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Foreword

Have you ever stopped at a construction project on the way to your office and the

day’s astrophysics? Remember the other onlookers – folks just enjoying the spec-

tacle, as we all do in following developments away from our areas of active work?

We are excited and thrilled when the Hubble Space Telescope discovers an Einstein

Cross, when the marvelous pulsars enter our lives, and when computer scientists put

a little box on our desk that outperforms yesterday’s giant machines. We are free

to make use of such achievements and we respect the imagination and discipline

needed to bring them about, just as onlookers respect the abilities and planning

needed to create a building they may later use. After all, each of us contributes in

our own areas as best we can.

In addition to the serious onlookers there will be passersby who take only a casual

look at the site. They may use the building later, but have little or no interest in its

construction and give no thought to the resources needed to bring it to completion.

Upon arriving at work, those persons write astronomy and astrophysics books at

various levels, in which they must say something about close binary stars. Usually a

page or two will do, and the emphasis is on the MLR (mass, luminosity, radius) data

obtained only from binaries. The role of binaries in stellar evolution also may be

awarded a page or so, perhaps meshed with binaries being homes of black holes and

neutron stars. We live in an era of ever more applied research, with national priorities

set by the interests and judgments of select committees. Consequently, most authors

tell us the answer to one central question: What have binaries done for us lately?

Well, of course, binaries are alive and well as sources of fundamental information

on many fronts. But what of the fun, intrigue, and beauty of close binaries?

However, I do not want to be hard on the generic text authors because I remember

my initial reaction to binaries. A fellow graduate student (later a very accomplished

researcher) was doing a binary star project and I could not imagine why he was so

interested. He tried to explain it all, but it just was not working: subject = nonex-

citing. However, I soon was into binaries anyway, just due to being surrounded by

binary star work (yes, with appalling conformity). Time went by and then something

happened to turn the view around – it was Su Shu Huang’s work on ǫ Aurigae and

also on β Lyrae. Here was pure distilled cleverness and insight. Huang looked at

problems that had been examined exhaustively by several of the most celebrated

astrophysicists and saw things that had eluded everyone. Suddenly binaries were
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viii Foreword

locales where mystery could transform into understanding if one looked in the right

way. But where does one learn to do this sort of thing, in a course? Not at most

schools. Can one learn from a book? Well, there are books on binary stars, but they

mainly serve as repositories of formulas, derivations, and diagrams, and some follow

the ideas of only one person or “school.” A few books give recipes for procedures

developed by their authors, usually without providing insight. There has long been

a need for a book that takes a wide view of binary star models and their interface

with observations, and that is the goal set by Josef Kallrath and Eugene F. Milone,

who together have broad experience in binary star models and observations. Their

creation has conscientious coverage throughout most of the “models versus obser-

vations” field. It can guide interested persons into the overall field and be a helpful

companion as they explore new examples, such as in the initial approach (what is

going on?), a settling-in stage (is it a standard situation or are there complications?),

getting up to speed (developing intuition and extracting maximum information), and

finally evaluation of results.

Examine the Contents to see a variety of topics not found in the few preceding

books in this general area. Here we find extensive treatment of history, terminol-

ogy, observational methods, accuracy, binary models from the ground up, system

morphology, a sense of where things are going, perspectives for long-range devel-

opment, guides to exploration of the literature, and even philosophy. Although not

all important categories of binaries are covered, nor are all individual binaries of

special interest, the coverage in this first edition is remarkable. Protest marches for

inclusion of symbiotics, ultra-compact X-ray binaries, etc., in future editions may

well be successful. For now the emphasis is on more general considerations. We see

a balance between hands-on and automated analysis. Extreme hands-on advocates

typically get things roughly right and can recognize novel features but fail to extract

all available information. Extreme advocates of the automated school can reach

optimal solutions for standard cases but miss anything new (there is more to astro-

physics than parameter adjustment). We need to navigate between these extremes.

The names of some luminaries of the binary star field may seem to be under-

represented, for example, those in structure and evolution. Should we not be reading

more about Eggleton, Kippenhahn, Lucy, Ostriker, Paczynski, Plavec, Taam, van

den Heuvel, Webbink, etc.? But remember that it is a book about direct representa-

tion of observations through models and must be kept to a reasonable size, and there

are excellent books on structure and evolution.

Although the scope is limited to models, observations, and related mathematics,

there is something here for everyone. Thus we learn that the Kolmogorov–Smirnoff

test is not, after all, a way to distinguish vodkas. And there are binaries for everyone.

Game players will like the one that stays in eclipse 90% of the time and comes out

for only 10% (PK Boo). Gadget afficianados prefer the remote paging device, b Per.

We have a thing to play in TV Cet and a place to stay in HO Tel. And then there is

the only star with a question mark in its name (Y Sex?). So peruse the book, learn

from it, and enjoy close binaries. If you happen to find some MLR data along the

way, so much the better.

R. E. Wilson



Preface to the Second Edition

Di, coeptis . . . adspirate meis (Gods, aid my undertaking)

Ovid (43 B.C.–A.D. 17), Metamorphoses 1,2-4

The second edition arose from the authors’ and the publisher’s observations that

10 years after the first edition a new edition is needed to cover the impressively

long list of new physical features and analyzing methods in eclipsing binary (EB)

star analysis. Direct distance estimation through EB analysis is one of the high-

lights. Complete derivation of the ephemerides and third-body orbital parameters

from light and radial velocity curves is another. Incorporation of interpolation-

based approximations to stellar atmospheres has become common practice. Limb-

darkening coefficients do not need to be entered explicitly but are locally computed

as function of temperature, gravity, wavelength, and chemical composition.

EB research has made great contributions to stellar astrophysics for over a cen-

tury, e.g., resolution of the Algol paradox, insights into the physics of cataclysmic

variables, and improved understanding of W UMa stars. Bright EBs can be observed

and analyzed for orbital and physical properties to high accuracy with even mod-

est equipment. The advent of larger telescopes and powerful instrumentation also

allows analysis and distance estimations of EBs in Local Group galaxies even as

far as M31 and M33. Large telescopes also allows the observation and study of

eclipsing very-low-mass stars, brown dwarfs and planets, and even planets in EBs.

The detection of extra-solar planets by transit methods is a field not entirely outside

the EB research where EB techniques have been used successfully.

The Kepler mission1 (cf. Koch et al. (2006)) launched on March 6th, 2009, the

GAIA mission to be launched in 2012 or the Large Synoptic Survey Telescope

(LSST; http://www.lsst.org/), in discussion for after 2015, will add a new chal-

lenge to the field: The analysis of large numbers of EB light curves from surveys.

Finally, enhanced or completely new software is available for EB research. PHOEBE

(Sect. 8.2) is an example of a platform-independent EB software with an attractive

graphical user interface.

1 Updated details are at http://www.kepler.arc.nasa.gov.
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x Preface to the Second Edition

The proceedings of IAU Symposium No. 240 (2006) [entitled Binary Stars as

Critical Tools & Tests in Contemporary Astrophysics, edited by Hartkopf et al.

(2007)] provide an excellent overview on state-of-the-art and ongoing activities in

close binary research. They briefly review major advances in instrumentation and

techniques, new observing and reduction methods, and discuss binary stars as criti-

cal tools and tests for studying a wide variety of astrophysical problems. Tools of the

Trade and the Products they Produce: Modeling of Eclipsing Binary Observables

edited by Milone et al. (2008) is another source highlighting recent advances. We

see strong enhancements both in physics and in EB software:

• additional physical features

1. an alternative method to derive a binary’s ephemeris;

2. effects of third bodies on light curves and radial velocity curves;

3. EBs with intrinsically variable components;

4. stellar atmosphere approximation functions;

5. direct distance estimation;

6. color indices as indicators of individual temperatures;

7. spectral energy distribution as independent data source; and

8. main sequence constraints;

• enhanced programs and new software;

• techniques for analyzing large numbers of light curves, and;

• EBs in extra-solar planet research.

We largely retain the structure of the first edition. Some sections have been added

to the existing chapters, especially the Eclipsing Binary Guide for Researchers in

Other Fields in Chap. 1. What is now called Chap. 5 hosts most of the new material.

Chapters 5, 6, and 7 of the first edition are now Chaps. 6, 7, and 8 of this second

edition.

Last but not least: The book is now part of Springer’s Astronomy and Astro-

physics Library Series which both indicates and acknowledges its wider relevance

for astronomy and astrophysics.

Gainesville, FL, US Josef Kallrath

Calgary, AB, Canada Eugene F. Milone



Preface to the First Edition

Di, coeptis . . . adspirate meis (Gods, aid my undertaking)

Ovid (43 B.C.–A.D. 17), Metamorphoses 1,2-4

This book arose from the realization that light curve modeling has not had a full

expository treatment in 40 years. The last major exposition was that of Russell &

Merrill (1952), and that treatment dealt exclusively with the Russell–Merrill spher-

ical star model and with the process of light curve rectification. The present work

may be the first comprehensive exposition of the merits of the major modern light

curve analysis methods, notwithstanding the pioneer efforts of many investigators

beginning with Kopal (1950), who again described mainly his own efforts. The need

for a sourcebook and didactic presentation on the subject was recognized in the

course of planning a conference on light curve modeling which was held in Buenos

Aires and Cordoba in July–August, 1991. The proceedings of the Argentina meet-

ings (Milone 1993) review the current state of light curve modeling methods and

focus on special topics but do not give a general review. The only previous meeting

devoted exclusively to the topic of comparative light curve modeling methods was

IAU Colloquium No. 16 in Philadelphia in September 1971.

Although there is an extensive literature on eclipsing binary research, the paucity

of instructional materials in the area of light curve analysis is striking. The graduate

student, the researcher, or the advanced amateur astronomer must struggle through

journal articles or conference proceedings and must read between the lines to glean

the details of the modeling process. Most of the didactic books on light curve mod-

eling date to the presynthetic light curve era. The monograph by Russell & Merrill

(1952) is one major example and that by Kopal (1959) is another. Yet the need is

acute: As with many other areas of science, the computer revolution has given many

astronomers, amateur as well as professional, the tools to attempt light curve solu-

tions. In this work, we provide a suitable background for the new modeler, a useful

source book for the experienced modeler, and a springboard for the development of

new modeling ideas. For the Wilson–Devinney approach in particular, we elaborate

on some of the subtle details that determine the success or failure of light curve

computation.
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xii Preface to the First Edition

Methods of analyzing eclipsing binary data involve

1. the specification of an astrophysical model;

2. the selection of an algorithm to determine the parameters; and

3. the estimation of the errors of the parameters.

The focus of the book is primarily on models and algorithms rather than on model

applications and individual binaries. Nevertheless, models and algorithms are illus-

trated through investigations of individual stars. The review by Wilson (1994) deals

with the intuitive connection between binary star models and light curves and the

historical development of the field. Here we concentrate on the mathematical for-

mulation of models and the mathematical background of the algorithms. We present

a self-contained, elementary treatment of the subject wherever possible. The book is

written for the reader who is familiar with the basic concepts and techniques of cal-

culus and linear algebra. As an aid to the exploration of higher-level material, a brief

introduction into the theory of optimization and least squares methods is provided

in Appendix IV. Besides presenting the physical and mathematical framework, we

have tried to present the material so that it is not far from actual implementation.

The book consists of four major parts: Introductory material (Chaps. 1 and 2); the

physical and mathematical core (Chaps. 3 and 4); practical approaches (Chaps. 5 and

6); and the authors’ views on the structure of future light curve programs (Chap. 7).

The appendices provide further mathematical details on specific topics and applica-

tions and point to other sources. The structure of the book should assist readers who

are taking their first steps into the field to get a sound overview and also experienced

researchers who are seeking a source book of formulas and references.

Chapter 1 gives a nonmathematical overview of the field. In particular, the issues

of what can be derived from eclipsing binary stars and why these data are relevant

to astrophysics in general are considered. Here we introduce the general concept of

equipotential surfaces. Because an eclipsing binary analyst needs understanding of

observational data, some background on the database and methods of data acquisi-

tion is necessary. Therefore, in Chap. 2 we review observational methods relevant

to data analysis. Chapter 3 contains a general approach to light curve modeling. The

chief concern is the solution of the direct problem: computing light curves, radial

velocity curves, and other observables for a given set of parameters. To this end,

a mathematical framework is presented for the relevant astrophysics. The inverse

problem of the determination of eclipsing binary parameters is discussed in Chap. 4.

As in Chap. 3, we present a formal approach that may serve as a platform for

further developments in data analysis. Besides attending to critical issues in light

curve analysis, the formulation allows various methods to be related and discussed

from a common point of view. Chapter 5 gives characteristics of existing light curve

programs and coding details for some of them. Here, the purpose is to provide the

new light curve analyst with an overview to explore concepts relevant to the field,

including the astrophysics of particular programs and how they work. Because the

Wilson–Devinney program is the most frequently used light curve analysis tool,

Chap. 6 discusses special eclipsing binary cases analyzed with the Wilson–Devinney

program and related programs. In order not to overburden Chaps. 5 and 6, most of
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the practical details of the Wilson–Devinney program are collected in Appendix

D.1. Chapter 7 summarizes ideas and strategies for building light curve programs

and previews the coming decade. It is intended as a stimulant to further eclipsing

binary research and light curve program development.

Some topics that are covered only briefly will have more extensive treatment

in some later edition. A first group covers further model extensions requiring time

rather than phase as input quantity, e.g., variable periods, apsidal motion, eclips-

ing binaries with intrinsically variable components, spot migration, circumstellar

flows. Other extensions will focus on particular types of binaries: cataclysmic vari-

ables, symbiotic stars and other red-giant binaries, W Serpentis stars, high, low, and

ultralow mass X-ray binaries, binaries with atmospheric eclipses, and individual

strange objects such as ε Aurigae, β Lyrae, and Cygnus X-1.

Gainesville, FL, US Josef Kallrath

Calgary, AB, Canada Eugene F. Milone
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15 Universitätssternwarte Wien, Vienna, Austria.
16 US Naval Observatory, Flagstaff Station, Flagstaff, Arizona, USA.
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Mathematical Nomenclature and Symbols,
Physical Units

“What’s in a name?” Shakespeare: Romeo and Juliet, ii, 2

A few general rules are observed: vectors are marked as bold characters, e.g., x, n,

or r. The product a · b of two vectors a, b ∈ IRn is always understood as the scalar

product aTb =
∑n

i=1 ai bi . Matrices are indicated with sans serif font, e.g., A. The

list below gives our mathematical symbols and operators.

IRn the n-dimensional vector space of real (column) vectors with

n components

∇ gradient operator ∇ := ∇x = ∂
∂x

=
(

∂
∂x1

, . . . , ∂
∂xn

)T

applied

to a scalar-valued function f

:= defines the quantity on the left side of an equation by

the term on the right side of the equation

≡ quantity on the left side of the equation is set identically

to the term on the right side of the equation
.= indicates a first-order Taylor series expansion

xT the transposed vector, xT := (x1, . . . , xn) is a row vector

ei unit vector associated with the i th coordinate axis

1l identity matrix of appropriate dimension

M(m, n) set of matrices with m rows and n columns

Superscripts indicate attributes of a quantity, e.g., Lbol, a bolometric luminosity.

Subscripts are used for indexing and counting. The subscript j is always used to

refer to one of the binary components. To avoid confusion with the symbols R and

L , the radii and luminosities of the binary components are written in calligraphic

style R and L if they are in absolute (or solar) units. Symbols used in this book are

listed in Appendix F.

Throughout this book we mostly use SI units. However, when referring to orig-

inal papers or figures, CGS or even special units such as Å cannot be avoided.

Where possible we give only generic physical dimensions of quantities, such as

mass, length, time, energy.

xxxv



Chapter 1

Introduction

In this chapter we first identify eclipsing binaries (EBs) as a class of variable stars,

which we discuss generally. We then sketch the importance of EBs for the determi-

nation of fundamental stellar data. We discuss the conditions under which EB light

curve data enable astronomers to derive stellar masses and other parameters. Finally,

we provide the foundation for understanding EB models based on equipotential

surfaces.

Although originally classified phenomenologically (namely, from light curve

appearance), EBs are now understood on the basis of much firmer physics. The

improved understanding has led to a morphological basis for classification.

1.1 Eclipsing Binaries and Other Variable Stars

Oπoυ ακoύς πoλλά κεράσ ια, βάστα µικρó καλάτ ι

(Don’t get overwhelmed, and be cautious)

Variable stars are stars that vary in apparent brightness with time. In fact, all stars

are variable at some level of precision, over some timescale. In astronomy there are

three basic timescales:

• dynamic (the time it would take for a star to collapse under gravity if radiation

and particle pressure were removed), typically tens of minutes;

• thermal (the time to exhaust its stored thermal energy), typically millions of years

(as the energy is depleted by the luminosity); and

• nuclear (the time to exhaust its nuclear energy), typically, billions of years.

The relevant timescales for variable stars are between the dynamic and the thermal,

but certainly much closer to the dynamic.

In fact the term “variable star” is usually reserved for stars that vary in brightness

by some detectable amount over the interval of the observations. We have no prehis-

toric record of such events, but we certainly have ancient records. See, for example,

Kelley & Milone (2005, esp., Chap. 5) for an extensive summary. In the recent past

(50 years or so), the observational precision has been of order 0.01 magnitude or

J. Kallrath, E.F. Milone, Eclipsing Binary Stars: Modeling and Analysis, Astronomy

and Astrophysics Library, DOI 10.1007/978-1-4419-0699-1 1,
C© Springer Science+Business Media, LLC 2009
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more. At present, photometry has, in principle if not usually in practice, improved

by an order of magnitude, and at the level of millimagnitudes, most stars will appear

variable. For example, Howell et al. (2005) found in a survey of the galactic cluster

NGC 2301 that 56% of 4000 stars were variable at an amplitude of 0.002 magni-

tude or greater, the precision limit of the survey for the brightest 5 magnitudes of

the survey. To keep our present exposition within reasonable bounds, for present

purposes, for the most part we will stick to the more classical limit to define a

“variable star,” namely a star with brightness variation of > 1% or so and over

timescales of millennia or less (down to seconds or less). More specifically, in the

wider literature variable stars have been held to be variable if they vary in optical

wavelengths (∼ 0.35 to < 1.0 µm) over intervals of decades or less; cf. Hoffmeister

et al. (1985).

There are many fine monographs on the subject of variables, both generally and

specifically. We will mention the latter under the appropriate group. The most recent

general summary of which we are aware is by Sterken (1997). Other general works

which are somewhat more dated but still offer interesting insights include Hoffmeis-

ter et al. (1984/1985); Petit (1985); Strohmeier (1972); and Glasby (1969).

Like the animal, vegetable, and mineral categories in the “Twenty Questions”

parlor game of some decades back, variable stars are classically assigned to one of

three main categories:

• “geometric” variables;

• “pulsating” variables; and

• “eruptive” variables.

In another classification scheme, a broader distinction was made between “extrinsic”

and “intrinsic” variables, with “geometric” variables considered “extrinsic,” and the

other two “intrinsic.” We shall discuss geometric, pulsating, and eruptive variables

in sequence.

A “geometric” variable varies not due to its own physical behavior but because of

changing aspect,1 i.e., the viewable part of a star changes with time. This category

includes the EBs and also examples where the eclipse is due to a disk or a planet. It

can also include pulsars, which vary mainly because of rotation, and spotted stars in

the sense that the spots cause light modulation over a rotation period; spots usually

do not last for decades, but there are exceptions [e.g., RW Com, cf. Milone et al.

(1980)]. Finally, a cataclysmic variable (see below) may have a large “hump” (due

to a hot spot) in its light curve which may be asymmetric due to eclipse by the com-

panion star. Thus the degree to which geometric effects cause the observed variation

will differ with the type of system.

1 Aspect means the appearance of an object as viewed from a given direction.
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1.1.1 Eclipsing Variables

Eclipsing variables are periodic (that is, the cycle of variation repeats relatively

reliably). This broad grouping was historically divided into three phenomenological

classes according to the appearance of the light curves: Algols, β Lyrae systems,

and W Ursae Majoris systems. The characteristics of these light curve types are

discussed in the following subsections.

1.1.1.1 Algols

The prototype is β Persei, also known as Algol. In visible passbands, the striking

characteristics are approximately constant light outside eclipse and minima that fall

and rise abruptly and occupy only a small fraction of the full light curve, typically

less than ∼15% for each minimum. Typically, the longer the period, the shorter the

fraction of light curve taken up by eclipse. The periods range from days to weeks

or more in length. Usually such light curves suggest little interaction between com-

ponents. This is often but not generally true because the shapes of light curves in

optical bands can be misleading. For example, where the depths of the two minima

are very different, the temperatures of the component stars are different,2 and the

hotter, bluer star may dominate the light from the system. The light curve may rise

near secondary minimum, indicating a “reflection effect,” actually a reprocessing

of the hotter stars’ radiation as it impinges on the atmosphere of its companion,

increasing the cooler star’s luminosity in the irradiated area – best seen around

the secondary minimum. If it were not for the secondary minimum, which may

be shallow or even absent in optical passbands, the reflection effect would peak

at the phase of mid-secondary minimum. The effect is especially noticeable if the

cooler star is significantly larger. If looked at in infrared passbands, the cooler

star will contribute relatively more to the combined light and may resemble a β

Lyrae-type light curve (see below). In extreme cases, the redder component is so

highly evolved that it may be filling its Roche lobe and sending a stream of material

toward its companion. This is, in fact, the case with Algol itself (cf. Chen & Reuning

(1966)). Not all systems with Algol-like light curves will be in this state, however;

the components are often two similar stars and not so close to each other that they

are distorting each other’s shapes. When the stars are far apart, their shapes may be

approximated by spheres. It suffices to note that the spherical approximation would

not be adequate for all cases. We discuss further this class of eclipsing variable

under the EB designation “EA” in the section below. As outlined in Sect. 3.1.6

binary systems in which components are well within their Roche lobes are called

“detached” systems and those in which one component fills its Roche lobe are called

“semi-detached.”

2 As we will learn later, this conclusion is valid only for circular orbits (actually, true Algols are

interacting and are likely to have only circular orbits) and stars of similar size.
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1.1.1.2 β Lyrae

The prototype gives its name to the class. The light curve continuously varies across

the cycle of variation, and the minima occupy a fairly large proportion of the cycle.

The periods are typically days, but when giants or supergiants are involved, the

period may be much longer. The important thing is not the cycle length or the scale

of the system, but the relative size of the stars to the size of the orbit. The continuous

variation of light is partially due to the changing aspects of the stars as they rotate,

classically known as the “ellipsoidal variation.”

The relative depths of the minima indicate the temperature difference between

components; redder passbands tend to show less different depths. The light curves

give the (correct) impression that the stars are interacting gravitationally. In fact,

the stars are undergoing tidal distortions and their shapes reflect this distortion.

Roche geometry is generally used to accurately model these systems’ properties.

This class of eclipsing variable is further discussed under the EB type “EB” in

Sect. 1.2.2.

1.1.1.3 W Ursae Majoris or W UMa

The prototype is an eclipsing binary with period less than a day, characteristic of

the class. Like β Lyrae stars, the light curve varies continuously, but the depths of

the minima are usually similar, but rarely exactly identical. Systems that exhibit

these light curves are thought to arise from binaries in physical contact, not through

a stream, but through an actual neck of material that bridges the small distance

between the inward pointing edges of the components. Such systems are known

as “over-contact” or if just barely touching, as “contact” systems. Although some

astronomers use the term contact to refer to both contact and over-contact systems,

here we will use the term exclusively in its narrower meaning. Roche geometry is

used generally for the accurate modeling of the components of these systems. There

are two subclasses of WUMa systems, about which capable astronomers argue

endlessly: A-type and W-type systems. In A-type systems the more massive star

is larger and hotter; in W-type systems, the more massive star is larger but cooler

than its companion. Although both types of systems may exhibit asymmetries in

light curves, the W-type tends to exhibit more of this sort of behavior. There may be

a difference in depth of up to 0.1 magnitude. As well, there may be a difference

in brightness between the maxima (a phenomenon sometimes referred to as the

“O’Connell effect,” which is quantitatively defined as

∆m = mII − mI (1.1.1)

where m refers to the magnitude and the subscripts I and II refer to the maxima

following the primary and secondary minimum, respectively. This means that ∆mI

is positive if maximum I is brighter (has a smaller magnitude) than maximum II. The

O’Connell effect may be found in many close binary systems of several types, but

quite often in W-type UMa systems; cf. Davidge & Milone (1984) for a discussion
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of contributive causes. This class of eclipsing variables is further discussed under

EB type “EW” in Sect. 1.2.2.

