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ABSTRACT

Hundreds of substellar companions to solar-type stars will be discovered with the Kepler satellite. Kepler’s ex-
treme photometric precision gives access to low-amplitude stellar variability contributed by a variety of physical
processes. We discuss in detail the periodic flux modulations arising from the tidal force on the star due to a substellar
companion. An analytic expression for the variability is derived in the equilibrium-tide approximation. We dem-
onstrate analytically and through numerical solutions of the linear, nonadiabatic stellar oscillation equations that the
equilibrium-tide formula works extremely well for stars of mass<1.4M� with thick surface convection zones. More
massive stars with largely radiative envelopes do not conform to the equilibrium-tide approximation and can exhibit
flux variations k10 times larger than naive estimates. Over the full range of stellar masses considered, we treat the
oscillatory response of the convection zone by adapting a prescription that A. J. Brickhill developed for pulsating
white dwarfs. Compared to other sources of periodic variability, the ellipsoidal light curve has a distinct dependence
on time and system parameters. We suggest that ellipsoidal oscillations induced by giant planets may be detectable
from as many as�100 of the 105 Kepler target stars. For the subset of these stars that show transits and have radial-
velocity measurements, all system parameters are well constrained, and measurement of ellipsoidal variation pro-
vides a consistency check, as well as a test of the theory of forced stellar oscillations in a challenging regime.

Subject headinggs: planetary systems — stars: oscillations — techniques: photometric

1. INTRODUCTION

The upcoming Kepler3 satellite will continuously monitor
�105 main-sequence stars of mass ’0.5Y1:5 M� over 4Y6 yr
with fractional photometric precisions of �10�5. Such high sen-
sitivity, which is unattainable from the ground, will allow for the
robust detection of Earth-size planets that transit their host stars,
and the measurement of asteroseismic oscillations as a probe of
stellar structure (e.g., Borucki et al. 2004; Basri et al. 2005).
Thesemissionswill also discover hundreds of ‘‘hot Jupiters’’ with
orbital periods of <10 days, revealed by their transits or reflected
starlight (e.g., Jenkins & Doyle 2003). Continuous observations
of these systems are likely to show a myriad of novel physical
effects, including Doppler flux variability of the host stars (Loeb
& Gaudi 2003), photometric dips due to moons or rings around
the planets (Sartoretti & Schneider1999; Brown et al. 2001), and
the impact of additional perturbing planets on transit timing
(Miralda-Escudé 2002; Agol et al. 2005; Holman & Murray
2005). The same ideas apply if the companion is a more massive
brown dwarf, but these are rarely found in close orbits around
solar-type stars (e.g., Grether & Lineweaver 2006).

Here we scrutinize another mechanism for generating periodic
variability of a star closely orbited by a giant planet or brown dwarf.
A star subject to the tidal gravity of a binary companion has a non-
spherical shape and surface-brightness distribution. In the simplest
approximation, the stellar surface is a prolate ellipsoid with its long
axis on the line connecting the two objects. As the tidal bulge tracks
the orbital motion, differing amounts of light reach the observer.
For a solar-type star orbited by a perturbing companion of mass
Mp with period Porb, the expected fractional amplitude of this
ellipsoidal variability is �10�2(Mp/M�)(1 day/Porb)

2. This ef-

fect has a long history in the study of eclipsing binary stars (see
the review by Wilson1994), but was mentioned only recently in
the exoplanet context.

Udalski et al. (2002), Drake (2003), and Sirko & Paczyński
(2003) noted that if ellipsoidal light variations are detected from
the ground, where the fractional photometric precision isk10�3,
then the perturber must be fairly massive (e.g., k0.1M�). They
offered this idea as a test to distinguish between planetary transits
and eclipses by low-mass stars. The superior sensitivity of Kepler
offers the possibility of measuring ellipsoidal variability induced
by giant planets (Mp � 10�3Y10�2 M�) with orbital periods of
P10 days.

Loeb & Gaudi (2003) compare the ellipsoidal variability in-
duced by a planetary companion to flux modulations arising from
reflected starlight and the Doppler effect. The three amplitudes are
similar when the companion has an orbital period of P3 days and
an optical albedo of P0.1. In a sufficiently long observation it
should be possible to separately extract each of the signals, since
their Fourier decompositions are distinct. Precise physical mod-
eling of the ellipsoidal light curve could provide an independent
constraint on the mass of the companion, as well as important
clues regarding stellar tidal interactions.

Ellipsoidal variability is typically modeled under the assump-
tion that the distorted star maintains hydrostatic balance and
precisely fills a level surface of an appropriate potential (e.g., the
Roche potential). The measured flux is then just an integral of
the intensity over the visible stellar surface, where the intensity
includes the effects of limb darkening and gravity darkening (e.g.,
Kopal1942). This approach is strictly valid only when the orbit is
circular and the star rotates at the orbital frequency, so that a
stationary configuration exists in the coorbital frame. These con-
ditions may not be satisfied when the companion has a low mass
or long period, because of theweak tidal interaction. In fact, a state
of tidal equilibrium may not be attainable in the case of a plan-
etary companion (e.g., Rasio et al.1996). Equilibrium models of
ellipsoidal light curves do have a realm of validity for noncircular
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orbits and asynchronously rotating stars, and have been applied
successfully to somewhat eccentric binaries (e.g., Soszynski et al.
2004). However, by construction, suchmodels ignore fluid inertia
and the possibility of exciting normalmodes of oscillation, effects
that may be of critical importance in a wide range of observa-
tionally relevant circumstances. Here we apply the machinery of
linear stellar oscillation theory to the weak tidal forcing of stars by
substellar companions. Conceptually, our investigation bridges
Kepler’s planetary and astroseismology programs.

Section 2 describes the geometry of the problem, provides
quantitative measures for the strength of the tidal interaction, dis-
cusses our simplifying assumptions, and presents the mathemat-
ical framework for calculating ellipsoidal variability. In x 3, we
consider the equilibrium-tide approximation and derive an ana-
lytic expression for the ellipsoidal light curve. A brief review of
von Zeipel’s theorem and its limitations is given in x 4. Tidally
forced, nonadiabatic stellar oscillations are addressed in x 5,where
we argue for a simple treatment of perturbed surface convection
zones, use this prescription to calculate the ellipsoidal variability
of deeply convective stars, estimate analytically the surface flux
perturbation in mainly radiative stars, and show select numerical
results. Ourmain conclusions are summarized in x 6.We conclude
in x 7 with remarks on the measurement of ellipsoidal oscillations
in the presence of other sources of periodic variability.

2. PRELIMINARIES

Consider a star of massM and radiusR that is orbited by a sub-
stellar companion of massMp and radius Rp. We work in spher-
ical coordinates (r; �; �) with the origin at the star’s center and
the pole direction (� ¼ 0) parallel to the orbital angular momen-
tumvector. The orbit is then described by (d; �/2; �p), where d and
�p are, respectively, the time-dependent orbital separation and true
anomaly; �p ¼ 0 marks the phase of periastron. We assume that
the orbit is strictly Keplerian with fixed semimajor axis a and ec-
centricity e, such that d ¼ a(1� e2)/(1þ e cos �p). The direction
to the observer from the center of the star is (�o; �o), so that the
conventional orbital inclination is I ¼ �� �o.

We imagine that the gravity of the companion raises nearly
symmetrical tidal bulges on opposite sides of the star that rotate
at the orbital frequency. A rough measure of both the height of
the tides relative to the unperturbed stellar radius and the fractional
amplitude of the ellipsoidal variability is given by the ratio of the
tidal acceleration to the star’s surface gravity:

" � Mp

M

R

a

� �3

� 10�5 Mp

MJ

M�
M

P�
2:8 hr

1 day

Porb

� �2

; ð1Þ

where MJ ’ 10�3 M� is the mass of Jupiter, and P� ¼ 2�(R3/
GM )1/2 ¼ 2:8[(R /R�)3(M�/M )�1/2 hr is the dynamical time of
the star. For main-sequence stars with R /R� ’ M /M�, we see that
" / MpMP�2

orb. The maximum value of " is attained when the
companion fills its Roche lobe at an orbital separation of a ’
2Rp(M /Mp)

1/3, which gives

"max ’
Mp

M

� �2
R

2Rp

� �3

’ 10�4 Mp

MJ

� �2
M

M�

0:1 R�
Rp

� �3

; ð2Þ

where we have applied a fixed value of Rp ¼ 0:1 R�, appropriate
for both giant planets and old brown dwarfs. Note that "max � 1
for massive brown dwarfs (Mp/MJ � 80). Hereafter, we consider
only cases with "T1.

