to the fact that we have not constrained the geometry of
the system to be the same in both colors, contrary to usual practice. Rather, we have
treated the two light curves as independent sources of information for the geometric as
well as the photometric elements. Consider, for example, the orbital inclination . Al-
though the yellow and blue values of ¢ differ by more than 1°, this is almost within their
overlapped probable errors. The resulting differences in the overall geometry cause sub-
stantial changes in the yellow and blue luminosity ratios which, by chance, happen in
the sense such that the normal variation of L,/L, with wavelength is reversed. It is quite
clear from inspection of the light curves that the true luminosity ratio varies in the cor-
rect sense with wavelength, and by about the expected amount. One could realize this
result within our solution scheme either by adjusting the geometrical parameters in one
color only and leaving them fixed in all others or, preferably, by adjusting observations
in all colors simultaneously in one very large differential-corrections solution. In view of
our present limitations of computer accessibility, we have chosen not to do this for
MR Cyg.

The negative values for x; in both colors may cause some concern, but it must be
remembered that x, is normally considered an extremely weakly determined quantity
(Kopal 1959, p. 376; Wilson 1968) for partially eclipsing systems as, in fact, is x;. The
arguments by Kopal and by Wilson were within the context of the Russell model, and,
since this actually has more adjustable parameters than the present model, there may
yet be some hope for finding darkening coefficients in the case of partial eclipses. Further
experience is certainly needed, however, before many definite statements can be made on
this question. If there is actually some physical significance to these negative x; values,
we note that the effect is in the proper direction to have been induced by the irradiation
of the primary component (i.e., by diminishing the temperature gradient in the atmo-
sphere of the secondary on its inner-facing hemisphere). Our experience definitely
indicates, however, that the gravity darkening must be close to that given by the
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von Zeipel law. This result suggests that investigations of W UMa stars may lead to sub-
stantial checks on the theory of convection in stars, since according to Lucy (1967)
convection lowers the gravity darkening substantially. Finally, it should be noted that
quite a good fit to the observations was accomplished, even though the number of
adjustable parameters was two fewer than in the Russell model.

We consider it extremely important to provide the reader with a means of checking
our results. Therefore, our theoretical light curve for the V solution is given in Table 2.
This was computed with the ¥ parameters of Table 1, except that the potentials were
rounded to two decimal places, the unnormalized luminosities (L; = 9.8416, L, =
2.6984) were used, and x; was set equal to 0.00 instead of —0.11 (which makes extremely
little difference).

VI. INTERPRETATION OF MR CYGNI

The only previous discussion of the basic nature of MR Cyg was by Hall and Hardie,
who concluded that both components were on the main sequence and “‘essentially normal
and uncomplicated.” We are now in a stronger position to test these conclusions because
of our improved analysis, as described above. When placing the components in the H-R
diagram, we can find the differences of their coordinates much more reliably than the
absolute coordinates of either one, so we begin by establishing AM, and A(B — V).
AM, is equal to 1.41 mag and comes directly from the luminosity ratio L;/L, for the V
light curve. These are the true 4= steradian luminosities and are determined already
freed from the reflection effect. Hall and Hardie tried to infer A(B — V) directly from
the color curve and the parameters of their solution. It is well known, however, that
B — V is a weak function of temperature for hot stars, so the value of A(B — V) they