1.1.2 Pulsating Variables

Pulsating variables undergo variations in radius due to intrinsic variation of temper-

ature and pressure. They may be strictly periodic, as in RR Lyrae stars or Cepheid

variables, or merely cyclic, as in RV Tauri or Mira variables. The period of vari-

ation may be very rapid – minutes for some high-temperature variables – to years

for the Miras. The General Catalogue of Variable Stars (Kholopov 1985) lists the

following types: α Cygni; β Cephei; Cepheids; W Virginis; δ Scuti; Irregular; Mira;

PV Telescopii; RR Lyrae; RV Tauri; Semiregular; SX Phoenicis; and ZZ Ceti; most

of them have assigned subtypes, which we omit here. Of greatest interest to those

outside the variable star community are the RR Lyrae variables, with approximately

constant luminosities, and the Cepheids, with luminosities that increase with period.

Such stars are considered to be “standard candles,” and may be used to determine

the distance on any ensemble in which they are found. RR Lyrae stars are giant stars

that have periods of about half a day. Cepheids are supergiant stars that have periods

from 1 to tens of days. Both are found in the field and in globular clusters, but RR

Lyrae stars are much more common. There are two types of Cepheids, the classical

Cepheids, members of Population I that are younger and are associated with the

galactic plane, and Population II Cepheids, found in the galactic halo and in globular

clusters. The realization that there are two types of Cepheids by Walter Baade led to

a revised (primarily, extragalactic) distance scale (by a factor of 2). Closely related

to the Cepheids and RR Lyrae objects are the δ Scuti stars (so designated by Harlan

J. Smith 1955) and their globular cluster-resident cousins, the SX Phoenicis stars.

These are subgiants or dwarfs (luminosity classes IV and V, respectively) that have

periods of pulsation that are typically small fractions of a day. All three groups are

found in the “instability strip” on the Hertzsprung–Russell diagram (luminosity or

absolute magnitude versus spectral type, stellar temperature or color index: basically

brightness plotted against color), where no stable stars are found. The Cepheids,

being the most luminous, lie uppermost, the RR Lyrae stars below them, and the δ

Scuti stars lie the lowest, straddling and just above the Main Sequence, the locus of

all stars powered by the fusion of hydrogen in their cores, where stars spend most of

their lives. Pulsating stars display a P
√
ρ relation, that is, the product of the period

and the square root of the density is a constant for a particular group of pulsating

stars:

P
√
ρ =

√

1

κG
, (1.1.2)

where κ is a dimensionless constant and G is the gravitational constant. Thus, the

shorter period stars are more dense, in accord with their luminosity classes. A pul-

sating star may be pulsating at its fundamental frequency, but sometimes it pulsates
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in the first or even second overtone (like a whistle that is blown too hard). Delta

Scuti stars may exhibit pulsations at many periods at the same time; these arise

from nonradial pulsation modes, in which some zones of the star are expanding,

while others are contracting. Stellar seismometry deals with the many modes of

oscillation that can be found in most stars, including the Sun. Of course, in the case

of the Sun the oscillations are of very low amplitude (as well as very numerous).

1.1.3 Eruptive Variables

Eruptive variables involve violent transient events (explosions). These may vary

from small flares (on stars of the main sequence) to “flare stars” (where the energies

may be as much as 103 times greater) to complete destruction of the star (super-

novae). The GCVS (Kholopov 1985) lists the following types of variable stars in

the “eruptive” category: Stars with brightness increase due to “violent processes and

flares” but they include also “shell events or matter outflow” in stellar winds with

possible interaction with interstellar matter. As a consequence, this categorization

includes many slower phenomena as well as stars undergoing very rapid changes.

The GCVS types belonging to this category include

• FU Orionis variables (typically 100-fold brightening over intervals of months,

followed by constancy or slow decline over years to decades. Possibly associated

with the T Tauri evolution stage “Orion variables”. A reflecting nebula spectrum

is always seen, and emission lines are seen at outburst);

• γ Cassiopeiae variables [Rapid rotators, these objects are hot, emission line stars

(Be stars), and Doppler-shifted spectral lines indicate rapid outflow. Their light

variation may be as much as 1.5 magnitudes];

• Orion variables (irregular variables associated with nebulosity. Some are found

to be T Tauri stars, an early stage in stellar evolution; some are rapidly varying;

spectral types distinguish subcategories);

• R Coronae Borealis variables [described as both eruptive and pulsating, these

objects suffer fading and gradual recovery over intervals of months; the variation

is thought to involve ejections of carbon (soot, basically)];

• S Doradus variables (high-luminosity stars characterized by envelope ejections;

P Cygni and η Carinae are members of this class. The latter, at least, has been

identified as an Asymptotic Giant Branch star undergoing thermal pulses, a late

stage in stellar evolution);

• UV Ceti variables (typically late-type dwarf stars undergoing flares with rise

times of seconds and recoveries of minutes of duration; a related group is associ-

ated with “Orion variables”. In clusters, these objects are simply known as “flare

stars”);

• Wolf–Rayet variables (very hot stars with irregular light variations).

In addition, the GCVS identifies RS Canum Venaticorum variables among the

eruptive variables. These objects are typically giant or subgiant interacting stars
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characterized by strong magnetic field interactions and active chromospheric regions,

causing quasi-cyclic variations in light curve shape outside of eclipse (cf. Hall

(1975)). As these are enhanced forms of phenomena associated with all late-

type, main sequence stars (such as the Sun) there is disagreement about whether

or not RS CVn-like systems deserve a separate group designation. In this book,

we prefer to call systems that exhibit enhanced active regions merely as “RS

CVn-like.”

The GCVS has another category in which the more violent members of erup-

tive variables are placed; the “cataclysmic” variables, described as having out-

bursts produced by thermonuclear processes either on the surface or in the inte-

rior. The name “cataclysmic variable” usually means a slightly different type of

object to much of the variable star community; it involves a white dwarf and a

cooler, less evolved star that has filled its inner Lagrangian surface (see Sect. 3.1.6)

resulting in a semi-detached binary star system. The system is further character-

ized by a stream of material feeding either directly on to, or into a disk sur-

rounding, the white dwarf. As the material in the disk loses angular momentum,

it spirals onto the white dwarf’s surface. This is, in fact, a nova or even super-

nova, waiting to happen, but it is (usually!) not happening (yet!). See Warner

(1995) for a definitive discussion of CVs and Hellier (2001) for practical details.

In any case, the GCVS category includes novae of various types, namely “fast,”

“slow,” or “very slow,” depending on the rate of decline from maximum out-

burst), “recurrent” (i.e., having been seen to recur), or “nova-like” (having spec-

tra resembling novae at minimum light); and the supernovae. Supernovae types

I and II are associated with stellar populations II and I, respectively. Population

I stars are relatively young, and supernovae from this population are thought to

include at least some single massive stars that have undergone catastrophic col-

lapse due to the formation of iron in an endothermic reaction in their cores. The

removal of energy in this process causes a deficiency in the pressure so that

the weight of the overlying layers cannot be sustained, resulting in a massive

implosion and catastrophic explosion as the imploding material bounces off the

highly compressed core, dispersing the atmosphere in the surrounding interstellar

medium.

Novae (“new” stars) have been known since ancient times, but the far more

luminous phenomena, supernovae, are newly recognized. Walter Baade recognized

that some novae were extraordinarily luminous and called these “Hauptnovae,” (or

“chief novae”; others used the terms “giant novae,” or “more luminous novae,” or

even “super-novae” to describe them) and he and Fritz Zwicky are said to have

coined the term “supernovae” (see Osterbrock (2001)). The relative energy of the

outburst ranges from ∼1044 for novae to ∼1048 ergs for supernovae. It is now

known that novae are the products of mass exchange in highly evolved binary star

systems, involving a white dwarf as the recipient star. Some supernovae (type Ia in

particular) are similar. However, in the case of novae, the system survives, and the

nova phenomenon may recur. In the case of supernovae, there are drastic changes to

the exploding star, and a recurrence is not possible. Three known outcomes of this

catastrophic event are
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• the core of the star collapses to form a neutron star, an object so dense that

electrons and protons are forced into neutrons. Rotating neutron stars are seen

as pulsars;

• the core collapses into a black hole, an object so dense that light cannot escape its

overwhelmingly strong gravitational field within a certain distance of its center;

• the star dissipates into a rapidly expanding debris cloud without a core remnant.

This concludes our brief summary of variable stars. We now concentrate on eclips-

ing systems and their treatment.

1.2 Overview of the Problem

Coup d’oeil (As at one glance: A brief survey)

We begin with a discussion of the importance of binary stars and give a historical

overview of the types of binaries and of the modeling and analysis of EB light curves

and conclude with a summary of the nomenclature and symbols we use throughout.

1.2.1 Why Binary Stars Are Important

Binary stars are important, first, because they are numerous. Latham et al. (1992,

p. 140) conclude that the frequency of spectroscopic binaries detected in the galac-

tic halo is not significantly different from that in the disk, despite differences in

kinematic properties and chemical composition. The observed frequency is approx-

imately 20%; the actual frequency is higher because many binaries remain unde-

tected. In the solar neighborhood, where we have the benefit of proximity so that

proper motion variations can be detected, the frequency is more than 50% – and

several stars are in fact multiple systems.

The second reason why binaries are important is that they are the primary source

of our knowledge of the fundamental properties of stars. For example, the direct

determination of the mass of any astronomical object requires measurable gravita-

tional interaction between at least two objects (galaxy–galaxy, star–star, star–planet,

planet–satellite). In galaxy–galaxy interactions, the distances and separations are

so large that no detectable motion on the plane of the sky is possible. In star–planet

interactions the objects contrast so greatly in brightness that outside the solar system

only the highest possible – and until recently rarely attained – precision can resolve

the objects. Typically in the latter case, only the star’s motions are detectable, and the

properties of that star must be assumed, mainly on the basis of binary star studies, in

order to deduce the properties of the planet. In star–star interactions, the variations

in position and velocity caused by orbital motion are detectable for a wide range

of stellar separations and up to at least a factor of 5 in brightness. It is often the

case that both stars may be studied in any of several ways, depending on their dis-

tances, brightnesses, and motions. Other basic properties of stars and of the systems

they constitute can be determined through analysis of observational data, depending
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on the observational technique by which the interaction is studied. The four main

types of binaries described by the observational technique are visual, astrometric,

spectroscopic, and EB systems. We discuss each type in turn.

1.2.1.1 Visual Double Stars

For visual double stars, true binary star systems (as opposed to purely optical dou-

bles) in which both components are visible and resolvable in a telescopic eyepiece,

it is possible to determine the component masses M1 and M2. They are derived from

Kepler’s third law (3.1.62) and the moment equation a1 M1 = a2 M2, where a1 and

a2 are the semi-major axes of the absolute orbits of the components about a common

center of mass.3 The derivable orbital elements include the size or semi-major axis

a and shape of the relative orbit and the inclination i of the plane of the orbit against

the plane of the sky. Because, however, in most cases4 only the angular semi-major

axes can be determined in this way, parallax measurements are needed to establish

linear values. Due to the limited accuracy of parallax measurements, this method has

been restricted to the near-solar neighborhood, within about 30 parsecs; however,

high spatial resolution surveys have improved the situation. The Hipparcos space

astrometry mission (1989–1993) acquired median astrometric accuracies of ∼0.001

arc-sec, and the resulting catalogue contains 12,195 detected double or multiple star

systems. Such a nearby sample of stars may suffer from selectivity effects. Most of

the stars of this sample have spectral types later than F5, for example. Nevertheless,

it is a valuable sample because it enables us to calibrate stellar luminosities, which

is the basis for all standard candles of all the types of stars thus studied.

If only one component is visible, because the other is too faint and/or is too

close to its brighter companion to be separated through telescopic resolution alone,

gravitational effects may help us to prove that the system is a binary. Such a system,

in which an orbital motion is detected by astrometric methods, is called an astro-

metric binary. The faint companion may be nominally resolvable but hidden in the

glare of the bright component. Sirius B is such a star: The much smaller and fainter

component of the “Dog Star”, the “Pup” was first observed visually by Alvan G.

Clark in 1862, but Sirius had been recognized by 1844 to be a binary on the basis

of its proper motion variability discovered by Friedrich Wilhelm Bessel (1845). For

a fine discussion of the extraction of data from astrometric binaries in general and

of the Sirius system in particular, we recommend Aitken (1964) and Lindenblad

(1970).

Another interesting type of astrometric binary is presented by cases where the

components are so close that they are, or have been until recently, unresolvable.

3 Unfortunately, only in a few cases is it possible to measure the semi-major axes a1 and a2 of the

absolute orbits separately. In most cases, only the relative orbit and its semi-major axis a = a1 +a2

can be determined.
4 There are a few cases of spectral–visual binaries which also give the absolute value of a.
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Resolving power, or the ability to resolve fine detail, can be described mathemati-

cally by

∆ = 1.22
λ

D
, (1.2.3)

where ∆ is the minimum angular separation in radians, D is the aperture of the

telescope, and λ is the wavelength in the same units. This quantity is, in fact, the

central radius of the diffraction disk or Airy disk, the central portion of the diffrac-

tion image or Airy figure. See Couteau (1981, p. 32) for a lucid discussion. Adaptive

optics5 makes use of a “reference star” to achieve sub-arc-second seeing within

a small region of the field of view known as the isoplanatic patch, within which

atmospheric fluctuations are correlated to ∼1 rad. The actual isoplanatic patch is

a few arc-seconds, typically. This technique permits ground-based telescopes to

achieve an order of magnitude improvement in resolution. If other contributions

to the “seeing budget” can be minimized as well, the resolution can approach the

theoretical (angular) resolving power of the telescope. Adaptive optics are neces-

sary to overcome the effect of atmospheric seeing; in space, instrumental resolution

is the limiting condition. The repaired Hubble Space Telescope (HST), for exam-

ple, has an effective resolution of about 0.05 arc-sec, permitting direct viewing

of both the separation and the rough surface details of the Pluto–Charon system.

Direct angular measurements of some of the largest of the sky’s bright stars are now

possible.

A number of less direct but more effective techniques also permit high angular

resolution:

• Lunar occultations: The edge of the Moon occasionally occults a star or stellar

system within the maximum range of its declination: about ±28◦. Analysis of the

resulting diffraction pattern intensities can determine binary star separations and

even the diameters of stars down to about 0.001 arc-sec.

• Phase interferometry: Around 1920, Michelson (1920); Michelson & Pease

(1921); and Pease (1925) determined the sizes of bright red giant stars with the

help of a phase interferometer mounted on the 100-in. telescope at Mt. Wilson.

The practical limit to angular resolution with this method was about 0.01 arc-sec

and was set by two factors: mechanical flexure of the interferometer arm and

atmospheric seeing. The arm bore two mirrors which were the equivalents of

Young slits, and whereas a length of 25 ft was successful, an attempt at 50 ft was

not. More recent work in this area has been done by groups in France (begin-

ning with A. Labeyrie in 1974), a group at the US Naval Observatory (Flagstaff,

Arizona), and at JPL (beginning with Shao and Staelin in 1979), among others.

• Aperture synthesis: Several modern groups have succeeded in using arrays

of telescopes separated by up to 100 m and improved equipment to produce

higher quality in resolution and stability and to extend the interferometry to

two dimensions. The availability of new autocorrelation methods to combine

fringes from separate telescopes permits the determination of binary separations

5 For a comprehensive review of adaptive optics, see Beckers (1993).
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even from sites which are nonoptimal both astrometrically and photometrically

[see Baldwin et al. (1996) for a description of work by the Cambridge Optical

Aperture Synthesis Telescope (COAST) group].

• Intensity interferometry: Brown et al. (1974a, b) measured the diameters of

blue stars with an intensity interferometer at a multiple telescope observatory at

Narrabri, Australia, beginning in the 1950s. The technique involves determining

the correlation between the light received by several collectors (in the Narrabri

case, 6.5 m incoherent dishes). See Brown (1968) for a basic review of these

techniques as well as the use of lunar occultations.

• Speckle interferometry:6 Speckle observations involve the determination of pat-

tern parameters in which the atmosphere acts as a diffusing screen [see Schlosser

et al. (1991, pp. 119–123), for a simple but clear exposition]. The method has

proven very fruitful for visual binary work. By the mid-1990s, the CHARA group

at Georgia State University, led by Harold A. McAlister, made more than 40,000

speckle observations of more than 7,300 stars or systems, and many more obser-

vations were being carried out (Mason et al. 1996).

Long-baseline interferometry permits the resolution of many spectroscopic binaries.

As is the case for all well-determined visual binaries, coupled with high-precision

radial velocity data, the parameters can yield all the geometric elements of the orbits.

To a certain degree, the relative brightness of the components can also be obtained

and in combination with photometry can provide a distance. An excellent example

of such collaboration can be found in the work of Scarfe et al. (1994) and Van

Hamme et al. (1994). Interferometric observations from space offer many advan-

tages, among them a spectral range from the far-ultraviolet to the far-infrared. This

means the possibility of observations of objects such as protostar binaries which

radiate in the far-infrared. The techniques of long-baseline optical and infrared inter-

ferometry were reviewed by Shao & Colavita (1992).

A calibration of stellar surface brightness making use of the measured sizes of

stars was carried out first by Wesselink (1969). This information source can be use-

ful in several ways, e.g., initial values for radii (given a spectroscopic estimate of

luminosity and photometric color index) for light curve modeling might be obtained

from his Fig. 2. This plot shows the radii of stars superimposed on a color-magnitude

array. A short catalogue of derived stellar sizes was compiled by Wesselink et al.

(1972).

1.2.1.2 Spectroscopic Binaries

The detection and analysis of spectroscopic binaries is not subject to geometrical

resolution limits as are angular measurements. With sufficient light gathering power,

it is possible to investigate spectroscopic binaries even in nearby galaxies and to

derive the luminosity ratio and mass ratio.

6 Although speckle interferometry is called interferometry, the reader should be aware that the

concept is completely different from the others kinds of interferometry mentioned above. Whereas

the latter involves a certain base line, speckle interferometry is rather a correlation method.
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The luminosity ratio, i.e., the relative luminosities of the component stars, can be

derived from spectra alone, by a method developed by Petrie (1939) at the Dominion

Astrophysical Observatory. The determination of the mass ratio is more difficult. It

can be derived only spectroscopically under favorable conditions, namely where

the components have similar luminosities (say within a factor of 5). In that case,

a radial velocity curve7 may be observed for each component; both radial veloc-

ity curves enable us to compute the spectroscopic mass ratio. Note that spectro-

scopists usually define the mass ratio as the more massive over the less massive

star.8 Such a system is called a double-lined spectroscopic binary (SB2). If only

one component can be observed spectroscopically, the system is called a single-

lined spectroscopic binary (SB1). In this case, a useful quantity defined in (4.4.34)

and known as the mass function can still be obtained which, according to (4.4.38),

provides a lower bound on the sum of masses and gives a lower bound on the

unobserved mass in any case (because the observed star cannot have mass less than

zero).

The calculation of masses and radii requires the inclination, i , which cannot be

found from spectroscopic data alone. In the SB1 case, the mass ratio also is not

known. If i is sufficiently large 9 and the separation of the components is sufficiently

small, the binary appears as an EB.

1.2.1.3 Eclipsing Binaries

A variable star observer measures a time-dependent flux, the display of which ver-

sus time or phase (the repeated foldings of the time into the period of variation)

is known as the light curve. The acquisition and reduction of photometric observa-

tions will be discussed in Sect. 2.1. EBs establish a special class of variables stars.

For the nomenclature and classification of variable stars we refer the reader to the

book Light Curves of Variable Stars by Sterken (1997) and Wilson (2001). Whereas

eruptive, pulsating, rotating, and cataclysmic variables are said to be intrinsic vari-

ables caused by different physical mechanisms, EBs are extrinsic variables requiring

models including both astrophysics and geometry.

As we have indicated, an eclipsing variable is a binary system whose orbital

motion is in a plane sufficiently edge-on to the observer for eclipses to occur.

The smaller the orbit relative to the sizes of the stars, the greater the likelihood

of eclipses. For a special subgroup of EBs (so-called over-contact binaries, with a

common envelope) eclipses may occur, although perhaps not perceptibly, even if the

7 A radial velocity curve is a plot of the star’s velocity component toward (or away from) the

observer versus time or orbital phase (essentially the fraction of an orbital cycle). See Fig. 3.27 for

an example and Sect. 2.2 for details.
8 See Sect. 2.8 for terminology concerning stars 1 and 2, as well as the uses of the term “primary”

in referring to components and eclipses.
9 The inclination i is defined such that an edge-on orbit has i = 90◦ .
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inclination is as small as 35◦. Illustrations demonstrating the visibility of eclipses at

low inclinations for an over-contact system are in Sect. 8.1 (Figs. 8.1, 8.2, and 8.3).

These binaries usually have orbital periods of less than 10 days and in most cases

less than 1 day. Among the exceptions are some rare cases of hot and/or developed

systems. The longest period EB known at present is ε Aurigae [see, for instance,

Caroll et al. (1991)] with an orbital period of 27.1 years. According to Kepler’s

third law this binary has an orbit relatively large10 compared to the sizes of the

components. Historically, considerations concerning the likelihood of eclipses lead

to a connection between EBs and “close binaries.” In the early days, a “close binary”

was defined as a binary with component radii not small compared to the stars’ sep-

aration. This definition was later replaced by a more physical definition related to

the evolution of the components by Plavec (1968), which we discuss at the end of

Sect. 1.2.3.

EB studies often involve the combination of photometric (light curve) and spec-

troscopic (mainly, radial velocity curve) data. Analysis of the light curve yields, in

principle, the orbital inclination and eccentricity, relative stellar sizes and shapes,

the mass ratio in a few cases, the ratio of surface brightnesses, and brightness distri-

butions of the components among other quantities. If radial velocities are available,

the masses and semi-major axis may also be determinable. Many other parameters

describing the system and component stars may be determined, in principle, if the

light curve data have high enough precision and the stars do not differ greatly from

the assumed model. The prediction of the information content of particular light

curves has been a major topic of concern in binary star studies; the exposition of

this topic is an important component of the present work also.

1.2.2 Phenomenological Classification of Eclipsing Binary

Light Curves

Examples of prototypical light curves are shown in Fig. 1.1. They correspond to the

classical categories, discussed above, of “Algol,” “β Lyrae,” and “W UMa” light

curves, also known as EA, EB, and EW light curves, respectively.

→

Fig. 1.1 (continued) Classes of light curves. (a) Shows a synthetic “Algol”-type light curve (V

band). It has been produced using the parameter file algolv.bmd from the Binary Maker 2.0

examples collection (Bradstreet, 1993). (b) Shows a synthetic “β Lyrae”-type light curve (V band)

and has also been produced with Binary Maker 2.0 (Bradstreet, 1993) using the parameters for

RU Ursae Minoris given in the Pictorial Atlas (Terrell et al. 1992,(p. 107). (c) Shows a synthetic

“W UMa”-type light curve (V band). It has been produced using the parameter file abandb.bmd

from the Binary Maker 2.0 examples collection (Bradstreet, 1993)

10 Note that ε Aurigae is enormously large. It contains an F0 supergiant with an estimated radius,

depending on the distance, between about 100 and 227 R⊙.
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(b)Synthetic “β Lyrae” type light cure (V band).

(c) Synthetic “W UMa” type light cure (V band).

Fig. 1.1 (continued)
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The EA light curves are typically almost flat-topped, suggesting that effects due

to the proximity of the components are small, with a large difference between the

depths of the two minima. Indeed, in some wavelengths the secondary minimum

may be undetectable, and there may be an increase in light near the expected phase

of secondary minimum due to the “reflection effect.”

The EB light curves, on the other hand, are continuously variable (the “ellip-

soidal variation”11), characteristic of tidally distorted components, and with a large

difference in depths of minima indicating components of quite different surface

brightness.

Finally, the EW (or W UMa) light curve is also continuously variable, but with

only a small difference in the depths of the minima. The variation outside the eclipse

in the latter two types is indeed due to proximity effects (mainly the tidally distorted

shapes of the stars), but the EB light curves arise from detached12 or semi-detached

binaries, whereas EW systems are over-contact.13 The expression “EA light curve,”

on the other hand, is somewhat misleading. Judged by the light curve, the system

may look undistorted, but only in light from the visible (or, as infrared astronomers

refer to it, the “optical”) part of the spectrum. In the infrared, for example, Algol

itself presents a continuously variable light curve and a fairly deep secondary min-

imum (Fig. 1.2). This reveals quite clearly that the bluer, hotter component in the

system is relatively small and undistorted, and its radiation enhances the bright inner

face of its companion.