For orbital periods as short as’1 day, tidal torques on the star
from a planetary companion are rather ineffective at altering the
stellar rotation rate (e.g., Rasio et al.1996). Therefore, as already
mentioned in x 1, we should not generally expect the star to ro-
tate synchronously with the orbit, and so there is no frame in
which the star appears static. This holds when the orbit is cir-
cular, and is obviously true when the there is a finite eccentricity.
In fact, ’30% of the known exoplanets4 with Porb < 10 days
have eccentricities of >0.1. Small variable distortions of the star
from its equilibrium state, due to a combination of asynchronous
rotation and orbital eccentricity, should be viewed as waves ex-
cited by the tidal force of the companion. Our task is to study
such tidally forced stellar oscillations in the linear domain in or-
der to understand the corresponding light curves.
In order to greatly simplify the mathematical description of

the stellar oscillations, we assume that the star is nonrotating in
the inertial frame.When the stellar rotation frequency is nonzero,
but much smaller than the tidal forcing frequency, the effect of
rotation is to introduce fine structure into the oscillation frequency
spectrum, and cause the oscillation eigenfunctions to be slightly
modified as a result of the Coriolis force (for a discussion, see
Unno et al. 1989). Tidal pumping of a slowly rotating star by an
orbiting companion has a dominant period of Porb/2—a few days
in the cases of interest. By contrast, single solar-type stars with
ages >1 Gyr tend to have rotation periods of >10 days (e.g.,
Skumanich 1972; Pace & Pasquini 2004); the Sun has an equa-
torial rotation period of ’25 days. Slowly rotating stars with
masses of ’1M� are prime targets forKepler, since they exhibit
low intrinsic variability. Based on this selection effect, and the
inability of tidal torques to spin up the star, our assumption of
vanishing stellar rotation seems generally justified.
The general framework for calculating the measurable flux

modulations associated with ellipsoidal stellar oscillations is as
follows.We consider small perturbations to a spherical, nonrotating
background stellar model, such that fluid elements at equilibrium
position x are displaced in a Lagrangian fashion to position xþ x.
Variations in themeasured flux from an oscillating star arise from
two physically distinct contributions (e.g., Dziembowski 1977):
(1) changes in the shape of the star due to radial fluid displace-
ments �r ¼ x = er, where er is the radial unit vector, and (2) hot
and cold spots generated by local Lagrangian perturbations�F
to the heat flux. Our main task in xx 3 and 5 is to compute �r and
�F according to the relevant physics.
In general, the transverse motion of the fluid—perpendicular

to the radial direction—also factors into the observed flux varia-
tions. However, Heynderickx et al. (1994) have shown that the
transverse components of the Lagrangian fluid displacement do
not appear in the first-order expression for the total flux variation.
We ignore the transverse components in the following deriva-
tions. We also neglect the contribution to the flux variation from
Doppler shifts arising from wave motions on the stellar surface,
which is at best of order 2�" R�/(cPorb) � 10�4"(1 day/Porb)
(e.g., Dziembowski 1977).
Given the dependences of �r and�F on (r; �; �), it is straight-

forward to compute the time varying component of the measured
flux. The flux5 received from a star at distanceD is (e.g., Robinson
et al. 1982)

J ¼ 1

D2

Z
dS n = noð ÞFh(n = no); ð3Þ

4 http://vo.obspm.fr /exoplanetes /encyclo/encycl.html.
5 Our calculations concern the bolometric flux, although it is relatively straight-

forward to modify the analysis for narrowband measurements.
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where dS is an area element at the stellar photosphere, F is the net
flux of radiation out of the surface element, h is the limb-darkening
function, n and no are unit vectors normal to the surface and to-
ward the observer, respectively, and the integration is over the
visible stellar disk. Vertical displacement at the surface yields
changes in J through changes in surface area and n = no. Following
Dziembowski (1977)we expand �r and�F in spherical harmonics,

�r(r; �; �; t) ¼
X1
‘¼0

X‘
m¼�‘

�r;‘m(r; t)Y‘m(�; �); ð4Þ

�F(r; �; �; t) ¼
X1
‘¼0

X‘
m¼�‘

�F‘m(r; t)Y‘m(�; �); ð5Þ

and carry out the appropriate linear expansions to obtain the
fractional variability

�J

J
¼
X1
‘¼0

2b‘ � c‘ð Þ
�or;‘
R

þ b‘
�F o

‘

F

� �
; ð6Þ

where �or;‘ and �F o
‘ are components evaluated at the surface

(r ¼ R) and in the direction of the observer:

�or;‘
R

¼
X‘
m¼�‘

�r;‘m(R; t)

R
Y‘m(�o; �o); ð7Þ

�F o
‘

F
¼
X‘
m¼�‘

�F‘m(R; t)

F
Y‘m(�o; �o): ð8Þ

The terms b‘ and c‘ are given by

b‘ ¼
Z 1

0

d��P‘h;

c‘ ¼
Z 1

0

d� 1� �2
� � dP‘

d�
hþ �

dh

d�

� �
; ð9Þ

where � ¼ n = no, the P‘(�) are ordinary Legendre polynomials,
and h(�) is normalized such that

R 1
0
d��h ¼ 1. The linear limb-

darkening function is

h(�) ¼ 6

(3� �)

�
1� �(1� �)

�
; ð10Þ

more general nonlinear functions of � (e.g., Claret 2000) will not
be considered here. The classical Eddington limb-darkening func-
tion is h ¼ 1þ 3�/2 (� ¼ 3/5; e.g.,Mihalas1970). Table 1 shows
functional forms and particular values of b‘ and c‘ for ‘ ¼ 2 and 3.

3. EQUILIBRIUM TIDE

Vertical displacement of the stellar surface is often accurately
modeled by assuming that the tidally perturbed fluid remains in
hydrostatic balance. The cause andmagnitude of the surface flux

perturbation is a more complicated affair. In this section, we ap-
ply a simple parameterization of the flux perturbation and obtain
a complete set of formulae for computing the ellipsoidal light
curve. Subsequent sections provide more detailed calculations.
In particular, we show in x 5.2 that stars with deep convective
envelopes (the majority of Kepler targets) have surface flux var-
iations that conform to the equilibrium-tide approximation.

When the tidal forces on the stellar fluid change sufficiently
slowly, the star can stay very nearly in hydrostatic equilibrium. If
the net acceleration required to balance the pressure gradient is
derivable from a potential, then equilibrium implies that a fluid
element remains on an equipotential surface. Since we neglect
stellar rotation, there is no centrifugal force, and the total potential
is the sum of the gravitational potential’ from the spherical back-
ground stellar model, the perturbing tidal potentialU � "’T’,
and the Eulerian perturbation �’ to the stellar potential. For our
analytic work, we neglect �’ relative to U, since our numerical
calculations indicate that �’j j/ Uj j � 10�2.

In the absence of tidal forces, a given fluid element sits at
equilibrium position xwith total potential ’(x). Gentle inclusion
of the tidal potential causes the fluid element to move to position
xþ x while preserving the value of the total potential. This is
expressed mathematically by

’(x) ’ ’(xþ x)þ U (xþ x; t)

’ ’(x)þ x = :’þ U (x; t)þO � 2; �U
� �

: ð11Þ

We see that x = :’ ¼ �rg, where g ¼ GMr/r
2 is the background

gravitational acceleration atmass coordinateMr. To first order, the
radial displacement of the equilibrium tide is (see also Goldreich
& Nicholson 1989)

�r(x; t) ’ �U (x; t)=g; ð12Þ

which tells us the geometry of the star as a function of time.
The tidal potential within the star can be expanded as

U (r; �; �; t) ¼ � GMp

d

X1
‘¼2

r

d

� �‘
P‘(cos  ); ð13Þ

where cos  ¼ sin �cos (�p � �). There is no ‘ ¼ 1 term, since
this would give the acceleration of the star’s center of mass,
which is already incorporated into the orbital dynamics. The an-
gular expansion of �r follows immediately from equation (12):

�r(r; �; �; t)

r
¼ Mp

Mr

X1
‘¼2

r

d

� �‘þ1

P‘(cos  ): ð14Þ

In order to expressU and �r in spherical harmonics, we utilize the
addition theorem,

P‘(cos  ) ¼
4�

2‘þ 1

X‘
m¼�‘

Y �
‘m �=2; �p
� �

Y‘m(�; �); ð15Þ

where the asterisk denotes the complex conjugate. Note that
Y‘m(�/2; �p) is nonzero only when ‘� m is even. For the domi-
nant ‘ ¼ 2 components of U and �r, the surface values of U /’ and
�r/R are �", as expected.