TABLE 2
THEORETICAL V LIGHT CURVE
0 l 0 l

0.00....... 0.4577 0.26....... 1.0273
0.01....... 0.4750 0.27... 1.0265
0.02....... 0.5196 0.28....... 1.0251
0.03....... 0.5783 0.29....... 1.0229
0.04.. 0.6422 0.30....... 1.0201
0.05.. 0.7055 0.31....... 1.0168
0.06....... 0.7650 0.32....... 1.0132
0.07....... 0.8183 0.33....... 1.0092
0.08....... 0.8642 0.34....... 1.0050
0.09....... 0.9014 6.35....... 1.0008
0.10....... 0.9295 0.36....... 0.9965
0.11....... 0.9474 0.37....... 0.9924
0.12....... 0.9557 0.38....... 0.9883
0.13....... 0.9639 0.39....... 0.9842
0.14....... 0.9721 0.40....... 0.9725
0.15....... 0.9801 0.41....... 0.9547
0.16....... 0.9878 0.42....... 0.9324
0.17....... 0.9951 0.43....... 0.9066
0.18....... 1.0019 0.44....... 0.8781
0.19....... 1.0080 0.45 0.8480
0.20....... 1.0134 0.46 0.8174
0.21....... 1.0179 0.47.. 0.7878
0.22....... 1.0216 0.48 0.7615
G6.23.. 1.0244 0.49....... 0.7424
0.24....... 1.0262 0.50....... 0.7352
0.25....... 1.0272
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were seeking is only about as large as the observational uncertainty. If there existed an
observable quantity which varied much more strongly with temperature than does
B — V, we could find our small A(B — V) more accurately, even though indirectly.
Such a quantity is the emergent (monochromatic) flux. That is, for stars in the tem-
perature range we are considering, a change in temperature causes only a small change
in color, but a much larger change in the absolute emission. The emergent flux for either
component, Fy or Fs, can be computed simply by dividing the luminosity by the surface
area. Since the effective temperature of the primary is reasonably well determined at
about 18000° K by its B3 spectral type and the temperature calibration of the MK
system (Harris 1963), we can find the temperature of the secondary from our value of
F1/F; and the tables of Mihalas (1965), which give emergent flux as a function of wave-
length, temperature, log g, and helium abundance for early-type model stellar atmo-
spheres. We find, taking log ¢ = 4.5 and He/H = 0.15, a temperature of about 11000° K
for the secondary, corresponding to an intrinsic B — V of about —0.01 (Harris 1963).
The disagreement between this temperature and the temperature of Table 1 (which main-
ly satisfies the reflection effect) is understandable in terms of the incomplete allowance
for blanketing in our present model. Hopefully this will be improved in future work.

We have now fixed the absolute horizontal coordinates of components 1 and 2 at
B — V = —0.19 and —0.01, and we have a value of 1.41 mag for the difference of their
vertical coordinates. If we could establish the absolute visual magnitude of the primary,
the positions of both stars could be accurately plotted. Since Pearce’s double-lined radial-
velocity curve exists, we should be able to find the absolute dimensions of both com-
ponents and, with absolute flux values from Mihalas’s tables, compute M,. In view of
the controversy over the velocity curve of the secondary, however, we have decided to
use only the radial velocities of the primary. In this case the dimensions of the stars
cannot be determined unless we assume a value for the mass ratio. This assumption
yields directly the ratio of the absolute orbital radii, a,/a, and, since we know a; from
the single-lined curve, we have @ = a; + as, the separation of centers in kilometers. The
radii from our photometric solution are expressed in this unit, so we arrive at the dimen-
sions of each component in kilometers. Figure 4 shows the components of MR Cyg
plotted in the (color, absolute magnitude) diagram for various assumed mass ratios,
with the zero-age main sequence (Johnson 1963) also shown. One should keep in mind
that the only degree of freedom presently allowed, except for those due to ordinary errors
in estimating parameters, is a vertical displacement of components 1 and 2 moved as a
pair. That is, since both differential coordinates are well determined, component 2 must
always be placed in the same position relative to component 1.

Unless we accept the extreme upper values for m,/m,, the present evidence is that the
primary is on the main sequence. Indeed, the uncertainty introduced by the mass-ratio
problem is not much larger than the present uncertainty in the position of the standard
zero-age main sequence. The secondary, however, clearly is above the main sequence,
and there is no adjustment capable of placing it on the zero-age main sequence unless
the primary is actually below, which possibility we do not consider. The overluminosity
of component 2 amounts to a little over 1 mag, only about one-third of which could be
accounted for by using Hall and Hardie’s value for the luminosity ratio, so it appears
that the secondary really is not a main-sequence star, contrary to their estimates.

The present theories of stellar evolution allow two possible interpretations of the sys-
tem. First, the secondary may still be in the phase of gravitational contraction. According
to Iben (1965), the time required for a 3 M, star to reach the observed position of MR
Cyg B on the H-R diagram is close to 1.2 X 10 years. Since the main-sequence lifetime
of the primary is at least 5 X 106 years, this hypothesis satisfies the observed locations
for both stars, Alternatively, it cannot be ruled out that the system has arrived at its
present configuration by way of a complex process of mass exchange. Seemingly, this
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F16. 4—Components of MR Cyg plotted in the color-magnitude diagram for six assumed mass
ratios. Only one position is actually plotted for the secondary (large filled circle). This position is for
the primary being exactly on the zero-age main sequence (small filled circles), and the dashed line shows
the degree of freedom permitted for the secondary by the uncertainty in the mass ratio. See additional
remarks in the text.

would result in at least a semidetached system, so that we feel the first alternative is the
likelier possibility. With further detailed study, MR Cyg may shed some light on the
hypotheses (e.g., fission) of the origin of binary systems.
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