These considerations show the value of treating all aspects of the light of the

system in light curve analysis, and not only their geometric characteristics. Unfor-

tunately, in many cases the system geometry has been the only goal of light curve

investigations.

As studies of Algol itself show, EB analysis is a formidable astrophysical task (see

Sect. 1.3.5 for further examples). The field includes radiation physics and sometimes

hydrodynamics. It borrows methods from celestial mechanics, thermodynamics, and

other branches of physics. Physical models are required for radiation transport in the

components’ atmospheres and for the dynamic forces controlling the stellar mass

distributions.

11 The expression ellipsoidal variation, or less correct oblateness effect, is more generally used

in the context of the Russell–Merrill model (see Sect. 6.2.1), where the shape of the light curve is

modeled as due to ellipsoidal stars. The term oblateness should be reserved for rotational but not

for tidal distortion.
12 The expressions “detached,” “semi-detached,” and “over-contact” arise from morphological

classification of binaries (Sects. 1.2.3 and 3.1.6). Detached systems have separated stars. Semi-

detached systems are still separated but one component fills its critical lobe.
13 Sometimes, these systems are called contact system; in this book we reserve this term only for

the case in which both components fill their critical lobes exactly. This special mathematical case

seems not to occur in real binaries. More generally, in the over-contact systems both stars overfill

their inner Lagrangian surfaces and establish a common envelope. Such systems can exist for astro-

nomically significant times only if the orbits are circular and the components rotate synchronously.
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Fig. 1.2 U, V, and infrared light curves of Algol. The plot has been produced with Binary

Maker 2.0. The parameters are taken from the Pictorial Atlas (Terrell et al. 1992, p. 239) and

from Kim (1989)

1.2.3 Morphological Classification of Eclipsing Binaries

The dynamic forces controlling the stellar mass distributions involve the effects of

rotation, tides, and noncircular orbits. For an introductory-level discussion of all

these effects, see Wilson (1974). Fortunately, tidal forces produce circular orbits and

synchronous rotation in many interacting binaries. A detailed and excellent analysis

of the tidal evolution in close binary systems is provided by Hut (1981). The orbital

period of a synchronous rotator in a circular14 orbit is the same as the rotation period.

We will discuss only synchronous rotation in this section.

Another physical simplification reduces the mathematical complexity: Although

the stars may be relatively large and considerably distorted, they attract one another

nearly as if their entire masses were concentrated into mass points at their cen-

ters. Therefore, only two forces need to be considered in the circular orbit and

synchronous rotation case:

1. gravitational attractions of two mass points and

2. the centrifugal force due to the rotation of the entire binary system about its

center of mass.

Given that both gravitational and centrifugal forces are time-wise constant for coro-

tating matter, we can expect to find solutions for static configurations in the coro-

tating frame. A somewhat similar problem was solved by the French mathematician

É. Roche (1820–1883) in the nineteenth century (Roche, 1849, 1850). The basic

14 Note that eccentric binaries tend to have their angular rotations locked at the orbital angular

rate at the periastron (Hut, 1981).
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concept for understanding the solutions of that problem is equipotential surfaces

(briefly, equipotentials). These are surfaces on which the sum of rotational and

gravitational energy per unit mass is constant. On these level surfaces, also called

“Roche surfaces,” the component of the force vector tangential to these surfaces van-

ishes, i.e., the local force vector is everywhere normal to them. The Roche surfaces

are indeed the static surfaces we are interested in: They corotate with the orbital

motion of the binary. Binary component surfaces are now modeled as equipotentials

(similarly on Earth, where ocean and lake surfaces follow equipotentials). The force

perpendicular to the surface is different for different equipotentials and also varies

as a function of location on a particular surface unless this surface is a sphere. In the

vicinity of the Earth, equipotentials due to the combined gravitational forces of Earth

and Moon are almost spheres. A family of binary system equipotentials projected

onto their orbital plane is illustrated in Fig. 1.3. One point in this figure is called the

Lagrangian point L
p

1, after the French mathematician J. L. Lagrange (1713–1765).

For a corotating test particle at L
p

1 the gravitational and rotational forces balance,

so the particle feels no force. The Roche surface15 passing through L
p

1 consists

of two ovoid surfaces called the Roche lobes of the components. The two ovoids

touch at L
p

1.

1. detached systems (Fig. 1.4), if neither component fills its Roche lobe;

2. semi-detached systems, if one component fills its Roche lobe, and the other does

not; and

3. over-contact systems, if both components exceed their Roche lobes.

Fig. 1.3 Projections of equipotential Roche surfaces. The plot, showing equipotential Roche sur-

faces projected onto the orbital plane, was produced with Binary Maker 2.0 for a binary system

with mass ratio q = 0.5 and Roche potentials Ω1 = 5,Ω2 = 3. The outer curve corresponds to

the surface passing through L
p

2. The next inner one passing through L
p

1 (point where lines cross)

represents the Roche lobes for both stars. Both curves depend only on the mass ratio. Finally, the

inner near, circular curves are the stars corresponding to the above given potentials and mass ratio

15 In more general models, including eccentric orbits and asynchronous rotation, the expression

Roche surface and Roche lobe will be replaced by critical surface and critical lobe.
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Fig. 1.4 Roche potential and shape of a detached binary system. The plot has been produced using

Binary Maker 3.0 and the YZ Cassiopeiae parameter set provided in the examples collection

(Bradstreet & Steelman, 2004). ( f1 < 0, f2 < 0)

The interpretation and physical properties (such as stability) associated with the

morphological classes introduced above is discussed in further detail in Sect. 3.1.6.

The form of a component is closely related to the contact parameter, or sometimes,

fill-out factor, f, which measures the degree of lobe filling [Chap. 3, definition

(3.1.101)].

If eccentric orbits and nonsynchronous rotation are considered, then additional

configurations besides the one discussed above may occur [see Chap. 3 or Wilson

(1979, 1994)].

There is some correspondence between the morphological classification based on

the Roche lobes and the phenomenological classification presented in the previous

section:

Algol-type light curves ⇒ semi-detached systems (Fig.1.5),

W UMa-type light curves ⇒ over-contact systems (Fig. 1.6).

Note that the phenomenological classification of the β Lyrae-type light curve has

no morphological counterpart. Sometimes, β Lyrae-type light curves are produced

by detached systems, sometimes by semi-detached systems, and sometimes also by

systems having marginal over-contact; see the Binary Stars Pictorial Atlas (Terrell

et al. 1992), for example. However, there are semi-detached binaries that are not

Algols (e.g., cataclysmic variables) and over-contact binaries that are not W UMa’s

(e.g., over-contact binaries like TU Muscae).

Having this concept and basic understanding of Roche potentials, it is possible to

give a physically useful definition of close binaries following Plavec (1968, p. 212):

Close binaries are those systems in which a component fills its critical Roche lobe
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Fig. 1.5 Roche potential and shape of a semi-detached binary. The plot has been produced with

Binary Maker 2.0 using the Algol parameter set in the examples collection (Bradstreet, 1993).

The primary component fills its Roche lobe ( f1 = 0, f2 < 0)

Fig. 1.6 Roche potential and shape of an over-contact binary. The plot has been produced with

Binary Maker 2.0 for the TY Bootis parameter set in the examples collection (Bradstreet, 1993).

Both components exceed their Roche lobes (0 < f1,2 ≤ 1, f2 = f1)

at some stage of its evolution. Prior to this evolutionary definition the custom was

to define a close binary as one in which the dimensions of at least one component

are of the same order of magnitude as the separation.



22 1 Introduction

1.2.4 What Can Be Derived from Eclipsing Binaries

The analysis of photometric light curves alone cannot provide absolute dimensions

of binary stars or their orbits. The reason is a scaling property with respect to the

relative orbital semi-major axis a: If all linear dimensions are increased by a certain

factor, the associated light curve changes can be canceled by shifting the binary to

a larger distance. A light curve can provide the orbital inclination and, among other

parameters, relative quantities such as the radii in units of a, ratio of luminosities,

stellar figures, and perhaps the photometric mass ratio.

Radial velocity curves can provide the mass ratio and the scaling factor a in

physical units if the inclination is known from another kind of observation. With

a and the period P known, the masses can be found unambiguously from (4.4.14)

and (4.4.16). Similarly, i must be known to derive orbital dimensions [cf. (4.4.14,

4.4.15, 4.4.16 and 4.4.17)] from a radial velocity curve. Combining these rules, we

find the following:

The full determination of absolute eclipsing binary parameters requires both a

light curve and a radial-velocity curve for each component. EBs are informative

objects because they allow photometry and spectroscopy to be combined effectively.

Eclipsing, double-lined systems are rare but very valuable. If the data quality is high

and the binary configuration is well conditioned, we have a fundamental source of

information about sizes, masses, luminosities, and distances or parallaxes of stars.

Many other parameters can be determined from precise light curve data if the con-

figuration fulfills certain requirements, for example, by having complete eclipses.

Because such stars may be found over the full range of ages, they also tell how stars

evolve – at least in binary stars.

1.2.5 Why Data Derived from Eclipsing Binaries Are Important

The early- and mid-age evolution of a star depends almost uniquely on its mass and

its initial chemical composition. Therefore, in order to test stellar structure and stel-

lar evolution theories, it is desirable to have as many accurate masses and other star

parameters as possible. In addition, these data help to improve our understanding of

such exotic objects as X-ray16 binaries, novae, and Wolf–Rayet stars. Unfortunately,

despite much progress, far too few accurate masses are available, especially for stars

of early (O and B) spectral type (Popper 1980). These very hot stars are important in

order to understand the upper main sequence. They are of special interest because

they undergo mass loss due to stellar winds. Knowledge of age and composition

is basic to understanding the evolution of a star. Such information is sometimes

available for members of star clusters. A great wealth of knowledge can be gained

whenever binaries in clusters can be successfully analyzed. The cluster membership

16 X-ray binaries are interacting close binary systems which contain a neutron star or a black hole

[Krautter (1997)]. They are discovered on the basis of their strong X-ray emission which is of the

order of 1028–1031 W.
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links age with mass, luminosity, and radius of each component, and if the chemical

composition is known, this potent combination allows detailed testing of stellar evo-

lution theory.

1.3 The History of Light Curve Modeling

Natura non facit saltum (Nature makes no leap)

after Aristotle (384–322 B.C.)

1.3.1 The Pioneers – The Age of Geometry

EBs play a special role in binary research. Henry Norris Russell (1887–1957), one

of the most distinguished astronomers, spoke about the “Royal Road of Eclipses”

(Russell 1948b). Traveling this road entails the decoding of the messages encrypted

in the light curves of eclipsing variables. As a rule, a light curve is determined by

geometric effects due to eclipses and by physical proximity effects between the

components. In the past, light curves were “rectified” in order to get rid of the

“ellipticity” and “reflection” effects and such other perturbations from the light

curve as could be modeled by a truncated Fourier series [see Russell (1948a);

Russell & Merrill (1952)]. In doing so, a triaxial ellipsoid model was transformed

into a spherical model, with which the light curve solution could be obtained in a

straightforward way from tables or with the aid of nomographs. Computer programs

based on rectifiable models were developed by Jurkevich (1970), who investigated

the suitability to machine coding of a number of existing light curve approaches,

including two of Kopal’s rectifiable models, and by Proctor & Linnell (1972). How-

ever, the underlying assumptions of rectifiable models rarely hold in reality. As a

rule, fully accurate, reliable solutions could be expected only for well-separated,

detached systems. Systematic deviations could be observed for semi-detached and

especially for over-contact systems. For over-contact systems in particular, the solu-

tions were almost always misleading if not completely wrong. This is illustrated by

the case of TY Bootis, an over-contact system which several modelers have tackled.

Table 1.1 summarizes the results.

The photometric data by Carr (1972) were analyzed with the Russell–Merrill

method by Carr. The same data were used in an analysis (listed as WD) using the

Wilson–Devinney program, today the most frequently used model and

program in the EB community, hereafter abbreviated the WD model or WD program

and further described in Sect. 6.3.6. A new data set was also analyzed with the

Wilson–Devinney method (Milone et al. 1991). For an explanation of the parameter

notations in the first column see the Symbols’ List in Appendix F. The square-

bracketed values for the absolute radii in column 2 were computed on the basis

of Carr’s values for rs = Rs/a and rg = Rg/a and the WD-determined value of

a for the Carr data [rs and rg are the radii of the “smaller” and “greater” stars in
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Table 1.1 Analysis of TY Bootis by several approaches

Parameter Carr (1972)17 WD-1 WD-2

a/R⊙ ... 2.304 (14)18 2.318 (12)

e 19 0 0 0

i 73◦
. 7 78◦

. 27 (12) 77◦
. 50 (8)

q = M2/M1 ... 2.153 (10) 2.138 (7)

Ω1 = Ω2 ... 5.374 (16) 5.370 (8)

T1/K 17 ... 5524 5834 (150)

∆T1/K ... 310 (5) 365 (5)

R1/R⊙ [0.89] 0.75 (1) 0.71 (1)

R2/R⊙ [0.84] 1.05 (2) 1.02 (1)

k = rs/rg 0.94 (3) 0.71 (2) 0.70 (2)

l1B 0.570 0.414 (2) 0.430 (1)

l1V 0.555 0.394 (1) 0.417 (1)

the Russell–Merrill model (Sect. 6.2.1)]. The classical analysis, although carefully

carried out, failed to yield the correct configuration let alone the correct ratio of

sizes for the system. To be sure, the lack of radial velocity data did not help Carr’s

analysis, but the Russell–Merrill method does not permit these data be used in any

rigorous way in the analysis itself. The WD analysis is essentially confirmed by

Rainger et al. (1990) who used Hill’s LIGHT2 program (see Sect. 6.3.3). However,

even today, many intractable EB cases, especially those involving systems with

thick disks, variable gas streams, atmospheric eclipse phenomena, and associated

transient emission features, have not been satisfactorily solved with modern meth-

ods. And yet they were bravely tackled with the Russell–Merrill technique, because

nothing else was available. Some of those cases still provide vigorous challenges to

any light curve modeling code.

1.3.2 The Age of Computational Astrophysics

Significant progress was made in the early 1970s. Models and programs were devel-

oped to compute (synthetic) light and velocity curves directly. Such models and

programs were based on spherical stars, treated in EBOP, the Eclipsing Binary

Orbit Program [Nelson & Davis (1972), Etzel (1981), and Etzel (1993)]; ellip-

soidal geometry, treated in WINK developed by Wood (1971) and newer versions

of EBOP. Lucy (1968), Hill & Hutchings (1970), Wilson & Devinney (1971), and

Mochnacki & Doughty (1972a, b) produced models and programs based on Roche

17 Ellipses in this column indicate parameters not derived by Carr. Entries in the adjacent following

column were determined from Carr’s (1972) data with the WD program by Milone et al. (1991) and

Milone (1993, p. 197–199).
18 As elsewhere in this volume, a value in parentheses following a quantity specifies the uncertainty

in that quantity in units of the last decimal place. The uncertainty given is the mean standard error

(m.s.e.), or standard deviation, unless indicated otherwise.
19 Assumed and unadjusted.
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geometry. Lucy’s was probably the first attempt at direct calculation of light curves;

it was limited to over-contact systems describable by a single value of the poten-

tial. Only bolometric light curves were computed and effects of mutual irradiation

were neglected. Hill and Hutchings provided an early calculation of irradiation

effects, assuming a spherical primary for Algol. These new approaches permitted

the computation of light curves on the basis of complex physical models describ-

ing the dynamic forces controlling the stellar mass distributions and the radiation

transport in the components’ atmospheres. Physical models based on equipotentials

and Roche geometry are implemented in the Wilson–Devinney program [Wilson

& Devinney (1971), Wilson (1979)] and in LIGHT2 [Hill & Rucinski (1993) and

citations contained therein]; see Section 6.3 for more references of the Roche model-

based programs. Inversely, the development of physical models and programs for

EBs led to least-squares determinations of light curve parameters. The first use of

least-squares for a physical light curve model was by Wilson & Devinney (1971,

1972, 1973); the next was Lucy (1973). The computational implementation of

Roche models coupled with least-squares analyses really started the age of com-

putational astrophysics in EB research.

1.3.3 Determining Astrophysical Parameters

The analysis of photometric and spectroscopic data of EBs has been performed dur-

ing the last 35 years by means of synthetic light curves from which parameters

such as the mass ratio q, inclination i , and temperature T2, among other quanti-

ties, have been derived with the help of algorithms capable of solving nonlinear

least-squares problems. The procedures in use differ significantly, depending on the

physical model for the shapes of the stars and the method of solving the (nonlinear)

least-squares problem. Three methods used to obtain the light curve solution are

Differential Corrections [Wilson & Devinney (1971, 1972), Lucy (1973), Napier

(1981)]; a derivative-free determination through the use of the Simplex Algorithm

[Kallrath & Linnell (1987)]; and Levenberg–Marquardt-type schemes also known

as Damped Differential Corrections [Hill (1979), Kallrath et al. (1998)]. The phys-

ical parameters derived from the photometric data may depend on the model but

should not depend on the least-squares solver.

1.3.4 Later Generations of Light Curve Models

The physical models discussed in this book in greatest detail are those developed by

Wilson & Devinney (1971) and later versions by Wilson (1979, 1990, 1998, 2003,

2007). For a brief review of the models we recommend Wilson (1994). Readers

interested in the Nelson–Davis–Etzel model should consult Etzel & Leung (1990).

Chapter 5 also describes the models and programs by Hill & Rucinski [Hill (1979),

Hill & Rucinski (1993)], by Linnell (1984, 1993), by Hadrava (1997, 2004), and

others.
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The Wilson–Devinney model has been selected as our principal analysis research

tool both for its intrinsic virtues and because of its widespread popularity. Its usage

has increased to the point that it is used for the majority of light curve analyses

performed at the present time (McNally 1991, p. 485), Milone (1993). And last

but not least, because it is expandable in the sense that new astrophysical fea-

tures can be incorporated as the field progresses. Here we mention a few exam-

ples: radial velocities (Wilson & Sofia 1976), star spots [Milone et al. (1987),

Kang & Wilson (1989)], Kurucz atmospheres (Milone et al. 1992b), line profiles

(Mukherjee et al. 1996), radiation pressure effects (Drechsel et al.1995), parameter

estimation methods (Kallrath, 1987, 1993), and improvement of convergence by

using the Levenberg–Marquardt algorithm (Kallrath et al. 1998).

1.3.5 Astrophysical Problems Solved by Light Curve Methods

Several important astrophysical problems have been solved with major help from

light curve solution methods, e.g., the Algol Paradox [cf. Pustylnik (2005) for a

historical review], the structure of W UMa stars, bolometric albedos of convective

envelopes, and undersized subgiants [cf. Wilson (1994)]. Progress in understanding

intriguing binaries such as ε Aurigae20 and β Lyrae has been made by including gas

streams and disks in light curve modeling (see Sect. 3.4.4.1).

The improvement of light curve solution methods has contributed to our under-

standing of physical processes in stars. The earliest work by Russell was applied

immediately to the determination of absolute parameters of stars, the precision of

which improved as analytic techniques kept pace with observational techniques.

A breakthrough occurred with the introduction of Roche geometry. An exam-

ple of improved astrophysical understanding through EB light curve analysis is the

successful modeling of W UMa stars as over-contact systems. These very abundant

binaries are excellent laboratories for convection in stars. Their fast orbital motion

makes them attractive candidates for gravitational wave astronomy. In the early

days these objects, as all EBs, were modeled as ellipsoids. The problem was that

light curve solutions found detached configurations21 but W UMas have long been

known to be main sequence objects with mass ratios much different from unity.

Yet the components have very nearly equal surface temperature as shown both by

light curves and spectra. Individual main sequence stars of unequal mass cannot

have equal surface temperatures, so Kuiper (1941, 1948) argued that they must be

over-contact binaries with energy exchange. This is because energy exchange is not

20 Apparently ε Aurigae’s variability was first noticed in the eclipse of 1821 by Johann Fritsch,

who seems not to have published the discovery but just passed it along in some way. The first

quantitatively observed eclipse was that of 1848, with pre-eclipse observations at least back to

1846. The 1848 observations by Argelander seem not to have been published until 1903 (Astron.

Nachr. Vol. 164, p. 83) by Ludendorff. The early history of this star is discussed by M. Güssow

(1936, Veröff. Univ. Sternwarte Berlin-Babelsberg, Vol. 11, No. 3).
21 Note that ellipsoidal models could, in principle, produce solutions with overlapping ellipsoids.
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possible in detached systems. W UMas are well suited to equipotential

representation; isomorphism with the Roche model is excellent, which is not true

of an ellipsoidal representation. The gravity effect is also important and nicely

taken care of as the surface potential gradient. The overall result has been that many

inconsistencies and strange results were eliminated by Roche equipotential models

[cf. Lucy (1968), Mochnacki & Doughty (1972a, b), Wilson & Devinney (1973),

and Lucy (1973)].

The successful modeling of Algol systems as semi-detached gave quantitative

reinforcement to the already accepted solution of the Algol paradox: The hotter,

more massive primaries were clearly main sequence stars, but the less massive

secondaries had radii much too large to be on the main sequence (i.e., they were

evolved subgiants or giants). This finding contradicted the well-accepted picture

that more massive stars evolve faster than less massive stars (see page 137 for the

resolution of the Algol paradox). For a still profitable discussion of Algols, their

history, evolution, relation to other binaries, and circumstellar environment refer to

Batten (1989). The next stage in the study of Algols is to understand the evolution

subsequent to mass transfer episodes through observation of binaries with major cir-

cumstellar mass flows. Examples might be the disk-enshrouded binary β Lyrae [see

Hubeny & Plavec (1991) and Sects. 3.4.4.1 and 3.4.4.3], the unusual binary V356

Sagittarii with its opaque ring of recently transferred matter (Wilson & Caldwell

1978), KU Cygni with its thick, dusty accretion disk (Olson 1988), AX Monocerotis

with scattering clouds in its environment (Elias et al. 1997), and many symbiotic

stars.

1.4 EB Guide for Researchers in Other Fields

Professional researchers and amateur astronomers from outside the EB field can

benefit from EB analysis techniques. A need may arise because an astrophysically

interesting object, say a pulsating star, is in an EB, or because of geometric similarity

to EB problems, as in extrasolar planetary transits. X-ray binary researchers also

encounter EBs from time to time. EB research provides many models and software

packages.

Some models and software are physically and geometrically simple, whereas

others are sophisticated and allow insertion or revision of physics. Some provide

a user-friendly interface, others do not. None serve all needs without modification.

This target provides a few hints for those who approach the field the first time and

are puzzled about what they read in various publications.

1.4.1 Eclipsing Binaries and Standard Candles

Larger telescopes and powerful instrumentation enable analysis of faint EBs in

clusters, or even Local Group galaxies such as the Large and Small Magellanic

Clouds, M31 (Ribas et al. 2005) and M33 [cf. Hilditch et al. (2005), or Bonanos
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et al. (2006a, b)]. These EBs can provide direct distance determinations to the host

objects [cf. Ribas et al. (2004)] as long as one can obtain the required data, i.e., radial

velocity curves and at least one light curve. Although EBs allow distance estima-

tions very accurately in favorable cases, they are not really standard candles as are

Cepheid variables, RR Lyrae variables, and supernovae. EBs are rather individual

objects that can provide distances on nearby standard objects if the binary model

assumed is correctly chosen. With this proviso, if the universe were to contain only

one EB and be otherwise empty, one could derive the binary’s distance.

1.4.2 Eclipsing Binaries in ExtraSolar Planet Research

Extrasolar planet research has similarities with EB studies in the sense that sim-

ilar data, light, and radial velocity curves are used. A star–planet (or other low-

luminosity object) system, with transits and radial velocities for the star only, is

in many respects analogous to a single-lined spectroscopic and detached EB. As

the number of detected transiting planets increases (on July 1, 2009, the Extrasolar

Planet Encyclopedia22 listed 59 transiting planets), EB analyzing methods become

more and more important to extrasolar planet researchers. In favorable cases they

can give the mass ratio, inclination, as well as period, rate of period change, semi-

major axis, stellar, and planetary radius.