From equations (7), (14), and (15), the components �or; ‘/R of
the surface radial displacement toward the observer are immedi-
ately apparent. As wewill see in x 5, the computation of �F/F is,
in general, rather technical. However, in the special casewhere the

TABLE 1

Limb Darkening Parameters

b‘ c‘

‘ General � � ¼ 3/5 General � � ¼ 3/5

2.......... (1þ �)/½20(3� �)� 13/40 3(1þ 3�)½10(3� �)� 39/20

3.......... �/½4(3� �)� 1/16 3�/(3� �) 3/4
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stellar fluid responds adiabatically to a slowly varying tidal poten-
tial, �F‘/F varies in phase with and in proportion to �r;‘/r in the
linear approximation of the equilibrium tide. Making this as-
sumption, we write�F‘/F ¼ �k‘�r;‘=R at the surface, where the
k‘ are real constants that depend on the stellar structure (see x 5.1).
Wewill see in x 4 that k‘ ¼ ‘þ 2 is a good first guess for radiative
stars, and sowemight generally expect k‘ to be positive andO(‘).

We now have the ingredients for the fractional variability
(eq. [6]), and we obtain

�J

J
¼ "

X1
‘¼2

 
R

a

!‘�2 
a

d

!‘þ1

f‘P‘ cos  oð Þ; ð16Þ

where f‘ ¼ (2� k‘)b‘ � c‘, and cos  o ¼ sin �o cos (�p � �o).
The ‘ ¼ 2 and 3 Legendre polynomials can be expanded as

P2(cos  o) ¼
1

4

h
� 3 cos2I � 1
� �

þ 3 sin2I cos 2 �p � �o
� �i

; ð17Þ

P3(cos  o) ¼
1

8
sin I

h
�3 5 cos2I � 1
� �

cos �p � �o
� �

þ 5 sin2I cos 3 �p � �o
� �i

; ð18Þ

where we have substituted �o ¼ �� I . The Eddington limb-
darkening formula gives (see Table 1)

f2 ¼ � 13

10
1þ k2

4

� �
; f3 ¼ � 5

8
1þ k3

10

� �
: ð19Þ

It is important to note that f2 < 0 when k2 � 0 (see below).
In equation (16), the orbital dynamics are described by the evo-

lution of d and�p (see x 2). For a circular orbit, we have d ¼ a and
�p ¼ �t, where � ¼ 2�/Porb, and t is the time since periastron
(moduloPorb). Example light curveswith e ¼ 0, � ¼ 3/5, k‘ ¼ 0,
and I ¼ �/2 are shown in Figure 1 for a/R ¼ f2; 4; 8; 16g. When
R/aT1, the ‘ ¼ 2 piece of �J /J is a good approximation, and
the temporal flux variation approaches a pure cosine with angular
frequency 2� (see eq. [17]). Because f2 < 0, the dominant ‘ ¼ 2
component of the ellipsoidal variability has minimum light when
tidal bulge is aligned with the direction to the observer. As R/a in-
creases, so does the importance of ‘ > 2 terms and their extra har-
monic content, as seen in equation (18) and Figure 1.

Additional harmonics in �J /J also result from a finite eccen-
tricity. At theO(e) level, signals with frequencies � and 3�, and
amplitudes of �"e, are present in the ‘ ¼ 2 component of �J /J ,
which competewith the ‘ ¼ 3 piecewhen e � R/a.Notice thatwhen
e > 0 the flux is variable even when the orbit is viewed face-on
(I ¼ 0 or �), by virtue of changes in d�3 ¼ 1þ 3e cos�tþ
O(e2). For I ¼ 0, we see that P3(cos  o) vanishes, leaving the
largest contribution �J /J ’ �1:5"ef2 cos (�t).

4. AN ASIDE ON VON ZEIPEL’S THEOREM

Our equilibrium calculation in x 3 used the simple prescription
�F‘/F ¼ �k‘�r;‘/R. There remains the question of what physics
determines �F/F. A common practice in empirical studies of
close eclipsing binaries—systems that tend to be nearly in tidal
equilibrium—is to use some variant of the von Zeipel (1924)
theorem, which was originally formulated for purely radiative,
strictly hydrostatic stars. In equilibrium, all the thermodynamic
variables depend only on the local value of the total potential �.

Thus, the radiative flux can be written as (e.g., Hansen&Kawaler
1994)

F / � 1

�	

dT 4

d�
:�; ð20Þ

where 	 is the mass density, T is the effective temperature, and
�(	; T ) is the opacity. Equation (20) is the essence of von Zeipel’s
theorem, which says that the magnitude F of the radiative flux is
proportional to the magnitude of the net acceleration A ¼ :�j j.
When� ¼ ’þ U (see x 3), we obtainA ¼ gþ @U /@r þO(� 2),
so that the Lagrangian flux perturbation about equilibrium is

�F

F
¼ �A

g
¼ �g

g
þ 1

g

@U

@r
; ð21Þ

where �g/g ¼ �2�r/r, due to the change in radius at approxi-
mately constant enclosedmass. Substituting the equilibrium-tide
result U ¼ ��rg into equation (21), we obtain the compact ex-
pression �F/F ¼ �@�r/@r. Using equation (14), we find

�F‘

F
¼ �(‘þ 2)

�r;‘
r
; ð22Þ

from which we identify k‘ ¼ ‘þ 2.
Although the application of von Zeipel’s theorem is instruc-

tive, the underlying physical assumptions are inaccurate for slowly
rotating main-sequence stars of mass 1.0Y1:6 M� with tidal
forcing periods of days. We are now led to investigate the gen-
eral problem of forced nonadiabatic stellar oscillations.

5. FORCED NONADIABATIC OSCILLATIONS

The equilibrium analysis ignores fluid inertia and the excitation
of the star’s natural oscillationmodes.While this assumptionmay

Fig. 1.—Disk-averaged flux variation (eq. [16]) for an edge-on circular orbit
under the equilibrium-tide approximation (eqs. [6] and [14]) with �F/F ¼ 0 at
the surface. The four curves correspond to a/R ¼ 2 (black curve), 4 (red curve),
8 (blue curve), and 16 (green curve). In order to compare the shapes of the curves,
�J /J has been multiplied by (a/R)3(M /Mp). As a/R increases, higher harmonics
decrease in strength and the light curve approaches a pure cosine with frequency
2/Porb. The tidal bulge closest to the companion points toward the observer at
integer values of t/Porb.
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be valid near the surface of the star, it does not hold deeper in the
interior. Gravity waves (g-modes; restored by buoyancy) can
propagate in the radiative interiors of Sun-like stars with a range
of oscillation periods that includes the tidal forcing periods of
interest (P3 days). Tidal forcing of radiative regions may pro-
duce substantial deviations from hydrostatic balance, as well as
large surface amplitudes of �F/F, in particular if resonant oscil-
lations are excited. This is especially relevant for main-sequence
stars of massM k 1:4Y1:5 M� with mainly radiative envelopes.
Less massive stars (M P 1:3Y1:4 M�) have rather deep convec-
tive envelopes that can block information about the dynamic inte-
rior from being conveyed to the surface. Here we investigate each
of these regimeswith both analytic estimates and numericalmodels
of oscillating stars.

Our calculations employ realistic models of 0.9Y1:6 M� main-
sequence stars, constructed with the EZ stellar evolution code
(Paxton 2004), a distilled and rewritten version of the program
originally created by P. Eggleton.We adopt Solar metallicity and a
convective mixing length of 1.6 times the pressure scale height.
All stars are evolved to an age when the core hydrogen abundance
has the Solar value of XH ¼ 0:35. Models with 199 radial grid
points are interpolated to yieldk104 points in which the g-mode
radial wavelength is well resolved in the core.