As in a single-lined binary, the mass ratio q cannot be determined from the

velocity curve, one can proceed as follows: The mass of the star, Ms , must be

assumed, for instance, based on its spectral characteristics, from evolutionary mod-

els, e.g., assuming the star is on the main sequence. As for inclinations i between

80◦ and 90◦, sin i and sin3 i vary only between 0.98 and 1, and 0.94 and 1, resp., and

as q is usually small, e.g., q ≤ 10−3, Kepler’s third law

P2 =
4π2a3

GMs(1 + q)
(1.4.1)

enables us to derive a good estimate of the semi-major axis, a, from the period

P . Initially, adopting a reasonable value for the planetary mass, Mp, q follows as

q = Mp/Ms .

Limb-darkening law and coefficients can be taken from Van Hamme (1993).

The star’s rotational period is most likely much smaller than P and requires the

rotation parameter F1 to be set to values much smaller than unity. As the time of

minima in planetary transits may not be well defined, it is an option to use time

as an independent parameter and fit the ephemeris parameters (reference epoch T0,

period P , and possibly rate of period change dP/dt) together with inclination i , a

and systemic velocity, Vγ , and radii (or Roche potentials). As the triple (P, a, q)

inserted in (1.4.1) might give different values for the stellar mass than the pregiven

value Ms , some iterations are necessary. Examples are given in Sect. 5.4.3.3.

22 URL http://exoplanet.eu/catalog-transit.php.
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1.4.3 Nomenclature: Primary and Secondary Component

It can be very frustrating to see in the literature the terms primary and secondary

component used in contrasting ways among photometrists and spectroscopists. Sec-

tion 2.8 tries to cover this problem and to give some helpful orientation. Related to

this problem is also the definition of zero phase. Light curve observers associate zero

phase with the primary minimum whereas for radial velocity curve astronomers the

time of periastron passage sometimes appears to be more suitable.

1.4.4 Where Are the Radii?

Most EB models and programs nowadays do not use radii as adjustable param-

eters but rather the Roche potentials Ω1 and Ω2 which cover the full range of

morphological types from detached, semi-detached, to over-contact binaries as

described in Sect. 3.1.6 . The star–planet systems in extrasolar planet research are

detached systems. For those, the relative radii and Roche potentials are coupled by

ri ∼ 1/Ωi .

1.4.5 Precession and Apsidal Motion

Unfortunately the term “precession” often is used unadvisedly not only in the binary

star literature but also in other areas. For example, many textbooks and public

documentaries speak of the “precession” of planet Mercury’s orbit in regard to a

well-known prediction of General Relativity Theory (GRT). However, the described

GRT phenomenon is orbit rotation, not precession. Orbit rotation (apsidal motion) is

rotation within the orbit’s own plane, so only one plane is involved, whereas preces-

sion involves two planes and may be described in terms of (conical) motion of one

plane’s normal around the other’s. So although precession and orbit rotation may

arise in a common context and perhaps have some common physics, they are geo-

metrically distinct. Sometimes the term nodal precession is used for true precession

and precession (unqualified) for orbit rotation. That does make a distinction if the

adopted meaning is made clear, but why use confusing terminology? With such dual

terminology, one might refer to precession as true precession, but then there would

be an extra unnecessary and conflicting terminology. Precession need not refer to an

orbit but can be precession of a gyroscope, including precession of the Earth’s equa-

torial plane (equivalently precession of its rotation axis). We recommend taking a

page from a physics text, where precession refers to phenomena such as gyroscopic

precession that necessarily involve two planes.

As outlined in Sect. 5.2.1, a third body in a binary system causes apsidal motion

accompanied by precession of the orbital rotation axis. Both effects result from the

rotation of the binary’s orbital frame around the barycenter and are effective on the

same timescale.
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1.4.6 Looking for Eclipsing Binary Standard Software

The EB literature is full of different models and programs, and until recently there

has been no commonly accepted standard model or data reduction program. The

Wilson–Devinney (WD) model is the one most frequently used, but probably not

everyone in the community of EB researchers would agree that the WD model is a de

facto standard.

1.4.7 Analytic Techniques and Numerical Analysis

The EB field is sometimes advanced on this. Selecting appropriate increments for

computing numerical derivatives is an issue. A crucial part of the numerical analy-

sis is also the use of proper weights and the computation of standard errors of the

estimated parameters. The interpretation of the standard errors requires great care if

parameters are strongly correlated.

1.5 Selected Bibliography

Utilia et delectabilia (Useful and delightful)

This section is intended to guide the reader to recommended books or articles on

variables stars and EBs.

• The Binary Stars by Aitken (1935, first edition) and its revised 1964 version by

Jack T. Kent – a classic, and a good source of the physics and mathematics in the

treatment of the astrometry and radial velocities in visual double stars studies.

• Properties of Double Stars by Binnendijk (1960) – another classic work, treating

also EBs.

• Binary and Multiple Systems of Stars by Batten (1973). A good general introduc-

tion to binaries.

• Readers interested in Algol binaries are referred to the book Algols by Batten

(1989).

• Interacting Binaries by Sahade & Wood (1978). A treatment of the types of

binary stars close enough to each other to affect each other’s shape and evolution.

The treatment, primarily from a historical point of view, is dated but still of great

interest.

• Interacting Binary Stars by Pringle & Wade (1985). An excellent composite

treatment by a number of experts in the field treating both the physical states

and the evolution of interacting binaries.

• Cataclysmic Variable Stars by Warner (1995). The definitive work on these

highly interacting binary stars.

• For the nomenclature and classification of variable stars we refer the reader to

the book Light Curves of Variable Stars by Sterken (1997), and in particular to

Chap. 1 in this reference. It presents a wealth of typical light and color curves to

allow identification, together with a detailed and up-to-date description of each

subclass.
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• A brief review and phenomenological approach to EBs is provided in Sterken

(1997, Chap. 6). This chapter, besides Algol, β Lyrae, and W UMa systems, also

discusses a more special group: The RS Canum Venaticorum-type systems.

• Binary Stars – A Pictorial Atlas by Terrell et al. (1992) contains parameters, light

curves, and three-dimensional views of about 335 EBs.

• The textbook Introduction to Close Binary Stars by Hilditch (2001) provides a

thorough introduction to binary stars as well as related aspects in stellar astro-

physics, stellar structure and evolution, and observational astrophysics.

• Resolving the Algol Paradox and Kopal’s Classification of Close Binaries with

Evolutionary Implication is an interesting historical write-up by Pustylnik (2005)

on one of the greatest contributions of the EB research to astrophysics.

• Astrophysics of Variable Stars by Sterken & Aerts (2006) provides well-prepared

review contributions on data sources of variable stars, binary stars and EBs, and

also stellar pulsation.

• The proceedings of IAU Symposium No. 240 (2006) under the title Binary Stars

as Critical Tools & Tests in Contemporary Astrophysics edited by Hartkopf et al.

(2007) provide an excellent overview on state-of-the-art and ongoing activities in

close binary research. They review major advances in instrumentations and tech-

niques, new observing techniques and reduction methods and discuss binary stars

as critical tools and tests for studying a wide variety of important astrophysical

problems.

• Understanding Variable Stars by Percy (2007) provides a basic exposition of

variable stars for college students with some background in astronomy and for

active amateur astronomers. It discusses both the history of the subject and the

properties of each of the variable star groups.

• An Introduction to Close Binary Stars by Hilditch (2001) is a somewhat advanced

treatment of binary stars, intended for upper level under-graduate students and

graduate students, this book deals with the full range of interacting variables,

from X-ray binaries and cataclysmic variables to over-contact systems. It dis-

cusses both the structure and the evolution of these objects. Its concluding chapter

discusses image reconstruction.

• Although Brightest Diamond in the Night Sky by Holberg (2007) is dedicated

to the historical and astronomical importance of the Sirius system, a binary star

involving the brightest star in the sky after the Sun and a white dwarf, the compact

core of a more massive companion that evolved more quickly than its bright,

white companion.
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Chapter 2

The Database and Methods of Data Acquisition

The intention here is to summarize aspects of observational astronomy relevant

to light curve acquisition and modeling. Thus, we discuss passband1 profiles of

observational data because some codes no longer consider the observations to be

monochromatic fluxes. Passbands are fixed finite wavelength-width stretches of the

electromagnetic spectrum. Sources of errors in the observational data are discussed

because light curve analysis codes can have weighting which is light-level depen-

dent. Such errors depend to a large extent on observational techniques, so these too

need to be described. The incorporation of Doppler profile analysis techniques in

light curve codes requires high-resolution spectrophotometric data with excellent

signal-to-noise ratios to extract profile information. The same can be said for mag-

netometry. Polarization data require another dimension of information in the form

of a series of position angle measurements.

2.1 Photometry

Fiat lux et lux facta est (And God said, “Let there be light,”

Genesis i:3 and there was light)

2.1.1 Photoelectric Photometry

Photoelectric photometry until the last decade or so has been and arguably still is the

most precise and accurate means of obtaining flux measurements in optical astron-

omy. There are a number of reasons for this situation. Under most circumstances,

the best possible precision for a source of given brightness is obtained when shot

noise, the Poisson statistical variation in the photon count, is the dominant source2 of

uncertainty. Under such circumstances, the precision is said to be “photon limited”

1 Some astronomers prefer the term bandpass.
2 This statement is nearly correct, but if a bright star would have a seeing noise of less than 1%,

this could change.

J. Kallrath, E.F. Milone, Eclipsing Binary Stars: Modeling and Analysis, Astronomy

and Astrophysics Library, DOI 10.1007/978-1-4419-0699-1 2,
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and the error is proportional to
√

N ; when variation in the background dominates,

the observation is said to be “background limited” (for further discussion of sources

of noise in astronomical photometry and their effects on light curve analysis, see

Section 4.1.1.5). Photoelectric photometers have been capable of higher precision

than imaging devices, basically because CCDs (see Sect. 2.1.4) originally were not

designed as optical devices but as electronic switches; consequently their properties

have not been conducive to photometry of the highest accuracy. See Young et al.

(1991) for a fuller discussion. PMTs can be used to observe brighter stars, even if

neutral density filters are used to attenuate the light; bright stars create challenges for

CCDs because of either saturation or image profile wing effects. Notwithstanding

this situation, CCD detectors have improved greatly over the past 20 years, and the

efforts of meticulous observers and analysts have been able to achieve remarkable

precision. Moreover, further improvements are being made, and, indeed, have been

made, as Howell et al. (2003) and Johnson et al. (2009) demonstrate. These papers

discuss the use of orthogonal transfer CCDs. In the latter paper one of these CCDs is

used to achieve a precision of 0.47 millimagnitudes in the observtaion of an extra-

solar planet transit eclipse. A fine general source for CCD astronomy is Howell

(2000). See, e.g., Gilliland et al. (1993) for an application of CCD photometry to

astroseismology. Finally, CCDs have major advantages in doing photometric studies

of multiple faint objects in crowded fields. See Howell et al. (2005) for an example.

A photoelectric photometer consists of an individual phototube or solid state

detector which generates a current when light falls on it. In aphotomultiplier, the

current may be accelerated from the photocathode surface onto a succession of other

surfaces (called dynodes) at monotonically increasing potentials. The accelerating

voltages cause increasing electron ejection across each successive dynode stage,

creating an increasing cascade of electrons and providing gains of up to 107. Partic-

ular passbands are defined by colored glass or thin-metal-coated interference filters

in combination with the spectral sensitivity of the detector. In practice, the actual

net instrumental passbands are usually not known very well andtransformations

are achieved by observing a list of “standard” stars with well-established mag-

nitudes and color indices in the standard system to be emulated. Examples of

broad passbands (of order 100 nm) are the UBVRI of the Johnson system [see

Johnson & Morgan (1953) and Johnson (1966)] and RC and IC bands of the

Cousins (1976, 1978) system; examples of intermediate passbands (≤∼30 nm) are

the uvby of the Strömgren system (Strömgren 1966). In these examples, the letters

indicate the color of the transmitted light in an almost intuitive way: ultraviolet,

blue, visual, red, and infrared for Johnson–Cousins, but ultraviolet, violet, blue,

and yellow for the Strömgren system. There are many other systems, created to

study specific astrophysical problems. These include the Geneva (Hauck 1968),

Vilnius (Straižys 1975),Walraven, DDO, and Washington systems (Canterna 1976).

See Bessell (1979) for intercomparisons and examples of other cases, and Moro &

Munari (2000) for a catalogue of many photometric systems, extended in Fiorucci

& Munari (2003). This work has been updated and appears at this writing at the

url http://ulisse.pd.astro.it/Astro/ADPS/Systems/index.html. In addition to these,
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however, spectrophotometric data can be integrated over as large a passband as

necessary to provide data for light curve analysis over virtually any wavelength

range for which adequate atmospheric models exist. Spectrophotometers, however,

suffer from scattered light problems and are difficult to calibrate. A much more

serious difficulty for Earth-bound observations is the problem of obtaining ade-

quate comparison star spectrophotometry to deal with atmosphericextinction (see

Sect. 2.2.2).

A calibrated load resistor can convert the small phototube current to a voltage

drop which can be recorded by analog or digital means, or the pulses of cascaded

electrons from single photon impacts on the photocathodes can be counted. The

pulse-counting technique has a drawback, viz., the problem of pulse overlap or

coincidence from the brighter stars. Generally detection systems are unable to dis-

tinguish between simultaneous or nearly simultaneous photon arrivals, so that a

coincidence or “dead time” correction must be applied to the observed count rate.

Nevertheless, because of its potentially high measurement precision and the con-

venience of data handling and storage, pulse counting is the most common type of

photoelectric photometry registry now in use. Note that the capability to provide

large numbers of simultaneously observed comparison stars is an advantage, if the

PSF across the frame is uniform and unvarying. If they are not, great care is required

in the image processing to ensure that they do not actually degrade the photometry.

Howell et al. (1988), Howell (1992) demonstrates how to carry out differential CCD

photometry.

2.1.2 Two-Star Photometers

A serious practical limitation to good photometry is a nonconstant sky. The sky is

variable in both transparency and brightness. The latter may be due to atmospheric

emissions (aurora, airglow) or to the reflection of city lights from clouds and haze.

Therefore, it is a major advantage to be able to use a nearby comparison star to

obtain differential light curves if the observations can be obtained at a faster rate

than the sky undergoes variation. For this reason, two-star (more generally, “two-

channel”) photometers have become important for photometric work. The visual

polarizing photometer used at Harvard College Observatory since the 1870s and at

Princeton Observatory from about 1911 onward and the analogue electronic version,

the Walraven photometer used in South Africa in the 1950s, were pioneering efforts

and produced many useful light curves. Today there are many variants of these

photometers which have been developed at different observatories. Most depend

on having separate light path detectors, or electronics for the different channels.

The one with which we are most familiar does not. It is the Rapid Alternate Detec-

tion System (RADS), used at the University of Calgary’s Rothney Astrophysical

Observatory since about 1981 (Milone et al. 1982). This system (Figs. 2.1 and 2.2)

employs a single pulse-counting detector and a swiveled secondary mirror which is

driven by the dial-in settings of a function generator. The amplitude of the throw, the
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Fig. 2.1 RADS instrument. Shown is the controller for the RADS. It consists of a function gen-

erator which controls the successive positions of the secondary mirror within a cycle involving

successive settings on the program star, sky near the comparison star, the comparison star, and the

sky near the program star

duty cycle, and the delay time for mirror settling can be entered separately for each

of four positions. The delay time depends on the aperture, because a smaller aperture

requires more stability for the image as the mirror ringing dies down. The sum of

−3.90
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−3.70

−3.75

0.72 0.82 0.92

JD 2445067.0+

∆
V

44i Bootis

Fig. 2.2 RADS differential photometry. Differential V RADS light curve 44i Bootis on JD

2445067 published by Robb and Milone (1982)
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the duty cycles and time delay determines the chopping frequency, which may be as

high as 20 or 30 Hz; the system is usually operated closer to 1 Hz, however, because

of the overhead caused by image motion and the delays at each station. The chop-

ping line of the mirror may be rotated to coincide with the line between two stars.

Two of the channels are usually consigned to observe the sky near the stars (near

cities, “cloudy skies” usually also means “bright skies,” so the flux spatially and

temporally near the stars must be sampled also). The pulse-counting electronics are

gated to the position of the mirror, and auxiliary controls permit the programming

of filter changes. RADS works for stars which are separated by up to 45 arc-min.

It thus may be superior to imaging devices with typical fields of view of a few

arc-minutes for observations of objects in sparse areas of the sky, because it is highly

desirable to have stars of similar spectral energy distribution and brightness to avoid

systematic effects. Schiller & Milone (1990) discuss a study in which single-channel

photoelectric and CCD photometry were carried out simultaneously on similar sized

telescopes at McDonald Observatory of a star (the δ Scuti star DY Herculis) in a

sparse CCD frame. The photoelectric light curve was far superior because the small

chip size allowed no bright comparison star to be imaged simultaneously.

Two-star systems such as RADS are insensitive to first-order extinction, and even

to “second-order” extinction (many astronomers prefer to use the more strictly cor-

rect term “color-dependent extinction”) if the comparison star is carefully matched

in spectral distribution. Milone & Robb (1983) discuss the practical use of the sys-

tem and demonstrate its effectiveness.

2.1.3 Photoelectric Observations

Photoelectric data may be obtained in the form of direct current, voltage, or pulse

counts, but pulse counting became the data acquisition method of choice for photo-

electric photometry. Recording digital observations is now almost always done by

computers. Two types of data are sought: Standard star data and program star data.

“Standard stars” are those which help to define the photometric system being used

and their observation will provide the standardization needed for the program star

data. The brightness of the “program star” must be determined in the passbands of

the standard system and its observations need to be transformed to that standard

system. The process of standardization, which we discuss in detail below, is impor-

tant because observations corrected only for terrestrial atmospheric extinction are

written in a kind of private code, effectively, and are subject to misinterpretation

or miscomprehension until decoded. If the program star is variable, the observa-

tions must be gathered in intervals which permit good time resolution. Usually such

observations are made in conjunction with constant-light “comparison” and “check”

stars. The comparison star is observed before and after the variable star and should

be sampled at frequent intervals. It provides the first-order extinction correction, and

if it is relatively well matched in color to the variable star, the brightness difference

between them should be independent of the color effects of extinction, again, to first

order.
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Multiple comparison stars are especially valuable when the variable star amplitude

is very low, as in many δ Scuti variables, a class of short-period pulsating stars. In

any case, observation of a second comparison star is a good idea. The comparison

stars must be observed frequently and over a relatively long range of time; conse-

quently, if one of them turns out to be variable, the other comparison star (the check

star) will save the day. The variable star observer measures a time-dependent flux, 3

the display of which against time or phase (the repeated foldings of the time into the

period of variation) is known as the light curve. The reduction and standardization

of photometric observations will be discussed in Sect. 2.1.5.

In EB light curves, the photometric phase is the decimal fraction of the cycle of

variation, with zero phase often set at mid-primary minimum. This is the photomet-

ric usage; spectroscopists may use the instant of passage through a node of the orbit

(one of the two points marking the intersection of the orbit with the plane of the sky)

as zero phase. In eclipsing variable star work, orbital phase may be computed as

Φ = Φs + f rac

{

τ − E0

P

}

, τ := t + δt, (2.1.1)

where Φs denotes a constant offset which often will simply be zero, f rac{x}
denotes the decimal part of x , the time of mid-observation, t is best expressed in

the continuously increasing Julian Date or Julian Day Number and decimal fraction

thereof; δt is the heliocentric correction, the correction for the difference between

light travel time of the starlight to the Earth and that to the Sun; τ is the Heliocentric

Julian Date; E0 is the epoch or instant of an adopted time of minimum; and P is

the orbital period. Typical precision in P is ∼ 0.d0001, or better. Both E0 and P

are determined from a series of times of minimum light, and the precision increases

with the range in time over which the observations are obtained (assuming that the

period and epoch are constant and there are no very large gaps in the record). Each

individual time of minimum requires a careful set of observations and several meth-

ods are available for the determinations [see, e.g., Ghedini (1982)]. The heliocentric

correction depends on the relative locations on the sky of the star and the Sun (and

therefore the solar date and the coordinates of the star). It may be computed4 or

interpolated in the tables of Landolt & Blondeau (1972). If there are poorly deter-

mined or no eclipses, radial velocities may provide the best ephemeris. For eccentric

orbit binaries, the phasing is more complicated as discussed in Sect. 3.1.2.2.

3 Usually the magnitude differences,∆mk = m∗−mk , relative to a comparison star, are measured,

but in light curve analysis we prefer normalized flux. Therefore the conversion Ik = 10−0.4(∆mk −∆0)

is applied to all measurements k where ∆0 is chosen such that the maximum normalized flux is

about unity.
4 See Henden & Kaitchuck (1982) or Duerbeck & Hoffmann (1994) for computational formulas

and examples.



2.1 Photometry 43

2.1.4 Imaging Data

An important advantage of the charge coupled device (CCD) is that it can detect

many sources simultaneously, as can a photographic plate. However, the CCD

response is more nearly linear and is linear over a much larger range of signal than

is that of photographic emulsion, and detection of faint sources is possible even in

the presence of bright sources. CCDs exceed photographic plates in linearity, quan-

tum efficiency, and in dynamic range and can exceed PMTs in these properties as

well as in sky sampling. The disadvantages are the extensive image processing and

computer storage required for image frames (although improvements in computer

storage have greatly alleviated the latter problem). There is also a standardization

problem arising from having a large number of detectors, each with its own spectral

sensitivity, which also varies with the direction of the incoming illumination. The

image processing, first, requires the determination and removal of the bias struc-

ture of the chip (a kind of zero-point determination); second, the determination and

subtraction of “dark current”; third, the flat-fielding or sensitivity determination of

each pixel (the sensitivity correction of each image frame can be achieved through

division by the normalized flat for that particular passband); fourth, the identification

and removal of cosmic ray hits from the image frame; and fifth, the subtraction of

sky background from the light distribution of each star image on each frame and

the conversion of the integrated corrected flux to magnitudes. Then the reduction

process to determine and correct for atmospheric extinction and to transform the

extinction-corrected observed brightness of each image to a standard system must

be carried out. The size of each image file is nx × ny , where nx,y is the number of

pixels in a line or column. Thus a 2048-square chip with information digitized into

16 bits (giving 216 = 65,536 levels) or 2 bytes has more than 8 MB (20482 × 2)

of information. Each image-processing step generates another file, and a doubling

of the file size may occur when floating point numbers are generated for the pixel

values.

Because of its dependence on chip temperature, the bias structure in the image

frame must be determined with high precision through statistics of many bias

frames, close to the time of the program object observation. Just reading out a chip

changes its temperature, so the procedure cannot be perfect, although the effect

usually is not great.

Sensitivity calibration requires “flats,” or frames exposed to a uniform light

source. The accuracy of the flat-fielding procedure relies on the uniformity of the

illuminating source. There are three sources in common use. The first is the twilight

sky, which varies spatially and temporally, but matches the colors of blue cluster

stars better than does an illuminated screen in the dome, which is a second source.

The dome screen is usually illuminated by a projector with filter slides to block

longer wavelength light. It is difficult to illuminate the screen strictly uniformly

so that even though it is greatly out of focus to the detector, the screen may not

illuminate the chip uniformly either. A variety of this type of source involves lamps

shining through a translucent diffusing screen directly into the telescope. A third
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source can be a selected field in the night sky – a field devoid of many stars. By

a procedure known as “dithering,” the moving of the telescope by small increments

several times, the star images which are in the frame will be displaced along the

chip. The taking of the median of each pixel over several such frames can elimi-

nate remaining stars. In addition, there are several important checks and procedures

which precise photometry demands. “Dark current” must be determined for a variety

of exposure times. Cosmic ray “hits” must be removed through direct viewing of the

image frames or through an automated procedure.

Image processing packages, such as can be found in the general purpose packages

IRAF or MIDAS, are used to accomplish many of these steps: The determination

of magnitude, and the subtraction of bright star images, or of columns of charge

which may “leak” from bright, saturated sources. Revealing fainter images may be

done with other packages, such as DAOPHOT, DOPHOT, or, if only a few profiles

are to be measured, ROMAFOT in MIDAS. The aim of these packages is to produce

magnitudes of stars (with uncertainties) for each of the image frames. Typically

there are two methods of obtaining magnitudes: Through the determination of the

stellar profile parameters (and the application to the program stars on the frame);

and from the summation of the flux through a series of apertures centered on the

stars. The extrapolation to large radius can be carried out with auxiliary programs,

principally DAOGROW. The processes are discussed by Stetson (1998), the originator

of DAOPHOT.

Once all these steps are accomplished, equal care has to be paid to the reduction

and standardization of the data, requirements to which both photoelectric and CCD

photometry must adhere. For modern methods to treat CCD data, see Howell (2006).

2.1.5 Photometric Data Reduction

In area images, one presumably has nonvariable stars on the frame; if they are not

saturated they can be used for extinction determination by the Bouguer extinction

method. The raw magnitude of each star of a CCD frame (after bias level subtraction

and division by a normalized flat have been applied to the frame) may be plotted

against airmass. Alternatively, a suitable mean magnitude of all (nonvariable) stars

brighter than a given limit may be used. If the colors of those stars are not known,

the latter technique begs questions about the color terms, so it is better to use the

values from a relatively few, well-determined comparison stars for this purpose.

Commonly used equations of condition are

∆ := mλ − k ′′ Xc = mλ0
+ k ′

λX (2.1.2)

and

c − k ′′ Xc = c
0
+ k ′

c X, (2.1.3)
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where c is the color index, k ′ and k
′′

are the first- and “second-order” extinction

coefficients, X is the airmass, and the subscript 0 indicates outside-atmosphere

(airmass = 0) magnitude or color index.

The least-squares solution for two unknowns, k ′
λ and mλ0

, and n observed data

points may be obtained for each comparison star:

k ′
λ =

n
∑

∆i X i −
(
∑

X i

) (
∑

∆i

)

n
∑

X2
i −

(
∑

X i

)2
, (2.1.4)

mλ0
=
(
∑

∆i

) (
∑

X i
2
)

−
(
∑

X i

) (
∑

∆i X i

)

n
∑

X2
i −

(
∑

X i

)2
. (2.1.5)

Similar expressions hold for the color index coefficient, k ′
c and c0. The method

assumes that the second-order coefficient is constant and is known. See Schlosser

et al. (1991, p. 129) for a detailed discussion of this method. Further refinements

have been discussed by Sterken & Manfroid (1992). One of these involves the com-

binations of data from different nights to find the extra-atmosphere magnitudes and

colors (assuming that the local system is stable from night to night).

A second method is referred to as the Hardie extinction method (Hardie 1962).

It involves observations of groups of stars with a range of color indices at both low

and high airmass. The equations of condition are

dmλ − dmλ0
− k ′′d(Xc) = k ′

λdX (2.1.6)

and

dcλ − dcλ0
− k ′′d(Xc) = k ′

cdX, (2.1.7)

where the differential quantities refer to difference between star pairs at high and

low airmass. The pairs must be of similar color index. The least-squares result for

the one-unknown problem is

k ′
λ =

∑

{[(dmλ − dmλ0
)i − k ′′d(Xc)i ]dX i }

∑

(dX )2
i

(2.1.8)

with a similar expression for k ′
c. This method works well with a cluster of stars

which can be observed at different times of night and therefore at different air-

masses, or with stars in two or more Harvard Selected Areas which have been

systematically observed and standardized by Landolt [cf. Landolt (1983)].

The techniques are applicable to both photoelectric and CCD photometry. With

meticulous care, relative photometric precision of the order of 2–3 millimagnitudes

is possible, but absolute photometry is not so easily accomplished to this degree

of accuracy. Transformation to a standard system is an important procedure which

astronomers ignore to their peril. The result can be disastrous, especially for the

combination of data from different observers. Failure to transform adequately is akin
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to writing a research paper in one’s private code. Hardie’s (1962) treatment of trans-

formations from the local system (magnitudes and color indices transformed from

raw instrumental values to outside the atmosphere values) involves the assumption

of a linear relationship between the local and the standard systems. The relationships

are as follows:

mstd = m0 + εcstd + ζλ (2.1.9)

and

cstd = µc0 + ζc. (2.1.10)

The ε coefficient is usually small with an absolute value less than 0.1 for well-

matched systems. For µ, we expect a number near 1, typically in the range between

0.9 and 1.1. ζ in each case is the zero point. If the filters and detector are similar

to those used to establish the standard system, and no other major transmission

element or exotic reflecting surface has been introduced in the light path, equations

(2.1.9) and (2.1.10) are not bad approximations. However, the linearity of any set of

transformations is always open to question [see Young (1974)]. Even when the local

system is designed to approximate the standard system closely, there are occasions

when it may fail to do so. Milone et al. (1980) discuss a situation where the zero

points were time dependent. Apparently a broken heater wire for the fused quartz

window of the PMT chamber5 led to a slow build up of frost on the window which

resulted in a linear decrease in sensitivity of the photometer over time.

The solutions for the two unknowns for each equation are readily found. For the

magnitude equations of condition, (2.1.9), they are

ελ =
n
∑

[(∆m)cstd] −
∑

(∆m)
∑

cstd

n
∑

c2
std −

∑

cstd

∑

cstd

, (2.1.11)

ζλ =
∑

(∆m)
∑

c2
std −

∑

[(∆m)cstd]
∑

cstd

n
∑

c2
std −

∑

cstd

∑

cstd

, (2.1.12)

where the quantity (∆m) = mstd − m0. For the color equations of condition, they are

µc =
n
∑

[c0cstd] −
∑

c0

∑

cstd

n
∑

c2
0 −

∑

c0

∑

c0

, (2.1.13)

5 The chamber in which the photomultiplier tube in a photoelectric photometer is located. It is

usually made of µ-metal and acts like a Faraday cage against the ambient magnetic field of the

Earth, so that the latter does not affect the streaming of electrons across the dynodes. The window

through which light enters is usually of fused quartz to permit ultraviolet radiation to pass. It must

be heated to avoid dew and/or frost accumulation.
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ζc =
∑

cstd

∑

c2
0 −

∑

[c0cstd]
∑

cstd

n
∑

c2
0 −

∑

c0

∑

c0

. (2.1.14)

With the extinction and transformation coefficients and zero points, the raw dif-

ferential magnitudes and color indices may be transformed to the standard system.

Similar techniques can be carried out in infrared astronomy, but standardization

has been problematic [see Milone (1989)]. New infrared passbands to minimize the

effects of water vapor extinction and improve transformability have been proposed

by the IAU Working Group on Infrared Astronomy (Young et al. 1994). The near-IR

portion of this suite, namely iZ, iJ, iH, and iK, has been fabricated and tested (Milone

& Young 2005, 2007, 2008).

2.1.6 Significance of Cluster Photometry

CCD photometry has proven its value in cluster studies. Observations of faint stars

at or fainter than the main sequence turn-off in many globular clusters are being

made for the first time.

Two powerful techniques for determining ages of star clusters are the following:

1. The fitting of isochrones to a cluster’s color magnitude diagram (CMD)

(see Fig. 7.5). An important test for the accuracy of this fitting is the agreement of

the isochrones with the CMD locations of stars of known masses. This method is

model dependent and requires accurate isochrones to be successful. An example

of the method is provided in Milone et al. (2004).

2. The comparison of the sizes of evolved components with model predictions. This

technique is not entirely independent of the first because evolutionary predictions

are needed for this technique also, and the radius is a function of the luminosity.

Substantial numbers of variables and nonvariables may be imaged in both direct

and multi-object-spectrograph imaging.

Variable stars in clusters can provide independent assessments of cluster distance

and permit checks on luminosity calibrations. Figure 2.3 shows what can be

achieved. A group at the University of Calgary is analyzing UBVI data obtained with

the SDSU Mt. Laguna Observatory 1-m telescope equipped with a back-illuminated,

thinned 800 × 800 chip. Averages of the brightest nonsaturated, nonvariable stars

in the field define an artificial “comparison star” for each frame. Typical (m.s.e.)

uncertainties in each observation are about 0.m05 for the faintest (V = 19.m5) and

about 0.m005 for the brightest (V = 14m) variables. The study of variable stars

in clusters can provide fundamental information about both the ensemble and the

individual stars. The techniques are described in numerous sources, e.g., in Milone

(2003) and Milone et al. (2004). Consult Howell et al. (2005) for an example

of the use of CCD techniques to study an open cluster.
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Fig. 2.3 CCD image frame of the globular cluster NGC 5466. This I (infrared) passband CCD

image frame was obtained at Mt. Laguna by E. F. Milone. NGC 5466 contains at least three

eclipsing binary blue stragglers

2.2 Spectroscopy

Multum in parvo (Much in little)

An important difference between photometry and spectroscopy is spectral resolu-

tion, defined as

R := λ/∆λ, (2.2.1)

where ∆λ is the smallest discernible unit of bandwidth or the smallest wavelength-

resolution element of the instrument (photometer or spectrograph) which is being

used. In broad-band photometry, R ≈ 10, in intermediate-band, R ≈ 20 – 50, and in

narrow-band photometry, R ≤ 500 typically. Spectroscopy implies that the details

of the spectrum are important and R > 1000 usually, depending on the application

and spectrum range. In highest resolution spectroscopy, R ≥ 105. Such resolution

is required for fine spectral analysis and for the highest precision radial velocity

studies, e.g., extrasolar planet research.

There are differences in aims, instrumentation, techniques, and emphases of vari-

ous kinds between photometry and spectroscopy, in addition to the resolution differ-

ence. We consider later the special case of spectrophotometry, where the purposes

are closer to those of photometry. Spectral details are important for several very
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different kinds of studies, namely classification, line profile analysis, and radial

velocity determination.

Spectral classification, a useful way to estimate temperature and luminosity, usu-

ally is done at relatively low spectral resolution. The criteria are the relative strengths

of features which may be (possibly blended) absorption lines of various atomic and

molecular species. Spectral lines vary in strength with temperature, which partly

determines the relative populations of atoms in the lower states of the transition

represented by the absorption line. Figure 2.4 shows the spectra of some binaries

with high temperatures. Plots of relative flux versus wavelength are in Jacoby et al.

(1984), who provide a useful “library of stellar spectra”, covering a large range

of spectral types. The analysis of spectralline profiles, on the other hand, requires

Fig. 2.4 Spectra of early spectral-type eclipsing binaries. (a) CX Canis Majoris, (b) TU Crucis,

(c) AQ Monocerotis, and (d) DQ Velorum, from Fig. 2 in Milone (1986)
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the highest resolution to determine abundances, observe Zeeman splitting (through

magnetic fields), and model atmosphere parameters. Because this topic is beyond

our present scope, we refer the reader to detailed accounts by Aller (1963), Mihalas

(1965, 1978), and Gray (1992).

The measurement of a Doppler shift in a spectral line6 permits the determination

of a radial velocity for that spectral line and may be carried out at intermediate

resolutions. Higher resolutions are desirable for precise radial velocity work. The

resolution is determined by the size of a resolution element of the detector, the scale

of the spectrum at the detector, the projected slit width, and various optical char-

acteristics of the spectrograph. The resolution defined by equation (2.2.1) depends

on the wavelength and the size of the smallest useful spectral element. That size is

determined by the dispersion properties of the grating. The grating resolution must

at least be matched by the detector in order to be realized. The spectral scale is usu-

ally described in terms of the linear dispersion, or, more commonly, the reciprocal

linear dispersion,

dλ

ds
=
w cos i ′

m f
, (2.2.2)

where w is called the “width” of a rule or groove of the grating (more correctly,

it is the separation of one groove from another), i ′ is the diffracted angle at the

grating, m is the order of the spectrum, and f is the focal length of the spectro-

graph camera which converges the (parallel) light emerging from the (plane) grat-

ing onto the detector at the output focal plane. The dispersion is also determined

by the grating properties used to obtain the spectrum. The number of grooves,

N , and the width of the grooved part of the grating, W , are related to w by the

relation

w = W/N . (2.2.3)

Equation (2.2.3) may be substituted into equation (2.2.2) in order to eliminate w.

Finally, reflection gratings are usually blazed, so that the maximum reflected energy

goes into the diffracted order of interest. For normal incidence at the grating, the

blaze angle is achieved for wavelength

λb =
w

m
sin 2αb, (2.2.4)

where αb is the blaze angle, the difference between the normals of the grating and

the grooved surface.

6 Note that the radial velocities of spectral lines may be affected by blending with circumstellar

matter.
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2.2.1 Radial Velocities

High resolution is essential for spectral analysis, whereas low resolution may be

quite sufficient for spectral classification. To be useful in binary star modeling, radial

velocities as displayed in Fig. 2.5 must have a high level of precision and accuracy.

Red shifts for distant galaxies are very large, for example, and there may be a paucity

of (identified) lines in the visible region, so precisions of tens and even hundreds of

km/s may not be considered too low. In binary star or pulsating variable star work,

the radial velocity precision must be much higher to yield fundamental stellar data,

such as the radii of pulsating stars or the masses of eclipsing system components.

At present writing, typical radial velocity uncertainties are of order 1 km/s. Some

very high precision has been achieved by specialized techniques, however; the use

of absorption cells to ensure stability in conjunction with high-resolution spectro-

graphs on large telescopes [see, e.g., Campbell et al. (1988), who used a hydrogen

fluoride absorption cell] provided a means to detect very low-mass companions to

nearby stars. The best that has been achieved to 1995 was ∼10 m/s; in 1998 it was

∼ 4 m/s (Kuerster et al. 1994). This improvement has been the main reason for

the burst of discoveries of planetary systems of other stars beginning in 1995. See

Butler et al. (1996) for a summary of these radial velocity improvements, and the

likely prospects of further improvement in the near future, perhaps to 1 m/s.

Spectra can be measured directly or cross-correlated against a reference spec-

trum. The process of cross-correlation involves a method of systematic digital com-

parison between two spectra, in order to obtain the difference between the two radial

velocities. Simkin (1974) first applied the technique to astronomy (in her case,

to galaxy spectra). Typically, the Fourier transform of the linearized and rectified

Fig. 2.5 Radial velocity curve of AI Phoenicis. This figure [Fig. 3 of Milone et al. (1992), adapted

from Andersen et al. (1988)] of the long-period totally eclipsing system shows the observed and

computed radial velocity curves
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spectrum of the program star along with the conjugate transform of the reference

spectrum is calculated, and the product of the transforms is evaluated. The cross-

correlation function (CCF) can be described as the Fourier transform of this prod-

uct. The reference spectrum may be that of a standard star with well-established

radial velocity, a spectrum of the program star itself (at a specified phase), or a

synthetic spectrum. Especially useful software programs, REDUCE and VCROSS,

were developed to reduce and analyze stellar spectra by Hill et al. (1982) and Hill

(1982). Wilson et al. (1993), working with this software, used for the δ Scuti star

EH Librae a reference spectrum of the same star obtained at a phase where the

expansion was close to zero. This work achieved relative velocity precisions of a

few hundreds of meters per second. The velocity difference was obtained from the

spectral shift which produced the peak of the resulting CCF. When the program star

is an EB, the CCF typically has two peaks, as in Fig. 2.6. Additional complications

may be present, as we note below and in Sect. 2.2.3, but cross-correlations have

measured radial velocities in many cases that were considered unpromising only

a decade earlier, at least to the level of uncertainty of ∼10 km/s. Beginning in the

1980s [cf. McLean (1981)], cross-correlation techniques have proven crucial to our

understanding of contact and other short-period interacting systems. A somewhat

different method, involving a spectral “broadening function” (BF) and a modified

singular value decomposition technique (SVD), has been used in recent years to

obtain radial velocities by Rucinski (2002) and references therein. The broadening

function basically transforms a narrow-lined standard star spectrum into a rotation-

ally broadened one, more suitable for comparison with a short-period EB. The tem-

plates are standard star spectra and the method works best if they are of the same

spectral types as the component stars of the binary. In fact, three-component systems

Fig. 2.6 Cross-correlation functions for RW Comae Berenices. This figure is Fig. 1 in Milone et al.

(1984, p. 110)
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can be handled as well. The coefficients of the polynomial that defines a particular

BF are determined by least squares, with Rucinski’s (1992, 1999) SVD treatment.

Higher RV precision is achieved by Rucinski in the cases where both BF and CCF

methods are tried.

Whatever detection method is used, standards need to be intercompared because

different techniques may have systematic differences. The IAU “Reports” lists the

status of standard stars and indicates those suspected of variability. An up-to-date

list can be found in the Astronomical Almanac for the current year. For bright stars,

high-resolution techniques have yielded very small errors of measurement such

that planets are being sought and detected with increasing confidence. However,

the very high precision obtained for this purpose is unlikely to be achieved soon

for short-period interacting EBs because of their rotational broadening and line

blending.

2.2.2 Spectrophotometry

Suppose we are observing from space so that atmospheric extinction problems are

absent. If we can accomplish the necessary standardizations of effective passbands,

the combination of spectroscopy and photometry can provide a rich bounty for light

curve analysis. A large number of narrow passbands can greatly improve the radia-

tive modeling of stars, because the wavelength-dependent parameters are adjustable

for each passband and together provide strong leverage for the determination of the

temperatures and for any thermal perturbations projected onto the disk surfaces.

In addition, the weight of the nonwavelength-dependent parameters is increased by

virtue of the large number of light curves. Suppose now that we attempt to do similar

observations from Earth. As for broad- or intermediate-band photometry, the spec-

trophotometric narrow-band photometry can be carried out relative to comparison

stars, but corrections must be applied for differential extinction, and practically, it is

very hard to do the comparison star observations.

The photometric precision requisite for high-quality narrow-band light curves is

possible only if the photon flux is high enough. For a precision of 1% (neglecting

other noise sources), we require a signal-to-noise ratio

S/N =
√

n̄ (2.2.5)

of 100 so that the mean count n̄ needs to be

n̄ ≈ 10, 000. (2.2.6)

If the resolution element is of order 1 nm, only bright stars can be observed with

intermediate-sized telescopes for reasonable length (τ ≤ 30 min) exposure times,

because the signal-to-noise ratio, S/N ∝
√
τ . In practice, some compromise

between size of telescope and spectral resolution must be made. Schlosser et al.
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(1991, pp. 206–207) demonstrate the effects of increasing the observing time on the

S/N of spectrophotometric data.

Phase-dependent spectrophotometry has been carried out by Etzel (1988, 1990),

who demonstrates its value for determining flux distributions and therefore color

temperatures of components in totally eclipsing systems.

A promising technique to disentangle the separate spectral distributions of the

component stars from the composite spectrum of an EB is discussed by Simon

& Sturm (1994). The method of spectra disentangling (Hadrava, 1995) combines

simultaneously the splitting of the spectra observed at different orbital phases into

spectra of individual components of the spectroscopic binary, the measurement of

radial velocities at each phase and the solution of orbital elements. The first part

of this problem for known radial velocities may be solved, e.g., by the method of

tomography separation. The second part is the aim of the cross-correlation method,

for which template spectra of the components known are needed to find their shifts

in the observed spectra. Finally, the third part involves the solution of the radial-

velocity curves. The direct fitting of observed spectra by the best component spectra

and the orbital parameters (or individual radial velocities) is thus a more reliable

and less laborious procedure. The method could be generalized to get still more

information from the line-profile variations.

KOREL is a code developed by Hadrava (2004) for spectra disentangling using

Fourier transforms. It allows application of the method of “relative line photometry,”

i.e., to find the variations of line strengths. From the beginning in 1997 KOREL

takes into account up to five components in a hierarchical structure of a multi-

ple7 stellar system. One of them (e.g., the widest one) can be identified with the

telluric lines, which can be separated from the observed spectra in this way and

can yield a check (or correction) of the proper wavelength scales of individual

exposures. Several regions around important spectral lines can be solved simul-

taneously. The numerical method of the solution is based on the fact that the

modes of Fourier transforms of component spectra are multiplicative factors at the

complex exponentials corresponding to Doppler shifts in the Fourier transformed

space of frequency logarithms. They can thus be calculated by the least-squares

method, whereas the orbital parameters (or radial velocities) can be fitted, e.g.,

by the Simplex method. The quadratures could enable to expose individual spec-

tra for a rare case of visual binaries with elongation about an arcsec (but these

would have long periods and small radial velocity amplitude and an interferom-

etry would provide better light ratio). But the individual spectra could be obtained

during eclipses, what Simon & Sturm (1994) used to prove that their methods works

well.

The technique is said to work on artificial spectra down to a signal-to-noise ratio

of 10. An important requirement to identify which part of the continuum originates

from each star to be able to scale properly equivalent widths of the lines in the

7 Another code, SPSYN by Barden and Huenemoerder dating back to Barden (1985), also supports

the analysis of triple systems and is based on Fast Fourier Transforms.
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decomposed spectra is that the light ratio in the range of the spectra must be known

with high precision – either from light curve analysis or from the spectra themselves

if the separate features of the spectra can be discerned (at quadratures,8 say) and the

components are not too dissimilar in temperature and luminosity. The pure determi-

nation of orbital parameters is reliable without this condition as the light ratio can be

estimated from fitting the decomposed spectra by model spectra. The requirement

that the light ratio does not vary with phase tends to limit the technique to widely

separated eclipsing (or noneclipsing) binaries, although the authors indicate that the

limitations of the constant light ratio assumption is overcome by the variable line

strength factors implemented in KOREL of 1997. A more difficult but not impossible

task is to overcome the requirement that there be no variation of line-profile shape.

To disentangle any variability requires the model, for instance, of Cepheid pulsa-

tions, to be fitted with some free parameters. Light-ratio variability is disentangled

by the line-strength factors, variations of shape need more sophisticated models.

2.2.3 Line-Profile Analysis

Lines in stellar spectra are images of the input slit on the output plane of the spec-

trograph. However, even after allowance for the finite width of the input slit and

instrumental diffraction, it is seen that spectral lines are broadened by a number of

mechanisms originating in the star itself. The most basic of these mechanisms is the

natural broadening that arises because the atoms’ energy levels have probability

distributions. According to the Heisenberg Uncertainty Principle, the product of

uncertainties in position and in momentum and the product of uncertainties in time

and in energy are of the order of Planck’s constant, h:

∆x∆p ≥ h, ∆t∆E ≥ h, h = 6.62608 · 10−34 Js. (2.2.7)

Because the energy of a photon is equal to the difference between two energy levels

of the radiating or absorbing atom, the frequency or wavelength of the photon will

be affected accordingly. In particular, an atom absorbs from the continuum radiation

at a wavelength which may be slightly different from the most probable one. The

combination of all such absorptions produces an absorption profile.

A second source is collisional broadening. This broadening is due to perturba-

tions of the energy level of the atom because of either of two effects. First, the

passage of an atom in the vicinity of an atom undergoing an absorption or emission

of a photon changes both the kinetic energy of the disturbing atom and the energy

of the photon. This is known as collisional damping. A second effect is due to the

8 The quadratures could enable to expose individual spectra for a rare case of visual binaries with

elongation about an arcsec (but these would have long periods and small radial velocity amplitude

and an interferometry would provide better light ratio). But the individual spectra could be obtained

during eclipses, what Simon & Sturm (1994) used to prove that their methods works well.
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effects of the electromagnetic fields of nearby charged particles. This mechanism

is known as Stark broadening; in most stars, the first effect is the more important

except in the lines of hydrogen and of some helium lines. The denser the stellar

atmosphere, the stronger these perturbations and the broader the spectral lines. This

effect is important in the strong lines and is relatively strong in dwarf stars, which

are more compact, than in giants and supergiants, which are much less dense. If

the number of absorbers is small, the broadening is mainly due to thermal Doppler

broadening (discussed next). As the number of absorbers increases, the line core

saturates and the “damping wings,” due to a combination of natural and collisional

damping, begin to dominate. The curve of growth9 of spectral lines can be deduced

from high-resolution spectra, and the abundances found.

A third major broadening source is thermal Doppler broadening. In the high-

temperature environment of stars, the line-of-sight motions will be Doppler shifted

relative to both the radiation upwelling from below and to the observer. The result

is again a displacement of the absorption from line center for many photons, and

a finite width. Because the motions of the atoms depend on the temperature of the

stellar atmosphere, Doppler broadening depends on the temperatures of the regions

in which the absorptions occur. This is the dominant source of line broadening for

weak lines in the spectra of slowly rotating stars.