Figures 2 and 3 illustrate some of the differences between 1
and 1:6 M� stars, and serve to introduce several important phys-
ical quantities used in the remainder of this section. The Lamb
frequency,

S‘ ¼ ½‘(‘þ 1)�1=2 cs
r
; ð23Þ

is the inverse of the horizontal sound-crossing timescale, where
cs is the sound speed, and ½‘(‘þ 1)�1/2/r � kh is the horizontal

wavenumber of the oscillation. For fixed chemical composition,
the squared Brunt-Väisällä frequency is

N 2 ’ g

Hp

9ad �9ð Þ; ð24Þ

where Hp ¼ �(d ln p/dr)�1 ¼ p/(	g) is the pressure scale height,
and 9 ¼ d ln T /d ln p is the temperature gradient6 (9ad is the
adiabatic value). Radiative regions have9ad �9 > 0 (N 2 > 0),
and N represents the frequency of buoyancy oscillations. In con-
vection zones,9ad �9 < 0 andN 2 < 0, indicating thatg-modes
are evanescent. When N 2 < 0, the time scale

ted � Nj j�1; ð25Þ

approximates the turnover time of convective motions (for de-
tails andmodifications for radiative losses, see, e.g., Kippenhahn
& Weigert 1990). A shell of radius r, thickness Hp (size of the
largest convective eddies), and radiative luminosity L cools on
the thermal time scale

tth ¼
4�r2Hp	CpT

L
; ð26Þ

where Cp is the specific heat at constant pressure.
The 1 M� model (Fig. 2) has one deep convection zone with

tedTtth over most of the region, indicating that convection very
efficiently transports energy and causes the zone to be essentially
isentropic. By contrast, the 1:6 M� star (Fig. 3) has two thin
surface convection zones with ted � tth, and thus the radiative and
convective fluxes are comparable. Gravity waves with frequency
! propagate only in radiative regions where ! < N and ! < S‘.
For the 1 M� star, heat and entropy generated by g-modes in
the radiative interior may be strongly mitigated owing to the long

Fig. 2.—Important oscillations frequencies and timescales as a function of
pressure for a 1 M� main-sequence star. The four curves show the Brunt-Väisällä
frequency N (black curve), Lamb frequency S‘ (red curve; ‘ ¼ 2 is shown), in-
verse thermal time t�1

th (blue curve), and inverse eddy turnover time t�1
ed (green

curve). Large, real values of N occur in the radiative core and very near the pho-
tosphere, while N 2 < 0 in the convective envelope. Gravity waves propagate
only where the angular frequency is below both N and S‘. The two horizontal lines
delimit the range of tidal forcing frequencies of interest here.

Fig. 3.—Same as Fig. 2, but for a 1.6M� main-sequence star. Note two geo-
metrically thin, relatively inefficient (tth � ted) convection zones near the surface.
The spike in N near the center is at the edge of the convective core, and signals a
steep gradient in the mean molecular weight.

6 Do not confuse the temperature gradient9 with the spatial gradient: used
in x 3.
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thermal time at the base of the deep convection zone. On the other
hand, g-modes in a 1:6 M� star can propagate very near the sur-
face, producing qualitatively different results.

We now go on to elucidate the physics of the flux perturbations.
All the analytic and numerical work that follows assumes that the
tidal potential has the generic form U / r ‘Y‘m(�; �)exp (�i!t)
with forcing frequency !.

5.1. Heat Transfer in a Convective Envelope

Calculation of the perturbed convective flux in oscillating
stars is a thorny issue. For the purposes of our study, we argue for
an especially simple treatment that draws from previous work on
this subject. Specifically, wemodify the prescription of Brickhill
(1983,1990; see also Goldreich &Wu1999a,1999b), which was
originally applied to white-dwarf pulsations, into a form ap-
propriate for the tidal flow problem.

In the mixing-length theory of convection, heat is transported
by eddies with a spectrum of sizes lPHp, speeds vl, and turnover
times ted(l ) ¼ l/vl. The Kolmogorov scalings for turbulent motions
give vl / l1/3, ted / l 2/3, and an energy density per unit mixing
length interval /l�1/3. We see that in the unperturbed star most
of the convective energy flux (/v3l at scale l ) is carried by the
largest eddies (l � Hp). Convection efficiently transports energy
when the radiative thermal timescale associated with the domi-
nant eddies is much longer than ted. Alternatively, efficient con-
vection implies that the gradient of the specific entropy s is small,
i.e., d ln s/d ln pT1. If all the convective energy fluxF is carried
by eddies with mixing length l, the flux and entropy gradient are
related by (e.g., Kippenhahn & Weigert 1990)

1

Cp

ds

d ln p
(l ) ¼ 9�9adð Þ � F

pcs

Hp

l

� �2
" #2=3

: ð27Þ

Efficient convection enforces9�9adT1, which implies d ln s/
d ln pT1, since skCp in the convective regions of our back-
ground models.

Gravity waves with the tidal forcing frequency ! are excited
in the radiative region below the convection zone. Convective
eddies can transport heat during a forcing period only if ted <
2�/! (e.g., Brickhill 1990; Goldreich & Wu 1999b). Inspection
of Figure 2 shows that in the 1 M� model, the largest eddies have
ted ’ 20( p/pbcz)

0:5 days, where pbcz ’ 1013:5 dyne cm�2 is the
pressure at the base of convection zone. Using the Kolmogorov
scaling, the ‘‘resonant’’ length lres for which !ted/2� ¼ 1 is

lres

Hp

� 10�2 2�=!

1 day

� �3=2
pbcz

p

� �3=4

; ð28Þ

which is >1 for all periods 2�/! > 1 day when pP
1012 dyne cm�2, which still encompasses much of the convec-
tion zone. Now imagine the situation where all the convective
flux is carried by eddies of size Plres. The entropy gradient for
this range of mixing lengths is

1

Cp

ds

d ln p
(lres) � 10�3 2�=!

1 day

� ��1
p

pbcz

� �
; ð29Þ

where we have adopted F/pcs � 10�8 at the base of the convec-
tion zone, as indicated by our 1 M� stellar model.

These arguments suggest that convection is efficient in a 1 M�
star at the forcing periods of interest even if small ‘‘resonant’’
eddies carry all the energy flux near the base of the convection

zone. At larger radii, but not too near the photosphere, convection
is both efficient and rapid (!ted/2� < 1) over the full spectrum of
eddies. Rapid convection on all scales lPHp enforces isentropy
in the convection zone, such that s and its Lagrangian perturbation
�s are nearly constant, as in the Brickhill (1983, 1990) picture.
While convection at the base is rapid only on small scales, it is still
highly efficient, which yields s ’ constant and further indicates
that �s/Cp is small in magnitude, as we demonstrate in x 5.2.
As the stellar mass increases, the convection zone thins and ted

at the base decreases (see Figs. 3 and 4). Rapid convection holds
over the bulk of the convection zone for masses k1 M�. How-
ever, the assumption that the convection is efficient starts to break
down at 1.4Y1:5 M�, since tth � ted at the base (see Figs. 3 and 5).
For the full range of stellar masses considered here, we assume
that s and �s are constant in convection zones.

5.2. Analytic Result for Thick Convection Zones

In a fully convective star, the emergent luminosity is determined
entirely by the surface boundary conditions. Under our assumption
that�s is constant in the convection zone, the perturbed luminosity
is likewise a function only of the boundary conditions. Stars of
mass P1.3Y1:4 M� have long thermal times (!tth 31) at the
top of the interior radiative region (see Fig. 5), so that the flux
perturbation �F is approximately the ‘‘quasi-adiabatic’’ value,
derived by ignoring�s / (!tth)�1 in equation (A5). We assume
efficient convection continues to just below the photosphere.
At the photosphere, we adopt the usual Stefan-Boltzmann

relation, F ¼ 
T 4, and the hydrostatic condition, p�/A ¼ 2/3,
where A is the total acceleration defined in x 4, and 2/3 is the
photospheric optical depth. Taking the photosphere to define the
stellar surface, we compute the Lagrangian perturbations,

�F

F
¼ 4

�T

T
; ð30Þ

�p

p
� �A

g
þ ��

�
¼ 0: ð31Þ

Fig. 4.—Eddy turnover time at base of the convective envelope vs. stellar age
for a range of stellar masses.
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Using s and p as our independent thermodynamic variables,
we write ��/� ¼ �ad�p/pþ �s�s/Cp and �T /T ¼ �s/Cp þ
9ad�p/p. In our numerical work (see x 5.4), we self-consistently
compute the perturbation�A to the effective surface gravity, in
order to follow resonant oscillations, where the equilibrium-tide
result fails. However, we are now addressing nonresonant forcing,
for which we use the equilibrium-tide approximation at the sur-
face, giving �A/g ¼ �@�r/@r (see x 4). We now have

�p

p
¼ � �s�s=Cp þ @�r=@r

1þ �ad

� �
; ð32Þ

and on substitution,

�F

F
¼ 4

1þ �ad �9ad�s
1þ �ad

� �
�s

Cp

� 49ad

1þ �ad

@�r
@r

: ð33Þ

Equation (33) differs from Goldreich & Wu (1999a) in that we
retain the gravity perturbation in equation (31), whereas they con-
sider a constant-gravity atmosphere (and no tidal perturbation).
Forg-modes in white dwarfs, the interesting region is near the sur-
face and themotion ismainly horizontal, so that�A ¼ �g ¼ 0 is
a good approximation. Since the equilibrium tide has large vertical
motions, the �A term must be retained.