A discrete splitting of the energy levels of certain species of atoms occurs in the

presence of magnetic fields. This is called Zeeman splitting. The number of compo-

nents and their relative strengths differ from line to line; the lines are also polarized

(see Sect. 2.3) in this process. Basically the splitting is proportional to the magnetic

field strength, and inversely proportional to the mass of the atom. The typical pat-

tern is a triplet, but each component of the triplet may itself be split into multiple

components. The outside members of the triplet (or triplet groups) are called the

σ -component(s) and the inside ones, the π -component(s). The longitudinal effect

is seen if the σ -components are circularly polarized (in opposite directions, with

left-handed circular polarization producing the higher frequency component) and

the π -component absent; this occurs when the line-forming region is viewed along

the direction of the magnetic field. The transverse effect is seen if the σ -components

are linearly polarized perpendicular, and the π -component linearly polarized paral-

lel, to the direction of the magnetic field. When there are many noncoherent local

magnetic fields associated with the line-producing region, a blend of these effects

can be expected, blurring the Zeeman components and causing a net broadening of

the line.

Mass motions on stellar surfaces (micro- and macro-turbulence, large-scale cir-

culations, and stellar rotation, for example) contribute to line broadening through

Doppler shifts. The effect of star rotation on spectral lineprofiles of EBs (Mukherjee

et al. 1996) can be observed during eclipses in the form of the Rossiter effect, where

9 The term curve of growth refers to a graph of line strength versus the effective number of absorb-

ing atoms [cf. Aller (1963)].
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one of the two observed sets of radial velocities varies with the masking of the

velocity contributions of the eclipsed part of a star (see Fig. 3.28). In binary systems

of very short period, rotational broadening can degrade radial velocity accuracy and

even prevent measurement, especially for stars near spectral types A and earlier. In

such stars, the spectrum is dominated by very broad hydrogen and helium lines, but

even the weak lines of other elements are spread out into a characteristic dish-shaped

profile. “Blending” of lines compounds the problem. It is all the more remarkable,

therefore, that over-contact systems containing stars of early spectral types (i.e.,

high-temperature stars) have been analyzed at all, let alone with good precision.

With cross-correlation and related techniques being used regularly, the situation is

expected to improve even more.

2.3 Polarimetry

Cetera desunt (The remaining (parts) are lacking)

Polarization of the light of a binary component was predicted by Chandrasekhar

(1946a, b). While searching for a confirmation of the prediction, Hall (1949a,b,

1950) and Hiltner (1949a,b) discovered the polarization of starlight due to scattering

by interstellar dust. Additional sources of polarization in interacting binaries are

• light of one component scattered at the surface of the other;

• starlight scattered by a circumstellar disk, stream, or other locus of concentrated

gas;

• thermal bremsstrahlung in the stellar environment (electron scattering in gas

flows or in coronae); or,

• nonthermal bremsstrahlung (from flares);

• electron scattering in high-temperature atmospheres; and

• magnetic surface fields.

Observationally, the light observed through different rotations of a polarizing ana-

lyzer is measured at certain angles and corrected for instrumental polarization. The

basic parameters are the following:

1. The fractional polarization,

P =
Fmax − Fmin

Fmax + Fmin

, (2.3.1)

where F refers to the observed flux or power through the polarizing filter (or

polarizing analyzer), whereas the subscripts indicate maximum or minimum

transmission of the flux at particular angular settings of the analyzer, 90◦ apart.

2. The position angle of maximum transmission, θ .
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The polarization can also be given in terms of the weighted means of the Stokes

quantities,10 Q and U . Concisely expressed,

Q = P cos 2θ, U = P sin 2θ. (2.3.2)

Much astrophysical information about the nature of scattering disks and electron

scattering envelopes around stars can be obtained in this way [see Wilson (1993)].

Although there are many polarimetric publications on EBs, most have been in

the form of surveys rather than time-wise variation. Surveys can be very useful in

identifying candidate stars, but tell us little about specific polarimetric behavior. Of

course, polarimetry requires much brighter stars (or larger telescopes) than does

photometry, and also much more sophisticated instrumentation. Still, polarimetric

curves have been published for interesting close binaries but they typically have

serious shortcomings. For example, the observational difficulties mentioned above

result in rather small numbers of data points being collected. Attempts to compen-

sate for this problem lead to folding of polarimetric curves on the orbital period, yet

most polarimetric phenomena are not strictly periodic so that phased polarimetry

has very limited usefulness.

Pioneering work in astronomical polarimetry was carried out by James Kemp

(1927–1988), who was the first to discover circular polarization in the continuum of

a white dwarf, GJ 742 (Kemp et al. 1970), and the first (Kemp et al. 1983) to discover

the limb polarization in an EB (Algol, in fact) that was predicted by Chandrasekhar

(1946a, b).

In recent years, much progress has been made in this field. Work by J. Land-

street and his group in Canada and by J-F. Donati and his associates in France has

been carried to a high level of precision through instruments such as ESPaDOnS

(Echelle SpectroPolarimetric Device for the Observation of Stars) in use at the

Canada-France-Hawaii telescope. The device is designed to measure polarization

in spectral lines and permits the sky spectrum to be measured simultaneously. The

exposures cover nearly the entire range 370–1050 nm, at resolutions of 68,000 and

80,000, depending on observing mode. With this instrument, stars as faint as 14th

magnitude have been studied. The instrument must still take four exposures to pro-

duce the four Stokes quantities. However, there is another concern. In addition to

the extensive observing time, painstaking care must be taken to keep the target

object centered in the observing aperture, because systematic drift to one edge of

the aperture can introduce continuum polarization; moreover, determination of the

amount of polarization requires measurement of the difference in intensity between

two beams emerging from the Wollaston prism, and these beams are transmitted

by fiber optics to the spectrograph, and guiding errors may effect the two beams

10 Usually referred to as the “Stokes parameters.” R. E. Wilson has pointed out that these quan-

tities are measured directly. They are better called “Stokes quantities” to avoid confusion with

parameters derived from light curve analysis.
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differently. It has been estimated that instrumental scatter due to these effects can

amount to 1 percent. When S/N requirements are 500 or more to achieve the goal

of exploring polarization of weak sources as a function of phase, to permit mag-

netic field mapping, this level of uncertainty can be a concern. On the modeling

side, polarimetric curves have had to be “rectified” to treat unwanted effects, as in

the old light curve analysis days. Such analyses required removal of those effects

from the observations, rather than expansion of the theory to reproduce them, as

in normal scientific practice. Another shortcoming has been the use of artificial

fitting functions (such as Fourier series) rather than direct representation in terms

of a definite model. Finally, the majority of polarimetry papers have contained no

published observations but only graphical presentations, so data have not been avail-

able in suitable form for improved analysis. Hopefully, practices will improve in the

future.

Another reason for lack of adequate polarimetry studies may have been that until

recently there have been few modeling programs which made use of polarization

data. This is no longer the case, and hopefully, investigators will pay this important

field more attention. Closer collaboration between model developers and observers

of polarimetric data would also improve the situation. Observers should strive for

good coverage not only in phase but also in time (see Sect. 2.6, item 5).

2.4 Magnetometry

Embarras des richesses (Embarrassment of riches)

George E. Hale (1908) discovered magnetic fields in sunspots. Despite failures to

detect a general solar field, he foresaw the possibility of detecting magnetic fields

in other stars, a feat which was accomplished in 1946. A catalogue of stars showing

large Zeeman effects (implying the existence of magnetic fields as high as 5000

Gauß) was published by H. W. Babcock (1958). The technique (Babcock, 1962)

involves separating the Zeeman components with the help of a polarization analyzer;

the Zeeman splitting is different for the perpendicular and parallel components

of the magnetic field. High-precision spectrophotometry and thus large telescopes

are required. The stars with strong magnetic fields were mostly of early type (the

“magnetic variables” are typically anomalous A-type stars), although large magnetic

fields have been found in F-type stars also. In solar and cooler stars polarization is

not easily measured, because the circular components of opposite polarity tend to

cancel when localized dipolar fields add together. Marcy (1984) succeeded in mea-

suring magnetic fields in 19 of 29 G and K stars examined through a technique which

involved linear polarization components. He also found evidence for magnetic fields

in bright RS CVn-type stars. To be fully useful for light curve modeling, the tech-

nique must be coupled to a mapping process. This has already been performed for

polarization variations connected to radial velocity fields, as we note in the next

section.
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The comprehensive analysis of the eclipsing magnetic binary E1114+182 by

Biermann et al. (1985) shows what data might be available in magnetic binaries.

This binary is the first eclipsing AM Herculis binary system and the shortest eclips-

ing cataclysmic variable known. Einstein X-ray, optical photometry and spectropho-

tometry, linear polarimetry, and radio emission data enter the analysis and provide

tight information on the physical and geometrical status of this binary system.

2.5 Doppler Profile Mapping

De proprio motu (of its own motion)

Armin Deutsch (1958), William Wehlau (1967), and, more recently, John Rice

(1996) and references therein, and other observers have applied line profile anal-

ysis to locate dark regions on single, rotating stars with strong magnetic fields.

Goncharsky et al. (1982, 1983) used Doppler profile measuring techniques to ana-

lyze Ap stars, and Vogt et al. (1987) and Strassmeier (1994) used it to map cool

spot regions on RS CVn-type binaries. The idea is that a spotted region will cause

a depression in the continuum flux of the star from that region. If the region can

be associated with a particular velocity field, and thus with a wavelength shift in

the profile, analysis of the line profile for dips (absorptions due to dark spots) or

bumps (emission due to bright spots) can then help to locate the longitude with

respect to the central meridian of the spotted region. The method prefers fast rotating

stars because it requires11 v sin i ≥ 20 km/s [see, for instance, Strassmeier (1997,

Sect. 5.3)] in order to be effective, a condition that does not usually hold in stars of

spectral types F, G, and K (Gray 1988, Chap. 7, p. 21). However, Strassmeier & Rice

(1998) succeeded even in analyzing EK Draconis with v sin i ≥ 17.5 km/s. Gray

(1988, Chap. 7, p. 23) suggests an additional method of determining the longitude

placement of “star patches” using profile asymmetries. Stellar tomography is a term

that has been used to describe the use of high-resolution spectral profiles to explore

the velocities of components of Algol and other binary star systems that have cir-

cumstellar material. One of the most successful of the codes of which we are aware

is SHELLSPEC, developed by Jan Budaj and Mercedes Richards.The simultane-

ous use of WD-type codes with this type of software tool may prove invaluable for

future investigations. In fact Miller et al. (2007) seems to do just this. Details about

SHELLSPEC may be found at the url http://www.astro.sk/ budaj/shellspec.html.

2.6 Advice to Observers

Docendo discimus (We learn by teaching)

This section contains suggestions to observers of EBs to help improve the database

and its subsequent analysis.

11 Note that v denotes the speed of rotation.
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1. Mid-range to long-period binaries (P > 5d, but especially P > 50d) need obser-

vations of all kinds. The P > 50d systems with giant or bizarre components

may have interesting light curves even if they do not eclipse. The longer period

binaries are nearly unexplored territory. They are perfectly suitable for APTs,

(robotic) automatic photometric telescopes [cf. Milone et al. (1995) or Strass-

meier et al. (1997)].

2. Infrared light curves have been neglected relative to optical light curves. Infrared

light curves are especially needed for binaries with large temperature differences

between the two components. Observations over at least one full cycle are crit-

ically important, especially if an optical light curve can be observed simulta-

neously. The main problem in the infrared has been the lack of a single set of

standard passbands to which observations that are made from any observing site

could be transformed. This is because the original Johnson JHKLMNQ pass-

bands were not designed to fit cleanly within the Earth’s atmospheric windows.

Subsequent observers dealt with the problem by redesigning passbands suitable

for their own observing sites. These, too, were not optimum for sites with dif-

ferent water vapor content. Consequently, there have been several generations

of such passbands produced, and transformations between infrared passbands of

different generations are particularly prone to systematic errors. The difficulty

is that atmospheric water vapor absorption produces curvature in the extinction

curve between 0 and 1 air- (actually water vapor) mass, an effect named after

Forbes (1842), and this curvature may differ from hour to hour as well as night

to night, let alone from season to season. Even differential light curves may be

affected by systematic as well as random noise depending on the distance of

comparison from target stars and the data sampling frequency. Beginning in the

late 1980s (Milone 1989), a new approach was undertaken by IAU Commission

25. An infrared working group (IRWG) was set up to design a new of passbands

that are optimally placed in the atmospheric windows. The result by Young et al.

(1994) is a new set of infrared passbands (iZ, iJ, iH, iK, iL, iL’, iM, iN, in, iQ)

are transformable to a higher precision than are all previous passbands. The near

infrared set (iZ, iJ, iH, iK) have been field tested and found useful for any site at

which photometry can be carried out, with superior S/N and greater insensitivity

to water vapor than nearly all previous infrared passbands (Milone & Young

2005). With such passbands, precise light curves may be achievable, and with

that precision, more precise and accurate parameters made be determined.

3. Some “observational” papers that do not list any observations are being pub-

lished. Advances in interpretation are such that 5 or 10 years after publication,

the observations may remain the only worthwhile part of a paper. Graphs of

observations and phased observations (without the absolute time information)

are no substitute for actual data. Nor are promises of availability a substitute for

published numbers. CD ROMs, data archives (such as the CDS in Strasbourg),

and World Wide Web pages now make it easy to publish most kinds of observa-

tions. We should consider the likely long-term permanency of the repository to

be selected. The commissions 27 (Variable Stars) and 42 (Close Binary Systems)
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of the International Astronomical Union (IAU) might also support the archiving

of variable-star data (Sterken & Jaschek, 1997, p. 2).

4. Certain binaries with active mass flow need to be followed continuously over at

least several orbits. Such objects are suitable targets for APTs.

5. Concerning polarimetry, it is very important to observe over several consecutive

orbits and to document the absolute time instead of only phases. Although light

curves are nearly periodic, polarization curves mainly reveal transient events.

They usually show only a jumble if folded in phase space. Whereas most light

curves are published and nonpublication is (or should be) the exception, it is the

other way around for polarization curves – usually they are not published and

soon lost.

6. X-ray binaries constitute a new candidate class for precise light curve analy-

sis. These objects provide X-ray duration constraints and arrival times of X-ray

pulses. Here again, it is very important to publish actual observations, includ-

ing absolute time information. As is shown in Sect. 7.3.1, X-ray binaries can

provide excellent data for simultaneous fitting (see Sect. 4.1.1.6) of multiband

light curves, optically determined radial velocities, and pulse arrival times –

potentially a remarkable bounty of separate kinds of information.

7. Spectrophotometry provides an even greater potential bounty, and, in principle,

thousands of light curves. Important requirements are that the spectra must be

free of scattered light effects and similar comparison star spectra must be avail-

able (both conditions are rarely met). Consequently, precise spectrophotometry

is rare. Such data need to be carefully processed so that the resulting light curves

have the requisite precision. Data may be binned in order to improve precision, at

the expense of spectral resolution, but the advantages of many multiwavelength

light curves still obtain – the chief of which are the radiative properties of the

components.

2.7 Eclipsing Binary Data from Surveys

Many surveys have been conducted and those that have high resampling rates have

produced variable star discoveries. One such survey known to us is that being con-

ducted with the Baker–Nunn Patrol Camera (BNPC) of the University of Calgary’s

Rothney Astrophysical Observatory. This f/1 instrument as currently configured has

a 4096 × 4096 chip in an FLI CCD camera as its detector and yields more than 19

square degrees of the sky on a single exposure. M. Williams has used the instrument

to detect more than 30 variable stars in the range 11–15 magnitude (in a passband

approximately equivalent to Johnson’s R) in a single sky field. Of these, 24 are

eclipsing variables. A fitted RJ is shown in Fig. 2.7. The analysis was carried out

with the WD package including both simplex and damped least-squares options. The

fitted curve is for a semi-detached model.

Much wider surveys have been carried out in searches for gravitational lens-

ing (OGLE for Optical Gravitational Lensing Experiment), which is monitoring the
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Fig. 2.7 An RJ light curve of an eclipsing binary observed with the Baker–Nunn patrol camera.

The binary has been modeled as a semi-detached system

galactic bulge, and has produced hundreds of variables, includes tens of candidates

for planetary transits, and even some cases of lensing, apparently by Jovian-mass

planets. From 2001, the survey has been carried out from Chile with the 1.3-m

Warsaw telescope equipped with an 8k MOSAIC camera consisting of eight SITe

2048 × 4096 chips (8192 × 8192 pixels of 0.26 arcsec/pixel), giving a field of view

equivalent to 35′ × 35′ on the sky.

A similar survey is aimed at finding MACHOs (Massive Astrophysical Compact

Halo Objects) as components of the dark matter in galactic halos. Although variable



64 2 The Database and Methods of Data Acquisition

stars have been discovered in this survey in large numbers (at least 611 EBs, for

example; cf. Alcock et al. 1997), one of the more exciting results of this survey is

that dark objects observed as lenses may have masses near 0.5 solar-masses, typi-

cally. Such a mass coupled with low luminosity suggests white dwarfs; cf. (Bennett

et al. 2005) or Chabrier et al. (1996). If this assessment is accurate, 50% of the

dark halo may be composed of these objects, and if so, they may be five times as

numerous as main sequence stars. However, this high a white dwarf contribution to

the dark matter halo has been questioned, for example, by Torres et al. (2008); other

results have emerged from this (MACHO) large survey, not least of which has been

a new determination for the distance of the Large Magellanic Cloud (Alcock et al.

2004).

An important space survey that yielded impressive results was the Hipparcos–

Tycho mission. The Hipparcos (for HIgh Precision PARallax COllecting Satellite)

astrometry mission and the accompanying Tycho two-passband photometric instru-

ment discovered more than 8000 variable stars, of which were EBs. HIPPARCOS

itself obtained 13 million observations of 118,000 stars and recorded them with high

photometric precision (median precision of 0.0015 magn. for m H < 9 or better),

whereas TYCHO observed 1 million stars and obtained, on average, ≈ 18% more

observations per star, but to a lower precision. The mission concluded in 1993, after

4 years of operation. The Hipparcos and Tycho Catalogue (Perryman et al. 1997)

lists 11,597 possible variable star detections, of which 8237 were new. But further

data mining produced 2675 more candidate variable star discoveries (Koen & Eyer

2002).

A survey space mission that holds much promise for variable star discoveries

is the GAIA12 mission described in Munari (2003) (GAIA was originally named

for Global Astrometric Interferometer for Astrophysics, and although no longer

applicable, the acronym has been kept for continuity purposes.) GAIA is to be

launched in late 2012, by current estimates. This mission is to contain astrometric,

spectrophotometric, and spectroscopic instruments (Perryman 2002). It is expected

to measure positions of a billion stars, of which 18 million are expected to be

variable (Eyer & Cuypers 2000), among them at least 1 million EBs. The radial

velocity spectrometer, with resolution R ≈ 11, 200, will yield the third dimension

of the kinematic motion for all stars brighter than 15th magnitude. The instrument

configuration is intended to produce kinematic, brightness, luminosity, temperature,

metallicity, and extinction discrimination for the stars of the Milky Way, and perhaps

also, to some extent, the other galaxies of the local group. As currently planned,

it has changed from initially planned photometry that involved 5 broad and 14

narrow passbands ideally designed to produce much of this discrimination (Jordi

et al. 2004a, b) to spectrophotometry. Thus, to replicate the photometry, integra-

tions need to be carried out over the spectral energy distribution. Even with lower

expected precision for astrometric and radial velocity determination, the results

12 http://www.rssd.esa.int/index.php?project=GAIA&page=index provides detailed information

on GAIA.
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should nevertheless greatly enhance our knowledge of the fundamental properties,

composition, motions, and distances of the stars of our galaxy. At the very least, if

the 5-year mission is successful, GAIA’s results should keep ground-based variable

star observers busy on follow-up studies for a generation. The maximum preci-

sion of its astrometric measurements should exceed 10 micro-arcsecs and be able

to demonstrate proper motion for a great portion of our galaxy and answer many

questions about the structure and dynamics of the Milky Way galaxy. Its value for

and debt to EB studies, at least in its earlier configuration, has been described in

Milone (2003).

2.8 Terminology: “Primary Minimum” and “Primary Star”

Quod licet Jovi, non licet bovi (Rank has its privileges)

The deeper minimum in a light curve is called the “primary minimum” by pho-

tometrists when the difference in depths of the two minima is clearly discerned,

but the designation may be arbitrary in cases where it is not. Photometrists usually

compute the decimal fraction of a photometric cycle (the “phase”) from the primary

minimum. Which component is the “primary star?” An astronomer’s background

usually dictates the convention: The usage differs among photometrists, spectro-

scopists, and theoreticians and so is not always consistent. It even differs from

one astronomer to another! In the context of photometry, the star being eclipsed

at primary minimum is called the “primary star” by convention. Note that this clas-

sification is not directly one of size or mass but rather of temperature. For circular

orbit binaries, it is rather the star of larger brightness per unit area which is eclipsed

at “primary minimum,”though this is usually also the more massive component.

The main difficulty with this definition is that it leaves in limbo the case of equal

minima. The dilemma may be avoided if multiwavelength light curves can resolve

the degeneracy, but if all light curves reveal that the surface brightnesses of the

components are indeed equal, the choice of primary minimum must be an arbi-

trary one if based alone on photometry. In spectroscopy, the usage is mixed. In

astrophysical investigations of spectral features, the component with the stronger

spectral lines, ordinarily the star with the apparently greater luminosity, is usually

classified as the “primary star.” In radial velocity investigations, the component

with the smaller radial velocity amplitude (i.e., the more massive star) is usually

designated the “primary star.” The definition runs into difficulty in dealing with the

case of equal radial velocity amplitudes and must be, again, arbitrary if the masses

are measurably equal. Although the more massive star is usually the more luminous

and often also the hotter star, there are cases where these associations do not hold.

When theoretical studies are included, the situation becomes even more mud-

died. In the context of discussing the stellar evolution of a binary in question, the

term “primary star” sometimes refers to the originally more massive star which

can become the lower mass star as a consequence of mass transfer. In celestial

mechanics, especially in papers dealing with the restricted three-body problem, both

components are called “primaries” in contrast to the massless third body. Finally,
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again in the general three-body problem, the most massive component is sometimes

called the “primary.”

As of these different usages, it is impossible to give a single definitive response

to the question of which star should be designated “primary.” The only advice we

can give is to define the meaning of the term and to assign number 1 or 2 to the

components of a system early in any publication.

2.9 Selected Bibliography

• Sterken & Manfroid (1992) for a modern overview of photometry.

• McLean (1997) for a thorough discussion of astronomical imaging.

• Henden & Kaitchuck (1982): A guide to techniques of photometric observing

and data reduction.

• Howell (2000): A Handbook of CCD Astronomy. One of the best discussions of

the hardware, operation, and applications of CCDs in astronomy.

• Wood (1963): Photoelectric Photometry for Amateurs. A low-key, nonthreaten-

ing introduction.

• Aitken (1964), Binnendijk (1960), and Batten (1973a) – recommended books

on double stars. Especially, Binnendijk (1960) is a handy reference with many

formulas.

• Hardie (1962) in Astronomical Techniques for basic extinction, transformation

treatment.

• Young (1974, 1994) for a more sophisticated discussion of extinction and trans-

formation.

• Golay (1974) for definition of color systems and transformations between sys-

tems.

• Hall & Genet (1988) provide an overview on many topics of Photoelectric Pho-

tometry of Variable Stars.

• Tinbergen (1996) for polarimetry.

• Strassmeier (1997) for photometry, spectroscopy, and magnetometry especially

of active stars and stellar spots. A book very much recommended from the didac-

tic point of view.

• Stellar Photometry – Current Techniques and Future Developments by Butler &

Elliot (1993) (proceedings of the IAU Colloquium 136). As the title indicates, a

good overview.

• The Handbook of CCD Astronomy by Howell (2006) is a new edition of Howell’s

well-known and very useful practical handbook of CCD astronomy.