The luminosity change across the convection zone is derived
from the entropy equation (A6). If we ignore horizontal flux per-
turbations (set ‘ ¼ 0 in eq. [A6]) and energy generation, the equa-
tion for the luminosity perturbation �L/L ¼ 2�r/r þ�F/F is

d(�L=L)

dMr

¼ i!T�s=L: ð34Þ

Integrating over the convection zone with constant�s, we obtain

�Lph

L
� �Lbcz

L
¼ i!�s

Z
cz

dMr T=L; ð35Þ

where the subscript ‘‘ph’’ refers to the photosphere. We de-
fine tcz ¼ Cp;ph

R
cz
dMr T /L to be the mean thermal time of the

convection zone, so that the right-hand side of equation (35) is
i!tcz�s/Cp;ph.

Figure 5 shows that the thermal time at the base of the con-
vection zone (of order tcz) forM P 1:3 M� is orders of magnitude
longer than the forcing periods of 1Y10 days. Insofar as �Lj j/L �
�rj j=r at any location in the star (i.e., if resonances are neglected),
we see that ( �rj j/r)�1 �sj j=Cp � (!tcz)

�1T1 in stars with deep
convective envelopes. In this limit, equation (33) becomes

�F

F
’ � 49ad

1þ �ad

@ �r
@r

: ð36Þ

If we had set �A ¼ 0, the amplitude of the photospheric flux
perturbation would have been � �sj j/Cp rather than the much
larger value � �rj j/R.

Photospheric flux perturbations in tidally forced solar-type
stars with thick convective envelopes arise mainly from changes
in the local effective gravity. This statement is reminiscent of, but
physically distinct from, von Zeipel’s theorem (eqs. [21] and
[22]).We have recovered our equilibrium-tide scaling,�F‘/F ¼
�k‘�r;‘/R, where equation (36) gives

k‘ ¼ 4(‘þ 2)
9ad

1þ �ad
: ð37Þ

ForM ¼ 1:0Y1:4 M�, we find k2 ’ 1:9Y1.1. These estimates ne-
glect resonant excitation of g-modes, a point addressed in x 5.4.

5.3. Analytic Result for Radiative Envelopes

As the stellar mass increases beyond 1:4 M�, the outer convec-
tive region thins and sits close to the surface,where ted � tth. Figure 3
shows that the 1:6 M� model has two thin, inefficient surface
convection zones, as well as a convective core. Radiative energy
transport is important throughout the envelopes of these more
massive stars. We now consider the idealized case of a com-
pletely radiative envelope, and obtain an analytic approximation
for �L/L at the surface.

Near the surface of a radiative star, we have Hp/rT1,
4�r3	/MrT1, and !2r/gT1 for 2�/! ¼ 1Y10 days. Under
these conditions, the quasi-adiabatic luminosity perturbation be-
comes (e.g., Unno et al. 1989)

�Lqad

L
’ � �

�p

p
þ gk 2

h Hp

!2

;
9ad

9
� 1

� �
�p

p
þ �r � �r;eq

Hp

� �
; ð38Þ

where

� ¼ �ad � 49ad þ
9ad

9
� d9ad

d ln T
; ð39Þ

and �r;eq is the equilibrium-tide radial displacement (eq. [12]). Non-
zero values of �p/p and (�r � �r;eq)/Hp indicate deviations from
hydrostatic equilibrium. Care must be taken with these terms,
because the denominators p and Hp become very small close to
the surface.

With the help of the Appendix, we define the variables

� ¼ y1 � y2 þ y3 ¼ � Hp

r

�p

p
; ð40Þ


 ¼ y2 þ
U

gr
¼ Hp

r

�p

p
þ �r � �r;eq

r
; ð41Þ

Fig. 5.—Thermal time at the base of the convection envelope vs. stellar age
for a range of stellar masses.
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which satisfy the differential equations

d�

dr
’ � d ln 	

dr
�þ gk 2

h

!2

 þ (‘þ 4)

U

gr2
; ð42Þ

d


dr
¼ � N 2

g
�þ 


r
: ð43Þ

When !2Tgk 2
h Hp, these equations produce the g-mode disper-

sion relation k 2
r ¼ k 2

h N
2/!2 (in the limit k 2

r /k
2
h T1) for radial

wavenumber kr. For these propagating waves, the surface ampli-
tudes of � and 
 are determined at the core radiative-convective
boundary, whereg-modes are driven (e.g., Goldreich&Nicholson
1989). On the other hand, when!2 3 gk 2

h Hp, theg-modes are eva-
nescent (see Unno et al.1989) and we neglect the term gk 2

h 
/!
2 in

equation (42). This limit yields the approximate solution � ’
�(‘þ 4)(HpU /gR2), or�p/p ’ (4þ ‘)U /gR. In this case,�p/p
is not small compared to the fractional fluid displacement, and
thus the equilibrium-tide approximation loses validity.

From our stellar models, we find that the evanescent regime
corresponds to forcing periods of P4Y8 days for M ¼ 1Y
1:6 M�, most of the range of interest. The high-frequency limit
of equation (38) is

�Lqad

L
’ ��(‘þ 4)

U

gR
: ð44Þ

This relation should be evaluated at the layer where !tth ’ 1,
above which the luminosity effectively ‘‘freezes out.’’ Figure 6
shows the quasi-adiabatic flux perturbation�Fqad/F ¼ �Lqad/L�
2�r/R, evaluated where !tth ¼ 1, for a range of forcing periods
and M ¼ 1:5Y1:7 M�. Note that �F/Fj j can be an order of
magnitude larger than Uj j/gR, because of the rather large values
of �j j(‘þ 4) for ‘ � 2. Much larger perturbations are possible

when g-modes are resonantly excited in a radiative star, as we
discuss in x 5.4.
We must point out that the quasi-adiabatic approximation is

technically inappropriate when !tth � 1. Equation (44) should
be viewed as an estimate of the modulus of the luminosity per-
turbation at the surface. If, for instance, �sj j/Cpk Uj j/gRwhere
!tth � 1, then �L/L at the surface will have a substantial im-
aginary part (see eq. [34]). This is what we find in the numerical
calculations summarized in x 5.4.

5.4. Numerical Examples

Here we show solutions of the perturbed mass, momentum,
and energy equations that describe linear, nonadiabatic oscillations
of a star subject to a varying tidal force. The equations listed in the
Appendix are the same as inUnno et al. (1989) for radiative regions,
but augmented to include the tidal acceleration. In convection
zones, we apply the prescription �s ¼ constant based on our
conclusions in x 5.1. Figure 7 summarizes how the interiors of 1
and 1:6 M� stars respond to resonant and nonresonant tidal forcing.
The tidal potential has been scaled so that �r/R ¼ 1 corresponds
to the equilibrium-tide surface displacement.
For our 1 M� model, the nonresonant response to a forcing

period of ’3 days is shown in Figure 7a.We see that �r/Rmatches
the equilibrium-tide result at the surface; the imaginary piece is
completely negligible. We also find that our approximation for
�F/F at the surface (eq. [36]) works very well. A factor of
�10 decay in �Lj j/L occurred in order for �Fj j/F � �r/R at
the surface. Variation of �s/Cp in the convection zone (log p/½
(GM 2/R4)� > �2:5) is due to changes in Cp. In the radiative in-
terior, the oscillations are caused by most nearly resonant g-modes,
whose amplitudes rise rapidly as the core is approached, due to
conservation of wave luminosity. We have checked that the quasi-
adiabatic approximation of �L/L is valid in the radiative region;
the ratio of the real and imaginary parts is found to be roughly
constant for the ingoing gravity wave (see also Zahn 1975).
In order to model the resonant response of a 1 M� star, we

tuned the forcing period to ’1 day (see Figs. 7b and 8). At the
surface, both �r and�L have dominant imaginary parts, due to the
short radialwavelength of theg-mode compared to the equilibrium-
tide fluid displacement. The entropy at the base of the convection
zone is very strongly perturbed in comparison to the nonresonant
case, but �L is still damped by orders of magnitude as the sur-
face is approached.
Figure 8 shows the surface values of the complex modulus

and phase of �r/R and�F/F versus forcing period. The phase is
arctan (Im/Re)2 (��; �). Solid lines connect points halfway
between g-mode resonant periods. We find that the equilibrium-
tide approximation given by equations (12) and (36) is excellent
for nonresonant forcing. Dashed curves give the maximum and
minimum values that occur on resonance. One example of a res-
onance is shown in the insets. Resonant forcing at periods of
<2 days yields surface values of �r/R and�F/F that differ sub-
stantially from the equilibrium-tide results. However, the ratio of
resonance width to the spacing between adjacent resonances is
�10�4, making resonant forcing very unlikely. It is noteworthy
that at forcing periods of >2 days, the equilibrium-tide result
holds extremely well evenwhen precisely on a resonance. As ex-
plained by Zahn (1975), the resonant response can be considered
as the sum of the equilibrium tide and the most nearly resonant
wave. As the period increases, the g-mode radial wavelength
decreases, resulting in a reduction of the overlap integral for the
mode and the tidal force, which in turn gives a decreased am-
plitude of the wave component relative to the equilibrium tide.

Fig. 6.—Ratio of surface Lagrangian flux perturbation�F/F to equilibrium-
tide displacement �U /gR for a range of forcing periods in the limit where sur-
faceg-modes are evanescent. The flux is evaluated at the location where!tth ¼ 1.
Dashed, solid, and dotted curves correspond to M ¼ 1:5, 1.6, and 1:7 M�,
respectively.
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The nonresonant response of the 1:6 M� star is shown in
Figure 7c. We see that the equilibrium-tide result provides a
goodmatch to �r/R. Our estimate for themodulus of the radiative
luminosity perturbation in the evanescent limit (eq. [44]) agrees
reasonably well with what is in Figure 7c. We also see that�L/L
does roughly ‘‘freeze out’’ when !tth ’ 1, just below the base of
the convection zone at log p/(GM2/R4) ’ �9 (see Fig. 3). Our ex-
pectations in x 5.3 regarding the imaginary part of �L/L are borne
out in Figure 7c.

A resonantly excited 1:6 M� star exhibits huge surface flux
perturbations, radial displacements, and phase lags, as seen in
Figure 7d. In Figure 9, surface values of �rj j/R and �Fj j/F are
plotted as a function of forcing period, where we have taken
care to resolve resonances. Resonant amplitudes vary nonmono-
tonically with period, in contrast to the smooth behavior of the
1 M� star (Fig. 8). Although we do not show the results here,
similar plots for masses between 1 and 1:6 M� show progressively
more structure as the mass increases. The cause of this irregu-
larity is not clear, but may have to do with the two thin surface

convection zones changing the overlap of successive g-modes
with the tidal force.

6. SUMMARY

We have investigated in detail the ellipsoidal oscillations of
0.9Y1:6 M� main-sequence stars induced by substellar compan-
ions. Classical models of ellipsoidal variability (e.g., Wilson1994)
are built on the assumption of hydrostatic balance in a frame co-
rotating with the binary orbit. This approach is justified in the
context of short-period (PorbP10 days) binaries containing two
stars of comparable mass, where tidal dissipation circularizes the
orbits and synchronizes the stellar spinswith the orbital frequency.
However, when the companion has a very low mass, we cannot
assume that the binary is in complete tidal equilibrium; in fact, this
state may be unattainable (see x 2). In this case, one must, in
general, appeal to a dynamical description of the tidal interac-
tion. A substellar companion with Porbk 1 day raises tides on the
star that are a small fraction of the stellar radius (see eq. [1]),
permitting a linear analysis of the stellar oscillations.

Fig. 7.—Responses of tidally forced 1 and 1:6 M� main-sequence stars. Black, red, blue, and green curves denote, respectively, the logarithms of �r/r, (�pþ 	�’)/	gr,
�s/Cp, and�L/L. Solid (dashed) curves show the real (imaginary) parts. The tidal potential has been scaled so that �r/R ¼ 1 corresponds to the equilibrium-tide value.
The four panels show the following: (a) nonresonant response of a 1 M� star tidally forced at a period of 2�/! ’ 2:91 days; (b) resonant response of a 1 M� star with
2�/! ’ 1:00 day; (c) nonresonant response of a 1:6 M� star with 2�/! ’ 3:00 days; and (d ) resonant response of a 1:6 M� star with 2�/! ’ 1:02 days
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While the root of our study is a dynamical treatment of stellar
tidal perturbations, the equilibrium-tide approximation does have
an important realm of validity (see below). For this reason, we
derived in x 3 a general expression (eq. [16]) for the measurable
flux variation of a star that remains in hydrostatic equilibrium
under the influence of a small external tidal force. This formula
(1) assumes that the local perturbation to the energy flux at the
stellar surface is proportional to and in phasewith the equilibrium-
tide radial fluid displacement at each angular order ‘ (eq. [12]),
(2) neglects stellar rotation, and (3) applies to inclined and eccen-
tric orbits. As expected, the fractional amplitude of the modula-
tion is �" � (Mp/M )(R/a)3 for small eccentricities and I ¼ 90�,
or �10�5(Mp/MJ)(Porb/1 day)�2 for a star like the Sun (see x 2).

A common practice is to use von Zeipel’s theorem when
computing the surface radiative flux from a tidally distorted star
(see x 4). The theorem assumes that the star is in hydrostatic
equilibrium and that the energy transport in the outer layers is
purely by radiative diffusion. As alreadymentioned, the hydrostatic
assumption is technically unjustified for substellar perturbers.
Moreover, the majority of Kepler targets will be main-sequence

stars with masses of <1.4 M�, which have substantial surface
convection zones. Evidently, von Zeipel’s theorem is an inap-
propriate starting point for the conditions of interest.
Section 5.1 discusses heat transport in perturbed stars with

convective envelopes. Heuristic arguments are used to develop a
simple treatment of the perturbed convection zone in main-
sequence stars of mass<1.6M� with forcing periods of 1Y10days.
We suggest that both the specific entropy s and its Lagrangian per-
turbation�s are spatially constant in convective regions, a model
partly inspired by the ideas of Brickhill (1983, 1990).
Using this prescription, we analytically compute in x 5.2 the

perturbed flux at the photosphere of deeply convective stars
(M P1:4 M�), where the thermal timescale at the base of the
convection zone is much longer than the forcing period. We find
that�s/Cp is negligible near the top of the convection zone, and
that the photospheric flux perturbation is proportional to changes
in the effective surface gravity. Thus, we recover the equilibrium-
tide result,�F/F ¼ �k‘�r/R, at the surface, where k‘ depends on
the adiabatic derivatives of opacity and temperature with respect
to pressure (see eq. [37]). Numerical solutions of the equations

Fig. 8.—Surface radial displacement and Lagrangian flux perturbation versus forcing period for a 1.0M� star. Solid lines connect points halfway between resonantg-
mode periods, while dashed curves give the maximum and minimum values found on resonance. The equilibrium-tide approximation is extremely good, except when the
forcing period is <2 days and resonant.
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of linear, nonadiabatic stellar oscillations (see x 5.4 and Fig. 7a)
corroborate our analytic estimates in the nonresonant regime.
Resonant excitations of g-modes in the radiative stellar interior
cause large departures from the equilibrium-tide approximation
when the forcing period is <2 days (Figs. 7b and 8). However,
the likelihood of being on a resonance is small, and at periods of
>2 day the equilibrium-tide result holds for M ’ 1 M� even
with resonant forcing.

Stars of massk1.4M� have thin, relatively inefficient surface
convection zones. Thus,g-modes can propagate very close to the
surface and produce large flux perturbations and fluid displace-
ments. Analytic arguments in x 5.3 indicate that the surface flux
perturbations in these stars have nonresonant amplitudes of �10"
(eq. [44] and Fig. 6), in rough agreement with our numerical cal-
culations (Fig. 7c). As seen in Figures 7d and 9, a resonantly
forced 1:6 M� star can exhibit flux perturbation amplitudes of
>100" at forcing periods of ’1 day.While the amplitudes are not
as extreme at longer periods, their dependence on period is rather
erratic (Fig. 9), an issue that deserves further study. It will be dif-

ficult to derive physical interpretations from the ellipsoidal var-
iability of these more massive stars.