• The Future of Photometric and Polarimetric Standardization by Sterken (2007)

summarizes the developments of absolute photometry up to 2006. Contributions

cover the spectrum from the UV to the infrared and discuss the challenges and

solutions to the calibrations of modern ground-based investigations and space-

based missions.
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Miller, B., Budaj, J., Richards, M., Koubský, P., & Peters, G. J.: 2007, Revealing the Nature of

Algol Disks through Optical and UV Spectroscopy, Synthetic Spectra, and Tomography of TT

Hydrae, ApJ 656, 1075–1091

Milone, E. F.: 1986, The O’Connell Effect Systems CX Canis Majoris, TU Crucis, AQ Monocero-

tis, and DQ Velorum, ApJ Suppl. 61, 455–464

Milone, E. F. (ed.): 1989, Infrared Extinction and Standardization, Springer, Berlin, Germany

Milone, E. F.: 2003, Fundamental Stellar Parameters from Eclipsing Binaries, in U. Munari (ed.),

GAIA Spectroscopy, Science and Technology, Vol. 298 of ASP Conference Series, pp. 303–313,

Astronomical Society of the Pacific, San Francisco

Milone, E. F., Chia, T. T., Castle, K. G., Robb, R. M., & Merrill, J. E.: 1980, RW Comae Berenices

I. Early Photometry and UBV Light Curves, ApJ Suppl. 43, 339–364

Milone, E. F., Hrivnak, B. J., Hill, B. J., & Fisher, W. A.: 1984, RW Comae Berenices - II. Spec-

troscopy, AJ 90, 109–114

Milone, E. F., Kallrath, J., Stagg, C. R., & Williams, M. D.: 2004, The Modeling of Binaries in

Globular Clusters, Revista Mexicana AA (SC) 21, 109–115

Milone, E. F. & Robb, R. M.: 1983, Photometry with the Rapid Alternate Detection System, PASP

95, 666–673

Milone, E. F., Robb, R. M., Bobott, F. M., & Hansen, C. H.: 1982, Rapid Alternate Detection

Systems of the Rothney Astrophysical Observatory, Appl. Optics 21, 2992–2995

Milone, E. F., Stagg, C. R., & Kurucz, R. L.: 1992, The Eclipsing Binary AI Phoenicis: New

Results Based on an Improved Light Curve Analysis Program, ApJ Suppl. 79, 123–137

Milone, E. F., Stagg, C. R., & Young, A. T.: 1995, Towards Robotic IR Observatories: Improved IR

Passbands, in M. F. Bode (ed.), Robotic Observatories, pp. 117–124, Wiley-Praxis, Chichester

Milone, E. F., Williams, M. D., Stagg, C. R., McClure, M. L., Desnoyers Winmil, B., Brown, T.,

Charbonneau, D., Gilliland, R. L., Henry, G. W., Kallrath, J., Marcy, G. W., Terrel, D., & Van

Hamme, W.: 2004, Simulation and Modeling of Transit Eclipses by Planets, in A. J. Penny, P.

Artymowicz, A.-M. Lagrange, & S. Russell (eds.), Planetary Systems in the Universe: Obser-

vation, Formation and Evo lution, Vol. 214 of ASP Conference Series, pp. 90–92, Astronomical

Society of the Pacific, San Francisco

Milone, E. F. & Young, A. T.: 2005, An Improved Infrared Passband System for Ground-based

Photometry: Realization, PASP 117, 485–502

Milone, E. F. & Young, A. T.: 2007, Standardization and the Enhancement of Infrared Precision,

in C. Sterken (ed.), The Future of Photometric, Spectrophotometric and Polarimetric Standard-

ization, Vol. 364 of Astronomical Society of the Pacific Conference Series, pp. 387–407

Milone, E. F. & Young, A. T.: 2008, Infrared Passbands for Precise Photometry of Variable Stars

by Amateur and Professional Astronomers, Journal of the American Association of Variable

Star Observers (JAAVSO) 36, 110–126

Moro, D. & Munari, U.: 2000, The Asiago Database on Photometric Systems (ADPS). I. Census

Parameters for 167 Photometric Systems, A&A Suppl. 147, 361–628

Mukherjee, J. D., Peters, G. J., & Wilson, R. E.: 1996, Rotation of Algol Binaries - A Line Profile

Model Applied to Observations, MNRAS 283, 613–625

Munari, U.: 2003, GAIA Spectroscopy: Science and Technology, Vol. 298 of Astronomical Society

of the Pacific Conference Series, Astronomical Society of the Pacific, San Francisco

Perryman, M. A. C.: 2002, GAIA: An Astrometric and Photometric Survey of our Galaxy, in V.

Vansevicius, A. Kucinskas, & J. Sudzius (eds.), Census of the Galaxy: Challenges for Pho-

tometry and Spectrometry with GAIA, Vol. 280, pp. 1–10 of Astrophysics and Space Science,

pp. 1–10, Kluwer Academic Publishers, Dordrecht, Boston, London



References 71

Perryman, M. A. C., Lindegren, L., Kovalevsky, J., Hoeg, E., Bastian, U., Bernacca, P. L., Creze,

M., Donati, F., Grenon, M., van Leeuwen, F., van derMarel, H., Mignard, F., Murray, C. A., Le

Poole, R. S., Schrijver, H., Turon, C., Arenou, F., Froeschle, M., & Petersen, C. S.: 1997, The

HIPPARCOS Catalogue, A&A 323, L49–L52

Rice, J. B.: 1996, Doppler Imaging of Stellar Surfaces, in K. G. Strassmeier & J. L. Linsky (eds.),

Stellar Surface Structure, IAU Symposium 176, pp. 19–33, Kluwer Academic Publishers, Dor-

drecht, Holland

Robb, R. M. & Milone, E. F.: 1982, A Single Night Light Curve of 44i Boo, Inform. Bull. Variable

Stars 2187, 1–4

Rucinski, S.: 1999, Determination of Broadening Functions Using the Singular-Value Decompo-

sition (SVD) Technique, in J. B. Hearnshaw & C. D. Scarfe (eds.), IAU Colloq. 170: Precise

Stellar Radial Velocities, Vol. 185 of Astronomical Society of the Pacific Conference Series,

pp. 82–90

Rucinski, S. M.: 1992, Spectral-line Broadening Functions of WUMa-type binaries. I - AW UMa,

AJ 104, 1968–1981

Rucinski, S. M.: 2002, Radial Velocity Studies of Close Binary Stars. VII. Methods and Uncer-

tainties, AJ 124, 1746–1756

Schiller, S. J. & Milone, E. F.: 1990, Simultaneous Photoelectric and CCD Photometry of the

Delta Scuti Star DY Herculis, in A. G. D. Davis, D. S. Hayes, & S. J. Adelman (eds.), CCDs

in Astronomy II. New Methods and Applications of CCD Technology, pp. 159–165, L. Davis

Press, Schenectady, NY

Schlosser, W., Schmidt-Kaler, T., & Milone, E. F.: 1991, Challenges of Astronomy, Springer, New

York

Simkin, S. M.: 1974, Measurements of Velocity Dispersions and Doppler Shifts from Digitized

Optical Spectra, A&A 31, 129–136

Simon, K. P. & Sturm, E.: 1994, Disentangling of Composite Spectra, A&A 281, 286–291

Sterken, C. (ed.): 2007, Standardization and the Enhancement of Infrared Precision, Vol. 364 of

Astronomical Society of the Pacific Conference Series

Sterken, C. and Jaschek, C. (eds.): 1997, Light Curves of Variable Stars – A Pictorial Atlas,

Cambridge University Press, Cambridge, UK

Sterken, C. & Manfroid, J.: 1992, Astronomical Photometry – A Guide, Vol. 175 of Astrophysics

and Space Science Library, Kluwer Academic Publishers, Dordrecht, Holland

Stetson, P. B.: 1998, User’s Manual for DAOPHOT II, Dominion Astrophysical Observatory, Vic-

toria, BC, 1998 edition
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Chapter 3

A General Approach to Modeling

Eclipsing Binaries

This chapter provides the basis to compute observables for a given set of EB

parameters and a given set of times or phases. Typical observables are light curves,

radial velocity curves, polarization curves, and line profiles. In this chapter the

focus is on general considerations; no details of implementation are given. Those

are found in Chap. 6 for several light curve models.1 EB data analysis leads to

a nonlinear least-squares problem in which observed curves are compared with

model curves. The presentation is greatly simplified if we take the following for-

mal approach: We formally define an eclipsing binary observable curve, O, as a

mathematical object

O := {(tk, ok) | 1 ≤ k ≤ n},

i.e., as a set of n elements in which each element is a pair, (t, o), where t repre-

sents an independent, time-related quantity and o is the corresponding observable.

The quantity t used as the independent quantity may either represent time or the

photometric phase Φ defined in formula (2.1.1).

In the past, at least, in light curve analysis the phase Φ is used. In more recent

years, this has changed. If the period and epoch are to be determined, or if apsi-

dal motion effects are considered, or polarization data and pulse arrival times are

included in the analysis, as demonstrated in Sect. 7.3.1, it is necessary to use the

time instead of phase, or in addition to phase; Section 3.8 provides an example of

how this is done.

The term light usually is used in the abstract sense in this book and may represent

not only the photometric brightness (i.e., the observed radiant power or flux in a

particular passband) but any observable,2 such as

• the light at a given wavelength;

• the radial velocity;

1 Sometimes we use the expression light curve model in a general and abstract sense meaning “a

model for computing eclipsing binary observables.”
2 This terminology (without the formal mathematical approach) has appeared already in Wilson

(1994).
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• polarization;

• photospheric spectral line profile;

• spectral distributions due to circumstellar flows; and

• any other quantity associated with the phase, but also other quantities indepen-

dent of phase which we call systemic observables. Given, say, good Hipparcos

data, or if the binary happens to be a member of an assemblage (star cluster,

galaxy,. . .) with known distance D, the parallax π is available and can be con-

sidered an additional observable.

It may represent

• a measured value of an observable; and

• a value derived from a light curve program (more generally, an “observables gen-

erating program ” as per Wilson (1994) based on a light curve model (“model,”for

short).

Thus an “observable curve” (“observable” for short), may be, for instance

• an observed light curve Oobs;

• a calculated light curve Ocal;

• a wavelength-dependent light curve Oλ;

• a radial velocity curve Ovel;

• a polarization curve Opol;

• a set of pulse arrival times, Opul.

Before 1970 an observed light curve Oobs of an EB was analyzed following recti-

fication procedures which trace back to the early 1900s. However, the underlying

physical models were relatively simple and neglected effects which later turned out

to be relevant. Photometric and spectroscopic data were analyzed separately and

with different methods.

Today’s methods permit analysis of photometric, spectroscopic, and other data

simultaneously. If the vector x represents all relevant EB parameters, for each phase

Φ the corresponding observable ocal(Φ, x), or several observables, ocal
c (Φ, x), of type

c can be computed with a light curve model. For a given set of phases, a whole

observable curve Ocal(x) or a set of several curves, Ocal
c (x∗), can be computed; this

problem is denoted as the direct problem. The inverse problem is to determine a set

of parameters x∗ from a set of EB observations by the condition that a set of curves3

Ocal
c (x∗) best fits a set of observed curves Oobs

c . The system parameters x are mod-

ified according to an iterative procedure until the deviation between the observed

curves Oobs
c and the calculated curves Ocal

c (x∗) becomes minimal in a well-defined

sense. The system parameters x∗, corresponding to the observed curves Oobs
c , are

ordinarily regarded as the solution of a least-squares problem.

In Chap. 4, the inverse problem is discussed. Obviously, in order to tackle the

inverse problem we need to be able to solve the direct problem, i.e., the mapping

3 We show that it is advantageous to fit several light curves or even different types of eclipsing

binary observations simultaneously.
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x → Ocal(x), which is the subject of the present chapter. Each realistic model for

computing the observable Ocal(x) for a given set of parameters consists of three

major parts:

1. The physics and geometry of orbits and components.

2. Computation of local radiative surface intensity as a function of local gravity,

temperature, chemical composition, and direction. The proper formulation of the

radiative physics requires the use of accurate model atmospheres.

3. Computation of the integrated flux in the direction of the observer. This com-

putation must take eclipses into account. The inclusion of other effects such as

circumstellar matter, i.e., gas streams, disks, attenuating clouds, etc., may be

desirable.

3.1 System Geometry and Dynamics

Orbis scientiarum (The circle of the sciences)

The shapes of the stellar surfaces are either explicitly specified a priori (as, e.g., by

spheres and ellipsoids) or, in more sovarPhisticated treatments, determined implic-

itly by a physical model.4 The theoretical bases for the modeling of stellar shape

distortions are varied. Particular light curve models emphasize one of the follow-

ing: They adopt Chandrasekhar’s (1933a, b) results on the theory of polytropic gas

spheres and centrifugal- and tidal-force perturbations (Wood 1971) or the Roche

model (see Sect. 3.1.5 for references). If the underlying forces can be determined

completely by a potential function, the stellar photospheres are assumed to be

equipotential surfaces. Surfaces of constant density then coincide with surfaces on

which the potential energy per unit mass is constant and the local gravity and surface

orientation are given by the gradient of the potential. This approach is generally

applicable if the stars move in circular orbits. Under some limited assumptions it is

also a good approximation for eccentric orbits (see comments on page 102).

3.1.1 Coordinates and Basic Geometrical Quantities

Figures 3.1 and 3.2 illustrate the geometry of the coordinate system used in most of

the models presented in this book. We introduce for present and future purposes a

generalized right-handed Cartesian coordinate

system (x, y, z) with origin in the center of mass of a star. The x-axis points to

the center of mass of the other star, the z-axis is normal to the orbital plane,5 and the

4 We refer to light curve models in which the geometry of components is fixed a priori as “geo-

metric models,” and to those based on equipotential surfaces as “physical models.”
5 The rotation axes for orbital and proper rotation of the stars are assumed to be parallel to the

normal of the orbital plane.
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Μ1

R1

0 xc d

roω

Μ2barycenter

r = (x,y,z)T

x-axis

R2

y-axis

Fig. 3.1 Definition of a right-handed Cartesian coordinate system. The origin is in the center of

mass of one of the stars. The x-axis points to the center of mass of the other star, the z-axis is

normal to the orbital plane, and the y-axis is fixed by the “right-handed” stipulation

ϕ

θ

θ

r = (x,y,z)T

y

x

z

Fig. 3.2 Definition of spherical polar coordinates. The angles Φ and θ denote longitude (zero in

the direction toward the companion star, increasing counterclockwise) and colatitude (zero at the

“North” pole), respectively

y-axis is fixed by the “right-handed” stipulation. This coordinate system is called

C1. Additionally, spherical coordinates (r, θ,Φ) are used, where the unit of r is the

relative orbital semi-major axis, a. The radius vector r is represented as

r =





x

y

z



 = rer , er =





λ

µ

ν



 =





cosΦ sin θ

sinΦ sin θ

cos θ



 , (3.1.1)

where r is the modulus of the vector r and where λ, µ, and ν are the direction

cosines. The angles Φ and θ denote longitude (zero in the direction toward the

companion star, with Φ increasing counterclockwise) and colatitude (zero at the



3.1 System Geometry and Dynamics 79

“North” pole), respectively. Next, we introduce the direction cosines (nx , ny, nz) of

the surface normal vector

n = (nx , ny, nz)T. (3.1.2)

The formulas to compute n are different for various classes of surfaces, such as

spheres, ellipsoids, Roche equipotentials, and are provided in the appropriate sec-

tions. Once n is known we can compute the angle β between the radius vector r and

the surface normal n as shown in Fig. 3.3 and get

cosβ = er · n =
r

r
· n = λnx + µny + νnz, r = |r| . (3.1.3)

β
n

observer
s

r

γ

Fig. 3.3 Surface normal and line-of-sight. This figure shows the radius vector r, the normal vector

n, the line-of-sight vector s, and the angles β and γ

The distance r from a surface point to the center is a function r = r (θ,Φ; p) of

angular position, (θ,Φ), and the parameters p defining the shape of the surface.

In these spherical coordinates, as shown in Appendix C.2, the differential volume

element dV is given by

dV = r2 sin θdθdΦdr, (3.1.4)

and the differential surface element by

dσ =
1

cosβ
r2 sin θdθdΦ. (3.1.5)

For discussing eclipse effects it is useful to introduce the plane-of-sky coordinates

(x s, ys, zs). The origin of this right-handed coordinate system, P1, is the center of
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component 1. The traditional sense is such that the x s-axis is positive away from the

observer and coincides with his line-of-sight. As shown in Fig. 3.4, the zs-axis is up

when the ys-axis shows exactly to the left. If we want to model polarimetry as in

Wilson & Liou (1993, p. 672) and want to keep right-handed coordinate systems,

it is necessary to have the positive x s-axis pointing toward the observer. To derive

appropriate formulas let us consider the transformation in detail. In the traditional

sense P1 is related to C1 as follows. At first we rotate C1 counterclockwise around

its z-axis by 180◦ − Φ, getting an intermediate coordinate system (x ′, y′, z′). This

system is rotated counterclockwise around its y′-axis by an angle of 90◦ − i (see

Fig. 3.5). Therefore, according to the rotation matrices described in Appendix C.1

we can relate the coordinates by

z s-axis

x s-axisy s-axis

z -axis

orbital plane

90 - i

i

plane-of-sky coordinates

Fig. 3.4 Plane-of-sky coordinates I. The figure shows the plane-of-sky and illustrates the orienta-

tion of the orbital plane w.r.t. the plane-of-sky

(

x s, ys, zs
)T = Ry′ (i)Rz(180◦ −Φ) (x, y, z)T (3.1.6)

which, with6 sin(180◦−Φ) = sinΦ and cos(180◦−Φ) = cosΦ, and cos(90◦−i) =
sin i and sin(90◦ − i) = cos i leads to





x s

ys

zs



 =





sin i 0 cos i

0 1 0

− cos i 0 sin i









cosΦ sinΦ 0

− sinΦ cosΦ 0

0 0 1









x

y

z



 (3.1.7)

6 If the photometric phase, Φ, appears in an additive term involving an angle or as the argument

of a trigonometric function, e.g., sinΦ, the term has to be interpreted as sinΦ = sin θ(Φ), where

the geometric phase or true phase angle θ (Φ) is evaluated according to (3.1.19) in the circular, or

according to (3.1.37) in the eccentric orbit case.
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θ

180 – θ

x -axis

x s-axis

y -axis

y s-axis

Fig. 3.5 Plane-of-sky coordinates II. This figure relates the plane orthogonal to the plane-of-sky,

and the orbital plane

and finally gives





x s

ys

zs



 =





x sin i cosΦ + y sin i sinΦ + z cos i

−x sinΦ + y cosΦ

−x cos i cosΦ − y cos i sinΦ + z sin i



 . (3.1.8)

As a special case we compute the plane-of-sky distance δ between the component

centers as a function of phase. If d is the distance between the centers at phase Φ,

the plane-of-sky distance δ follows by setting x = d, y = z = 0 as

δ2 =
(

ys
)2 +

(

zs
)2 = d2

(

sin2 Φ + cos2 i cos2 Φ
)

, (3.1.9)

or equivalently7

δ2 = d2
(

cos2 i + sin2 i sin2 Φ
)

. (3.1.10)

The plane-of-sky coordinates just introduced are also useful to represent the line-

of-sight vector S pointing from the observer to the plane-of-sky. According to our

definition of the plane-of-sky coordinate system the observer is located at

(x s
0, ys

0, zs
0)T = (−∞, 0, 0)T, (3.1.11)

and thus in this coordinate system ss is given as

ss =
S

S
= (+1, 0, 0)T, S = |S| . (3.1.12)

7 Replace cos2 Φ = 1 − sin2 Φ, simplify, and replace again cos2 i = 1 − sin2 i .
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The inverse transformation associated with (3.1.7) is





x

y

z



 =





cosΦ − sinΦ 0

sinΦ cosΦ 0

0 0 1









sin i 0 − cos i

0 1 0

cos i 0 sin i









x s

ys

zs



 , (3.1.13)

or





x

y

z



 =





cosΦ sin i − sinΦ − cosΦ cos i

sinΦ sin i cosΦ − sinΦ cos i

cos i 0 sin i









x s

ys

zs



 , (3.1.14)

and thus, in the coordinate system C1, s = (sx , sy, sz)
T takes the form

s =





cosΦ sin i − sinΦ − cosΦ cos i

sinΦ sin i cosΦ − sinΦ cos i

cos i 0 sin i



 ss =





cosΦ sin i

sinΦ sin i

cos i



 , (3.1.15)

with direction cosines (sx , sy, sz). The angle γ between the line-of-sight s and n

follows as (see Fig. 3.3)

cos γ := s · n = sx nx + syny + sznz . (3.1.16)

3.1.2 Dynamics and Orbits

Points of the stellar surface are considered to belong to an equipotential surface.

The mathematics of such level surfaces is similar to that of the zero velocity curves

in the restricted three-body problem [cf. Szebehely (1967)], in which a particle of

negligible mass is subject to gravitational forces of two massive orbiting bodies.

Within that framework two cases are distinguished: circular orbits and elliptic or

eccentric8 orbits. We treat them separately because the circular and the eccentric

cases require different techniques. More importantly, there are eccentric effects on

the components and on the light curves beyond those of the circular case.

We distinguish between absolute and relative orbits. Orbits with absolute orbital

semi-major axes a1 and a2 have the origin of coordinates at the system barycenter,

whereas orbits with the relative orbital semi-major axis a describe the motion with

respect to the center of mass of its companion star. Absolute and relative orbits are

coupled by

a = a1 + a2 (3.1.17)

8 We use the terms eccentric and elliptic orbits synonymously throughout this book.
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and the moment equation

a1 M1 = a2 M2. (3.1.18)

In the next two subsections we use the following symbols appropriate for the general

case of an elliptic orbit with the relative orbital semi-major axis a and the eccentric-

ity e, 0 < e < 1; we have the orbital quantities ν, υ, and θ , and the orbital elements

ω and i :

• ν, (true) longitude in orbit, measured from some reference point to the star’s

position in the orbit; 0◦ ≤ ν < 360◦.

• υ, true anomaly, measured from periastron to the star’s position in the orbit;

0◦ ≤ υ < 360◦.

• θ, (true) phase angle or “geometrical phase,” i.e., the angle in the orbital plane

measured from conjunction in the direction of motion; 0◦ ≤ θ < 360◦.

• ω, the argument of periastron, i.e., the angle from the ascending node to perias-

tron in the orbital plane (see Fig. 3.6); 0◦ ≤ ω < 360◦.

• i, orbital inclination, i.e., the angle by which the plane of the true orbit plane tilts

out of the plane-of-sky9 (Fig. 3.6). Note that an edge-on orbit has i = 90◦. The

ω
Ω

line of
nodes

orbital
plane

tangent plane
to sky

observer

N

a(1-e)

2a
i

Fig. 3.6 Orbital elements of a binary system. Ω is the position angle (measured in the plane-of-

sky) of the ascending node or the position angle of the line of nodes, respectively. ω is the angular

distance in the orbital plane between the line of nodes and the periastron in the direction of the

motion of the component. N is used to orientate the plane-of-sky and points to North

9 The correct definition of the inclination is an intricate matter related to the orientation of the

coordinate system discussed in Sect. 3.1.1. Although i = 85◦ and i = 95◦ lead to the same

situations concerning light and radial velocity curves, differences appear for modeling polarimetry

and interferometry.
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inclinations i = 85◦ and i = 95◦ can be distinguished by whether the motion as

projected onto the plane-of-sky is counter-clockwise or clockwise.

The symbols ν and θ should not be confused with the same symbols used to establish

spherical coordinates on the component surfaces introduced in Sect. 3.1.1.

Finally, we use the symbol Φ for the orbital (sometimes also called photomet-

ric) phase measured from primary conjunction; 0 ≤ Φ ≤ 1. For circular orbits

primary minimum ordinarily, or by convention, coincides with superior conjunction

of the primary component, so that Φ = 0 at θ = 0. Whereas in the circular case,

photometric phase and true phase angle are simply connected by

θ = θ (Φ) = 360◦Φ, (3.1.19)

the geometrical phase in the eccentric case is related to the photometric phase by

θ = θ (Φ) = υ + ω − 90◦ (3.1.20)

as shown in Fig. 3.7. Note that υ + ω is the angle from the node to the star.

υ + ω = θ + 90° 

θ = 180°

ω υ

θ

ω – 90°

θ = 90°

line of sight

line of nodes

Fig. 3.7 Relationships between phase and orbital quantities. This figure shows the relationships

among phase θ , true anomaly υ, and argument/longitude of periastron ω

If the binary’s orbit changes10 in time it might be possible to derive the change,

Ṗ , of the orbital period, and the apsidal motion parameter, ω̇, if observation times

(rather than phase) are available. If the argument of the periastron, ω0, is known

10 The physical cause can be apsidal motion, orbit around a third body, mass loss and mass transfer,

and solar-type magnetic cycles (Hall 1990). Algol itself is a good example. It undergoes a 1.783

year cycle as it revolves around Algol C and it also has a 32-year magnetic cycle (Søderhjelm

1980). For more details on apsidal motion see page 132.
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for a reference time, T0, the instantaneous argument of periastron, ω = ω(t) , in

first-order approximation is given by

ω = ω0 + ω̇(t − T0). (3.1.21)

3.1.2.1 Circular Orbits

Many EB systems have circular orbits due to the accumulated effects of tidal forces.