7. DETECTION PROSPECTS

The dominant sources of periodic variability of a star with a
substellar companion are transit occultations (when cos Ij j <
½Rþ Rp�/a), Doppler flux modulations, reflection of starlight
from the companion, and ellipsoidal oscillations. For each of
these signals, Table 2 lists the characteristic amplitude, period with
the largest power in the Fourier spectrum, and orbital phase(s) at
which the light is a maximum or minimum. The transit contribu-
tion is included for completeness, but its duration is sufficiently
short—a fraction’(Rþ Rp)/(�a) of Porb—that it should often be
possible to excise it from the data (see Sirko & Paczyński 2003).
Of the remaining signals, the Doppler variability is the simplest,
being purely sinusoidal with period Porb when the orbit is cir-
cular. The dominant ‘ ¼ 2 piece of the equilibrium-tide ap-
proximation to the ellipsoidal variability (see eqs. [16] and [17])
is also sinusoidal when e ¼ 0, but with period Porb/2. Reflection
is more problematic, as its time dependence is generally not
sinusoidal and not known a priori.

If the companion scatters light as a Lambert sphere (e.g.,
Seager et al. 2000), the Fourier spectrum of the reflection vari-
ability has finite amplitude at all harmonics of the orbital frequency
�, but the amplitude at 2� is roughly 1/5 of the amplitude at �.
Therefore, the reflection and ellipsoidal variability amplitudes may
be similar at a frequency of 2� when � ¼ 0:1, Mp �MJ, and
Porb ’ 1 day. Also, the orbital phase at which the reflected light
is a maximum is distinct from both the Doppler and ellipsoidal
cases, further distinguishing the signals. However, Lambert scat-
tering is probably never appropriate in real planetary atmospheres.
Infrared reemission of absorbed optical light, multiple photon
scattering, and anisotropic scattering typically conspire to nar-
row the peak in the reflection light curve and lower the albedo,
decreasing the prominence of the reflection signal. These issues
are sensitive to the atmospheric chemistry and the uncertain de-
tails in models of irradiated giant planets. For reasonable choices
regarding the atmospheric composition, calculated optical albedos
of Jovian planets range from <0.01 to ’0.5 (Seager et al. 2000;
Sudarsky et al. 2000). Recent photometric observations of HD
209458, the star hosting the first-detected transiting giant planet
(Porb ’ 3:5 days), constrain the planetary albedo to be <0.25
(Rowe et al. 2006).

Detailed light curve simulations will be required to say how
well the different periodic signals can be extracted from the
data. This is beyond the scope of the current study.We now do the

TABLE 2

Periodic Flux Modulations

Variability Source Amplitudea,b Dominant Harmonic Phase at Maximum/Minimumc References

Ellipsoidald.............................................. 2 ; 10�5mpmP
�2
1 sin2I Porb/2 0.25(0.75)/0.00(0.50) . . .

Dopplere .................................................. 3 ; 10�6mpm
�2/3P�1/2

1 sin I Porb 0.25/0.75 1

Reflectionf ............................................... 6 ; 10�5(�/0:1)m�2/3P�4/3
1 sin I Porb 0.50/0.00 2, 3

Transit ..................................................... 10�2m�2 Porb . . ./0.00 4

a We assume that the orbit is circular in our estimates.
b The dimensionless variables used aremp ¼ Mp/(10

�3 M�),m ¼ M /M� and P1 ¼ Porb/1 day.We have assumed that the star and companion have respective radii of
R/R� ¼ m and 0:1 R�.

c The phase is in the range 0Y1, where at phase 0 the planet is closest to the observer.
d Only the ‘ ¼ 2 component of eq. (16), with k2 ¼ 2, is considered here.
e We approximate the amplitude as 4vr/c, where vr is the reflex speed of the star along the line of sight, and the factor of 4 is approximately what one obtains for a

V-band spectrum similar to the Sun.
f Here � is the geometric albedo of the companion. The inclination dependence is an approximation for I ’ 90� and the Lambert phase function.
References.— (1) Loeb & Gaudi 2003; (2) Seager et al. 2000; (3) Sudarsky et al. 2000; (4) Seager & Mallén-Ornelas 2003.

Fig. 9.—Surface radial displacement and Lagrangian flux perturbation vs.
forcing period for a 1.6M� star. Curves connect evenly spaced points away from
resonances, with finer spacing near resonance periods.
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simpler exercise of isolating the ellipsoidal modulations and as-
sessing when this effect alone should be detectable. For a star of
apparent visual magnitude Vand an integration time of T ¼ 6 hr,
Kepler’s photon shot noise is7

�J

J

� �
shot

� 10�5100:2(V�12) T

6 hr

� ��1=2

: ð45Þ

Instrumental noise should contribute at a similar level (e.g.,
Koch et al. 2006). If the data is folded at the orbital period and
binned in time intervals TTPorb, the shot noise is suppressed
by a factor of �n�1/2

orb , where norb is the number of folded cycles.
After folding 1 yr of continuous photometric data using T ¼ 6 hr,
a star withV < 12 orbited by a giant planet withPorbP 3 daysmay
have a fractional shot noise per time bin of P10�6. This is less
than the ellipsoidal amplitude, (�J /J )ell, when I is not too small.

The actual situation is not so simple when the data spans of
weeks or months, because the intrinsic stochastic variability of
the star will not have a white-noise power spectrum. Over times
of P1 day, the Sun shows variability of (�J /J )int � 10�5, but the
amplitude rises steeply between �1 and 10 days to �10�3. In-
trinsic variability tends to be large near the rotation period of the
star, due mainly to starspots. Low-frequency variability may be
not too damaging for the study of ellipsoidal oscillations induced
by planets with PorbP 3 days, but more study is needed.

Kepler’s target list will contain ’105 main-sequence FGK
stars with V ¼ 8Y14. The statistics of known exoplanets indicate
that 1%Y2% of all such stars host a giant planet (MpkMJ) with
Porb < 10 days (e.g., Marcy et al. 2005). Of these ‘‘hot Jupiters,’’
’30% have Porb ¼ 1Y3 days. It seems that a maximum of �103

Kepler stars will have detectable ellipsoidal modulations. If we
neglect intrinsic stellar variability and consider only shot noise,
then many systems with PorbP 3 days and V < 14 will have a
signal-to-noise ratio S/N > 1 after �100 cycles are monitored;
this may amount to >100 stars. Obviously, the number drops
when we place higher demands on S/N and include the intrinsic
variability. The results depend critically on the distributions of
Mp and Porb.

In order to better estimate the number of stars with potentially
detectable ellipsoidal oscillation, we perform a simple popula-
tion synthesis calculation. Denote the set of star-planet system
parameters byP ¼ fM ;Mp;Porb; Ig, and let f (P) dP be the prob-
ability of having a system in the four-dimensional volume dP.We
assume that the planetary orbits are circular and obtain (�J /J )ell
from the equilibrium-tide estimate in Table 2. Given the mass
of the star, we compute its absolute V magnitude on the main-
sequence using the approximation (see also Henry & McCarthy
1993)

MV ¼ 4:8� 10:3 log (M=M�); ð46Þ

which is in accord with the usual mass-luminosity relation
log (L/L�) ’ 4 log (M=M�) for M ’ 1 M�. With a maximum
apparent magnitude of Vmax ¼ 14 for the Kepler targets, the
maximum distance of the star is

Dmax ¼ 101þ0:2(14�MV ) pc: ð47Þ

With a certain signal-to-noise threshold (S/N)min, there is a max-
imum distance Dd < Dmax to which the ellipsoidal variability is

detectable. For a spatially uniform population, the detectable
fraction of systems is (Dd /Dmax)

3. Thus, the net detectable frac-
tion among all systems is

E ¼
Z

dP f (P)
Dd

Dmax

� �3

; ð48Þ

an integral over all relevant P space.
When the only noise is intrinsic to the star, N ¼ (�J /J )int and

S/N is independent of distance, so thatDd; int ¼ Dmax when S/N >
(S/N)min, and Dd; int ¼ 0 otherwise. In the case of pure shot noise,
there is a maximum magnitude Vd for which the ellipsoidal oscil-
lations are detectable:

Vd ¼ 5 log
(�J=J )ell
�(S=N)min

� �
; ð49Þ

where� � 10�8:4(T6n100)
�1/2 is the value of (�J /J )shot forV ¼ 0,

T ¼ 6T6 hr, and norb ¼ 100n100. The corresponding distance is
given by log ½Dd;shot/10 pc� ¼ 0:2(Vd �MV ) if Vd < Vmax, and
is Dd; shot ¼ Dmax when Vd > Vmax. We take the maximum de-
tectable distance to be Dd ¼ min Dd; int;Dd;shot

	 

.

At this point the simplest approach is to assume that the pa-
rameters fM ;Mp;Porb; Ig are statistically independent and carry
out a Monte Carlo integration to obtain E. To this end, we draw
M from the Kroupa et al. (1993) initial mass function in the range
of 0.5Y1:5 M�. The planetary mass is chosen from the distribu-
tion f (Mp) / M�x

p for Mp ¼ 1Y10 MJ. Marcy et al. (2005) find
that x ’ 1 when considering all detected planets; the shape of
f (Mp) is not well constrained at Porb < 10 days. We let x ¼ 1
and 2. We adopt f (Porb) / P

�y
orb over 1Y10 days. Multiplying the

resulting value of E by 1000 provides a crude estimate of the
actual number of Kepler targets with detectable ellipsoidal var-
iability. No single value of y is consistent with the data, and so
we consider the reasonable range y ¼ �1, 0, and +1. Inclinations
are chosen under the assumption that the orbits are randomly ori-
ented, such that f (cos I ) ¼ 1/2 for I2 (0; �). Our calculations
use fixed values of (�J /J )int ¼ 10�5 and T6 ¼ n100 ¼ 1.
Results of our Monte Carlo integrations are shown in Table 3

as actual numbers of Kepler targets. The largest number of detect-
able systems is obtained when x ¼ y ¼ 1, parameters that yield
the largest proportions short periods andmassive planets. We ex-
pect that�10Y100Kepler stars may exhibit ellipsoidal oscillations
with S/Nk 5. A handful of systems might have S/Nk 10. Higher
harmonics from the ‘ ¼ 3 components of equation (16) or modest
eccentricities might be accessible for at most a few stars.
Our integrations also check for cases where the planet is tran-

siting. As (S/N)min increases from 1 to 5, the fraction of systems
in Table 3 with cos Ij j< (Rþ Rp)/a runs from ’30% to ’50%,
with a weak dependence on x and y. Such significant fractions
stand to reason, since systems with the shortest periods have the
highest ellipsoidal amplitudes and transit probabilities. Transit
measurements directly give Porb, sin I k 0:95 (for Porbk1 day),

TABLE 3

Number of Kepler Stars with Detectable Ellipsoidal Oscillations

(S/N)min ¼ 1 (S/N)min ¼ 3 (S/N)min ¼ 5

y x ¼ 1 2 x ¼ 1 2 x ¼ 1 2

1...................... 240 166 76 35 33 13

0...................... 99 62 26 12 11 4

�1 .................. 33 19 7 3 2 1

7 An integration time of T ¼ 6 hr is chosen for convenience;Kepler’s nominal
exposure time is 30min. Here we use theV-band flux as a reference, but, in fact, the
Kepler bandpass is 430Y890 nm, which spans B, V, and R colors.
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and (Rp/R)
2. The planet massMp can be determined with the ad-

dition of spectroscopic radial velocity measurements, which
should be possible for most of the Kepler targets with detectable
ellipsoidal oscillations. The ellipsoidal amplitude then depends
on the unmeasured stellar mass and radius via " / R3/M 2 (eq. [1]),
as well as the stellar photospheric conditions (eq. [36]). IfM and
R are obtained from stellar models, ellipsoidal variability may
provide an interesting consistency check on all the system pa-
rameters, as well as test the theory of forced stellar oscillations.

As a last point, we emphasize that stars of massk1.4M� may
have typical ellipsoidal amplitudes of �10". However, such stars
will also be younger than most Kepler targets and probably have
intrinsic variability 310�5. We carried out Monte Carlo integ-
rations with M ¼ 1:4Y1:6 M�, (�J /J )ell ¼ 10" sin2I , and x ¼
y ¼ 1. As we vary (�J /J )int from 10�5 to 10�4, E decreases from

large values of ’0.4 to a small fraction of ’0.03 for (S/N)min ¼
10. Unfortunately, we do not know how many such stars will be
included in the Kepler target list. Also, there has not yet been a
discovery of a giant planet with Porb < 10 days around a star of
mass�1.4M�, but exoplanet surveys tend to exclude these more
massive stars.

We thank Tim Brown for general discussions and addressing
Kepler questions, Jørgen Christensen-Dalsgaard for guidance on
stellar luminosity perturbations, and Mike Muno for advice on
signal processing. We would also like to thank the referee, Paul
Smeyers, for bringing a number of subtleties to our attention.
This work was supported by NSF grant PHY05-51164.

APPENDIX

OSCILLATION EQUATIONS

Here we list the nonadiabatic, linearized fluid equations that we solve numerically. The reader is referred to Unno et al. (1989) for a
complete discussion. Scalar and vector quantities are expanded in spherical harmonics Y‘m and poloidal vector harmonics, respectively.
The momentum, mass, and energy equations are written in terms of the dimensionless variables y1 ¼ �r/r, y2 ¼ (�p/	þ �’)/gr,
y3 ¼ �’/gr, y4 ¼ g�1d�’/dr, y5 ¼ �s/Cp, and y6 ¼ �L/L. Here L is the total (radiative plus convective) luminosity. The radial flux
perturbation is �F/F ¼ �L/L� 2�r/r. In radiative zones, the nonadiabatic equations are

dy1

d ln r
¼ y1

gr

c2s
� 3

� �
þ y2

gk 2
h r

!2
� gr

c2s

� �
þ y3

gr

c2s
� y5	s þ

k 2
h

!2
U ; ðA1Þ

dy2

d ln r
¼ y1

!2 � N 2

g=r

� �
þ y2 1� � þ N 2

g=r

� �
� y3

N 2

g=r
� 	sy5 �

1

g

dU

dr
; ðA2Þ

dy3

d ln r
¼ y3 1� �ð Þþ y4; ðA3Þ

dy4

d ln r
¼ y1�

N 2

g=r
þ y2�

gr

c2s
þ y3 ‘(‘þ 1)� �

gr

c2s

� �
� y4� þ y5	s�; ðA4Þ

dy5

d ln r
¼ y1

r

Hp

9ad � � !2

g=r

� �
þ 4 9�9adð Þþ c2

� �
þ y2

r

Hp

9ad �9ð Þ gk
2
h r

!2
� c2

� �

þ y3
r

Hp

c2 þ y4
r

Hp

9ad þ y5
r

Hp

9 4� �sð Þ� y6
r

Hp

9þ r

Hp

9ad

dU=dr

g
þ k 2

h

!2
U

� �
�9

k 2
h

!2
U

� �
; ðA5Þ

dy6

d ln r
¼ y1‘(‘þ 1)

9ad

9
� 1

� �
� y2‘(‘þ 1)

9ad

9
þ y3‘(‘þ 1)

9ad

9
þ y5 i!

4�r3	CpT

L
� ‘(‘þ 1)

9

Hp

r

� �
; ðA6Þ

where cs is the sound speed, � ¼ d lnMr/d ln r, c2 ¼ (r/Hp)9(�ad � 49ad)þ9ad(d ln9ad/d ln r þ r/Hp), and we have ignored energy
generation terms. Note that the tidal acceleration �9U has been added to the momentum equations. In convection zones, we ignore
turbulent viscosity effects and replace the radiative diffusion equation (A5) with the prescription�s ¼ constant (see x 5.1), or more
precisely

d

dr
y5Cp

� �
¼ 0: ðA7Þ

Equation (A6) still involves the total (convective plus radiative) luminosity. We ignore energy generation and horizontal flux pertur-
bation terms, i.e., we ignore all terms with spherical harmonic index ‘ in equation (A6) in convection zones.

At the center of the star, we require the solutions to be finite, and also set�s ¼ 0. At the surface, we set �p ¼ 	g�r, and we require �’
to decrease outward. This boundary condition is only approximate, as g-modes may propagate above the convection zone for wave
periods of k4 days in our 1M� model. The final surface boundary condition is given by equation (31). Caremust be used in the radiative
zone just below the photosphere, since the entropy perturbation is far from the quasi-adiabatic value. If we solve the radiative diffusion
equation in this region, we find that the entropy increases by�10 orders of magnitude in just a few grid points. However, we regard this
behavior as unphysical, because the region at the top of the convection zone is optically thin. To eliminate this unphysical behavior, we
set �s to a constant at such low optical depths.

The above differential equations were recast as second-order finite-difference equations. The resulting algebraic equations were
combined with the boundary conditions and written as a band diagonal matrix equation, which we solved using standard methods (see
Press et al. 1992). To produce plots, we varied the forcing frequency and computed the response of the star.
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