The tidal evolution [cf. Hut (1981)] will continually change the orbital and rotational

parameters. Ultimately, either an equilibrium state will be reached asymptotically or

the two stars will spiral in toward each other at an increasing rate leading to a col-

lision. An equilibrium state is characterized by coplanarity (the equatorial planes of

the two stars coincide with the orbital planes), circularity of the orbit, and corotation

(the rotation axes and periods of the components equal those of the orbital motion).

In the circular orbit case, the position of each star is a simple function of the

phase Φ. Photometric and geometrical phase angles are connected by (3.1.19). The

linear distance d between components is then independent of Φ and commonly

normalized to d ≡ 1. The light curve minima occur at phases Φ = 0 and Φ = 0.5,

or θ = 0◦ and θ = 180◦, respectively.

3.1.2.2 Eccentric Orbits

Although the orbits of many EBs are circular (Lucy & Sweeney 1971), some have

elliptic orbits and sometimes even high eccentricities [e.g., HR 6469 with e = 0.672

in Scarfe et al. (1994), see Fig. 3.8, showing the orbit]. This is not a great surprise

because circularization is a relatively slow process as shown by Hut (1981).

Eccentric orbits have several light curve effects. The eclipse occurring nearer to

apastron has the longer duration. In addition, the minima are in general not arranged

symmetrically. If tI and tII denote the times of successive primary and secondary

minima, respectively, tII > tI, we have

tII − tI �= (tI + P) − tII. (3.1.22)

Only when the line of apsides coincides with the line-of-sight is eclipse symmetry

reestablished. Primary conjunction occurs at a phase Φ1 which can be much differ-

ent from zero. If the orbit is circular the plane-of-sky distance δ between centers

takes its minimum at Φ1. This statement is approximately true in the eccentric orbit

case.

The phase shift or displacement of the minima depends on e and ω and is approx-

imately [cf. Binnendijk (1960, Eq. 384) or Tsesevich (1973)] given by

(tII − tI) −
P

2
=

P

π
e cosω

(

1 + csc2 i
)

(3.1.23)

and describes how much the time interval between primary and secondary conjunc-

tion differs from a half-period. For e = 0 the relation tII − tI = P/2 is reproduced.
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N

E

P = 5.513 yr

a = 0.080 arcsec

–0.05 0.00 0.05 0.10

–0.05

0.00

0.05

0.10

HR 6469 McA 47 WDS 17217+3958

Fig. 3.8 The orbit of HR 6469 with e = 0.672. Fig. 4 in Scarfe et al. (1994), courtesy C. D. Scarfe

A useful relation can be derived from ( 3.1.23) if i is close or equal to 90◦

e cosω =
π

2P

(

tII − tI −
P

2

)

. (3.1.24)

Because all quantities on the right-hand side of (3.1.24) can be determined with high

accuracy, (3.1.24) can be used to derive a lower limit for e

π

2P

(

tII − tI −
P

2

)

= e cosω ≤ e. (3.1.25)

Another useful approximation connects e sinω to the durations, Θa and Θp, of

eclipses at apastron and periastron [cf. Binnendijk (1960, Eq. 385)]:

e sinω ≈
Θa −Θp

Θa +Θp

. (3.1.26)
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Note that (3.1.25) and (3.1.26) allow us to derive approximations for e and ω sep-

arately because Θa and Θp can also be measured directly. Modeling of the surface

configurations of eccentric EBs involves astrophysical considerations and computa-

tions beyond the orbital calculations. The shapes and surface gravities of the compo-

nents are phase dependent, whereas stellar volume and bolometric luminosities are

nearly independent of phase.11 Strictly speaking, the resulting forces for eccentric

orbits cannot be described by a potential because the force field is time dependent

and therefore nonconservative. If, nevertheless, models do make use of the potential

formalism for eccentric orbits (Wilson 1979), it is under this assumption: If a binary

can adjust to equilibrium on a timescale short compared to that on which forces vary,

an effective potential [Avni (1976), Wilson (1979)] can be defined locally at each

point of the orbit without significant inconsistency. The timescale for re-adjustment

is that for free nonradial oscillations , which is normally much shorter than an orbital

period.

The purely orbital calculations are connected with the Keplerian problem that

considers two point masses moving on ellipses around their center of mass. In addi-

tion to the orbital elements we need the true anomaly υ, measured from periastron

to the star’s position in the orbit. The true anomaly υ and the eccentric anomaly E

are illustrated in Fig. 3.9 and are related by

tan
υ

2
=
√

1 + e

1 − e
tan

E

2
. (3.1.27)

Auxiliary circle

Elliptic orbit

A
a

b

C

F2 E

F1 P

υ

E = eccentric anomaly
υ = true anomaly

Fig. 3.9 True anomaly and eccentric anomaly. The figure shows the relative orbit of a body around

another one located in the focus F1 of the ellipse. The eccentric anomaly E is computed by solving

Kepler’s equation. Once E is available the true anomaly υ can be computed

11 See comments on page 102.
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The eccentric anomaly E is related to the mean anomaly M through Kepler’s

equation

E − e sin E = M (3.1.28)

and thus also to time, t , because M depends on time. Let us now see how M is

related to time or photometric phase. Per definition the mean anomaly, M , is the

difference between a given orbital phase, Φ, and periastron phase, Φper,

M ≡ 360◦Φs, Φs = Φ −Φper. (3.1.29)

In eccentric orbit scenarios, some attention has to be paid to model the star correctly

with regard to apsidal motion and to the computation of M for a given phase Φ. A

consistent way12 is to start with the true anomaly, υc, of conjunction measured from

the ascending node

υc = 90◦ − ω. (3.1.30)

Computing the eccentric anomaly, Ec, by (3.1.27) and applying (3.1.28) to compute

the mean anomaly, Mc, allows us to compute the phase Φper of periastron passage

relative to conjunction according to (3.1.29),

Φper = 1 −
Mc

360◦ . (3.1.31)

From that we derive the phase, Φc, of conjunction relative to the adopted zero point

of phase, Φs :

Φc =
Mc + ω − 90◦

360◦ +Φs . (3.1.32)

Note that Φs is constant and does not depend on ω. Φc again gives us the phase,

Φ0
per,

Φ0
per = Φper +Φc =

ω

360◦ + 0.75 +Φs (3.1.33)

of periastron passage relative to the adopted zero point of phase; the 0.75 term

accounts for ω being measured from the ascending node (270◦ from conjunction).

Now, eliminating Φ by (2.1.1 ) we are in a position to compute the mean anomaly

for a given phase, Φ,

M = 360◦
(

Φ −Φ0
per

)

= 360◦
(

t − E0

P

)

− ω − 270◦. (3.1.34)

12 The Wilson–Devinney program (Wilson, 1979) uses this approach.
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Once M is known, Kepler’s equation (3.1.28) is solved (see Appendix C.4) for E ,

from which υ is derived according to (3.1.27). With known true anomaly υ, the star

positions in inertial rectangular barycentric coordinates (within the orbital plane)

are given by

ξ1 = −
q

1 + q
d cos υ, η1 = −

q

1 + q
d sinυ,

ξ2 = +
1

1 + q
d cos υ, η2 = +

1

1 + q
d sinυ,

(3.1.35)

where q = M2/M1 is the mass ratio of the binary, and the radius vector, d, within

the elliptic orbit, is given by

d = d(Φ) =
1 − e2

1 − e sin(θ − ω)
=

1 − e2

1 + e cos υ
= 1 − e cos E . (3.1.36)

Finally, we can relate υ to the (true) longitude in orbit and also to the (true) phase

angle

ν = υ − ω, θ = θ (Φ) = υ + ω − 90◦. (3.1.37)

So, finally, we coupled the orbital phase Φ and the geometrical phase, θ , through

the mean anomaly, M , and Kepler’s equation. In the circular case we just had the

simple relation (3.1.19).

3.1.3 Spherical Models

De mortuis nihil nisi bonum (Of the dead, say nothing but good)

Diogenes Laertios, I.3n.2, 70

Binaries with two slowly rotating stars sufficiently detached from their limiting

lobes are accurately represented by spheres. Stars with radii of the order of 10–

15% of their separation as an upper limit fall into this category, and main sequence

examples are reasonably common.

The model described here is closely related to the Russell–Merrill model (see

Sect. 6.2.1 and Appendix D.1) and its modern counterpart, the Nelson–Davis–Etzel

(NDE) model by Nelson & Davis (1972). It involves two spherical stars that move

on ellipses around the center of mass. In a binary system with spherical com-

ponents moving on circular orbits we may encounter a situation as illustrated in

Fig. 3.10 and in Fig. 4.8 on page 200. The normal vector, n, and β are simply

given by

n = er , β = 0. (3.1.38)
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Fig. 3.10 Schematic light curve in the spherical model. The figure shows the light curve of a binary

system with spheroidal components moving on circular orbits. The relative orbit of star 2 around

star 1 is shown. The inclination is 90◦. Note that the light curve has no curvature; however, it

would if the figure would be more than schematic. Outside eclipses and during totality the light is

constant. Reproduced from Fig. 2 in McVean (1994, p. 7)

In the framework of spherical models, the component eclipsed at the deeper

minimum is traditionally called the primary component13 and is labeled with sub-

script p. In most cases the primary is the one with higher surface brightness14 (note

that for e �= 0 this is not necessarily true; however, exceptions are rare). The sec-

ondary star is labeled with subscript s.

In the spherical model, the light curve of an EB depends on

1. the relative radius rp of the primary measured in units of the semi-major axis a

of the orbit;

13 Note that in most parts of the book we adopt the Wilson–Devinney convention that star 1 is the

one eclipsed near phase zero.
14 Surface brightness has the physical dimension of energy/time/solid angle/wavelength unit/unit

area. Surface brightness is intensity as “seen” by the observer as he/she looks at the surface of the

object.
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2. the ratio k = rs/rp of the radii;

3. the fractional luminosity, L p/(L p + Ls), of the primary;

4. the inclination i ;

5. the center-to-limb variation15 of surface brightness (limb-darkening coefficients

x p and xs as in the Russell–Merrill model);

6. the eccentricity e of the orbit and the argument of periastron, ω; and

7. third light, ℓ3 (extra light of an optical or physical component).

The distinction between third light, ℓ3, and third luminosity, L3, is commonly

ignored in the spherical and ellipsoidal models, leading to some inconsistencies.

Whereas the luminosities L p and Ls of the components are independent of phase,

we really want to compare the total phase-dependent flux ℓ with observed light

curves. Thus, although ℓ3 is independent of phase, it has to be defined consistently

with the phase-dependent fluxes ℓp and ℓs and it has to be added to these quantities

as is done in (3.2.50).

Thus, the usual convention in spherical and ellipsoidal models, which normalizes

luminosity by

L p + Ls + L3 = 1, (3.1.39)

has to be carefully checked to keep track of the proper physics. If (3.1.39) is used to

normalize luminosity, then Ls need not be specified. Alternatively to L p, we could

also use the mean surface brightness, Js , of the secondary while fixing Jp ≡ 1.

Besides numerical reasons related to the modeling of limb-darkening effects, this

approach has the following advantage: The ratio of mean surface brightnesses is

approximately the ratio of the eclipse depths for stars moving on circular orbits.

Using (3.2.31 ) we get the following expression for the unnormalized luminosity:

L p = 4π
(

1 −
x p

3

)

Jpr2
p, Ls = 4π

(

1 −
xs

3

)

Jsr
2
s , (3.1.40)

which shows that the luminosity ratio and the surface brightness relation are con-

nected by

Ls

L p

= k2 Js

Jp

1 − xs/3

1 − x p/3
= k2 Js

1 − xs/3

1 − x p/3
. (3.1.41)

In spherical models, the computation of light works as follows: For a given phase,

Φ, the distance, d, between the centers of the stars is computed according to

(3.1.36). Next, the projected distance, δ, follows from (3.1.10). If the eclipse condi-

tion (3.3.7) is violated, total light is equal to third light plus the flux received from

both components. If it is fulfilled, we have to subtract the amount of light lost due

15 Limb darkening is a physical phenomenon in which the intensity is progressively dimmer

toward the limb (edge of the visible disk) of a star. The discussion of limb darkening is postponed

to Sect. 3.2.4 but, here, we already use some formulas describing this phenomenon.
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to the eclipse. If we neglect limb darkening for a moment and consider only stellar

disks of uniform surface brightness, the light loss during eclipse is the product of

the surface brightness of the eclipsed star and its eclipsed surface area. The orbital

computation allows us to decide which component is eclipsed and which is in front.

Once we answer this question the problem is reduced to calculating the area of a

segment of a circle, i.e., the area between an arc of a circle and its subtending chord.

Analytical formulas for this task are found in Nelson & Davis (1972, pp. 618–619).

If we want to treat limb-darkened stars the light loss during eclipse is the flux

integral of the surface brightness of the eclipsed star over its eclipsed surface area.

We can follow Nelson and Davis’s approach evaluating the stellar luminosities by

integrating over concentric limb-darkened rings projected onto the stellar disk. Fur-

ther details about the NDE model and its associated program EBOP are given in

Sect. 6.2.2.

3.1.4 Ellipsoidal Models

Autre temps, autres mœurs (Other times, other customs)

The models by Wood (1971, 1972) assume that the forms of the components can be

described by triaxial ellipsoids with semi-axes a j , b j , and c j , with the major axes

along the line of centers at periastron. The orbit is allowed to be eccentric. Usually it

is assumed that tidal forces in close binaries require the orbital angular momentum

vector and the rotation axes of the stars to be parallel. Furthermore, axial and mean

orbital rotation are usually synchronized.

The orbital parameters are the same as in the spherical model with addition of

eccentricity e and argument of the periastron ω. In addition, we have six geometric

parameters, the semi-axes a j , b j , and c j of the ellipsoids. Instead of these parameters

the Wood model alternatively also uses the following six dimensionless parameters:

a = a1/A, k = a2/a1, the ellipticities ε j = b j/a j in the orbital plane, and relative

deviations

ς j =
c j/b j

ε j

− 1 (3.1.42)

perpendicular to the orbital plane and normalized w.r.t. ε j . As outlined in Sect. 2.8,

the component eclipsed at the deeper minimum is defined as star 1. Thus the ratio

k = a2/a1 can be larger than 1 if star 2 is the larger one. For k ≥ 1 the primary

minimum is an occultation;16 for k < 1 it is a transit.17

For triaxial ellipsoids with semi-axes a, b, and c the direction cosines (nx , ny, nz),

of the surface normal, n, are given by

16 Occultation is an eclipse of the smaller star by the larger one.
17 Transit is the passage of the smaller star in front of the larger star.
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n =





nx

ny

nz



 =
1

D





λ/a

µ/b

ν/c



 , D :=

√

(

λ

a

)2

+
(µ

b

)2

+
(ν

c

)2

. (3.1.43)

The distance r from a surface point, r,

r = (λa, µb, νc)T , (3.1.44)

to the center is given by

r =
√

(λa)2 + (µb)2 + (νc)2. (3.1.45)

Finally, by exploiting

λ2 + µ2 + ν2 = 1, (3.1.46)

the differential surface element (3.1.5) takes the form

dσ =
1

cosβ
r2 sin θdθdΦ = Dr3 sin θdθdΦ. (3.1.47)

The basis for Wood’s ellipsoidal model is provided by Chandrasekhar’s (1933a)

investigations of equilibrium figures in close binary systems, where the companion

is assumed to be a point source, and the star itself is described by a polytropic

stellar model. In such models (Chandrasekhar, 1939, p. 43) the density ρ varies

with the radial coordinate θ according to ρ ∼ θn where n is the polytropic index.

Chandrasekhar analyzed the distortion of such polytropes under the influence of

rotation and tides. This leads to an expansion of the potential in spherical harmonics

up to order 4, or equivalently, terms of O(r6
0 ) are neglected. The radius vector r from

the center of mass to a surface point in direction (λ,µ, ν) is

r = r0

[

1 +
4
∑

k=2

wk Pk(λ) −
1

3
v2 P2(ν)

]

, (3.1.48)

where r0 is the (dimensionless) radius of a spherical star of identical volume, and

the quantities wk and ν2 are defined by

wk = ∆kq
(r0

d

)6

, v2 = ∆2(1 + q)F2r3
0 , (3.1.49)

and Pk(λ) are the Legendre polynomials of degree k:

P2(λ) =
3λ2 − 1

2
, P3(λ) =

5λ3 − 3λ

2
, P4(λ) =

35λ4 − 30λ2 + 3

8
. (3.1.50)
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Similarly, as shown by Chandrasekhar (1933b), the gravitational acceleration

associated with the deformation of components can be expressed as

g = g0

[

1 −
4
∑

k=2

(k + 2)wk Pk(λ) + 4
3
v2 P2(ν)

]

, (3.1.51)

where g0 is the acceleration for a spherical star of the same volume. The coefficients

of Pk(λ) describe the tidal deformations and the contributions to the equatorial ellip-

ticity caused by the first three partial tides. In elliptic orbits, they vary with the size

d = 1 − e cos E of the radius vector.

The coefficient of P2(ν) describes the oblateness caused by the rotation. ∆2 is a

function that depends weakly on the polytropic index n;∆2(n) ≈ 1. In the limit n →
5 (Roche model), ∆2 → 1. Equations (3.1.48) and (3.1.51) contain the expansion

factors

Φ(q, r0, n) := 1+ 1
3
(1+q)r3

0η(n), Φ ′(q, r0, n) := 1− 4
3
(1+q)r3

0η
′(n), (3.1.52)

for the radius and the acceleration. η(n) and η′(n) are functions that approach 1

in the limiting case of the Roche model and are given in Chandrasekhar (1933a,

Eq. 44) and Chandrasekhar (1933b, Eq. 101):

n = 3 n = 4 n = 5

η 0.736 0.898 1

η′ 0.811 0.938 1

The factors Φ(q, r0, n) and Φ ′(q, r0, n) express the fact that a star in a binary sys-

tem has a volume slightly larger than that of a single star of identical mass. Intu-

itively this is clear because the gravitational acceleration of a single star is reduced

by the presence of the companion and the orbital rotation, and thus the density

decreases. This systematic deviation needs to be considered when comparing stellar

radii derived from EBs with those predicted by models describing stellar structure.

For close systems with r0 ≈ 0.3 this causes deviations in radius up to 1%.

Expansion (3.1.48) shows that up to O(r6
0 ) a rotating, tidally deformed polytrope

can be approximated by a triaxial ellipsoid if rotation is sufficiently slow and tides

are sufficiently small. This result provides the foundation of ellipsoidal models.

In the case of synchronous rotation (F = 1) and almost circular orbits, the axes

(a, b, c) of the ellipsoid only depend on r0, mass ratio q, and polytropic index n





a

b

c



 = r0







1 + 1
6
(1 + 7q)∆2r3

0

1 + 1
6
(1 − 2q)∆2r3

0

1 − 1
6
(2 + 5q)∆2r3

0






. (3.1.53)

In orbits with significant eccentricity, the separation d between the components

varies significantly, leading to variable deformation; in the case of asynchronous
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rotation expressed by F (for definition of F , see page 100) the axes depend on

rd := r0/d according to





a

b

c



 = r0





1 − 1
6
(2 − 4q)∆2r3

d + 1
2
(1 + q)F2∆2r3

0

1 − 1
6
(2 + 5q)∆2r3

d + 1
2
(1 + q)F2∆2r3

0

1 − 1
6
(2 + 5q)∆2r3

d



 . (3.1.54)

The error in the length of the semi-major axes in this ellipsoid approximation is of

the order of qr4
d . Thus, for extremely close stars with r0 ≈ 1

2
d the error is about 6%

for q = 1. For r0 ≤ 2
5
d the error is smaller than 3%. The approximations up to O(r6

0 )

are not valid for the modeling of close (especially contact and over-contact) binary

systems. The surface shapes are not correctly represented by triaxial ellipsoids in

such cases, and the use of ellipsoidal models to derive photometric mass ratios is

inappropriate.

Let us summarize: The Wood model is most useful for sufficiently detached sys-

tems, for which the surface distortions are adequately approximated by triaxial ellip-

soids. It is certainly better for the analysis of these systems than any model based

on spherical stars or rectification. However, for an adequate treatment of severely

distorted components, only a model based on equipotential surfaces will suffice.

3.1.5 Roche Geometry and Equipotential Surfaces

Auspicium melioris aeui (An omen of a better age)

The Roche model is based on the following assumptions about mass distribution

and orbits.

First, both components are assumed to act gravitationally as point masses (sur-

rounded by essentially massless envelopes). This allows a relatively simple analyt-

ical representation of the potential. Theories of stellar structure show that in most

cases the approximation of the potential as of two point sources plus a centrifugal

potential is sufficient.

Second, it is implicitly assumed that periods of free nonradial oscillations are

negligible when compared with the orbital period P , so that the shape of the compo-

nents is determined by the instantaneous force field. This fact becomes very impor-

tant for modeling eccentric orbit binaries. The timescale of these oscillations is of

the order of the hydrostatic timescale, which for solar type stars is about 15 min.

Surfaces of constant potential are assumed to be surfaces of constant density. In

particular, this is true for the stellar surface, viz., the visible photosphere. For fixed

mass ratio, rotation rates, etc., the stellar surface is parametrized by only one quan-

tity: The potential energy of that surface.

As the basic assumption of the applicability of the Roche model is that the stars

must be in hydrostatic equilibrium, strictly speaking, Roche potentials are only

valid for components moving in circular orbits and rotating synchronously. The

solution of the nonsynchronous problem was first presented by Plavec (1958) and,

in an apparently independent work, by Limber (1963). A generalization of Roche
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potentials to treat eccentric orbits was investigated by Avni (1976). The asyn-

chronous and eccentric solutions were first properly combined by Wilson (1979).

In the following subsections, the equations for circular and eccentric orbits are pre-

sented separately.

3.1.5.1 Circular Orbits and Synchronous Rotation

Consider point masses moving in circular orbits around their center of mass. Assume

an orthogonal right-handed coordinate frame (see Fig. 3.1) with origin at point 1,

corotating with the system so that component 2 lies always on the (positive) x-axis

and has the vector coordinates r2 = (1, 0, 0)T. The z -axis is parallel to the normal

vector of the orbital plane. Component masses are labeled M1 and M2, and S denotes

the center of mass. In this environment, a test particle of unit mass in the atmosphere

of component 1 experiences a gravitational plus a centrifugal force. The total force

F acting on the test particle is given by

F = −G
M1

R3
1

r − G
M2

R3
2

(r − r2) + ω2r0ω, (3.1.55)

where G = 6.673 · 10−11 m3kg−1s−2 is the gravity constant, and R j denotes the

distance of the point r = (x, y, z)T from the center of component j . r0ω is the

vector

r0ω = Mr − (xc, 0, 0)T, M := diag(1, 1, 0), (3.1.56)

originating in (xc, 0, 0)T and pointing to (x, y, 0)T, xc is the position of the center of

mass on the x-axis, viz.,

xc =
M2

M1 + M2

d =
q

q + 1
d, q :=

M2

M1

, (3.1.57)

where d is the separation of the components centers, and q denotes the mass ratio.

The force F per unit mass (this is the surface gravity acceleration g) can be com-

puted as the gradient

F = g = −∇Ψ (3.1.58)

of the potential (Kopal 1959)

− Ψ (x, y, z) = G
M1

R1

+ G
M2

R2

+
ω2

2
r2

0ω, (3.1.59)

where

r2
0ω = (x − xc)2 + y2 =

(

x2 + y2
)

− 2xxc + xc (3.1.60)
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is the perpendicular distance of the particle from the orbital rotation axis which

is parallel to the vector (xc, 0, 1)T. Whereas the first and second right-hand side

terms of (3.1.59) are the gravitational potentials of M1 and M2, the third term is the

centrifugal potential due to the rotation of the frame of reference.

The relation (3.1.58) expresses that we have a conservative force field, energy is

conserved, and the integral

∮

F·ds = 0 (3.1.61)

along any closed path vanishes.

Let us now transform the potential into a more convenient form. Under the

assumptions that the stars revolve in circular orbits and the axial rotation is synchro-

nized with the orbital revolution, the angular18 velocity ω can be replaced according

to Kepler’s law by

ω2 =
4π2

P2
= G

M1 + M2

d3
. (3.1.62)

Substituting (3.1.62) in (3.1.59) and using spherical polar coordinates (3.1.1)

x2 + y2 = r2(1 − ν2), x = λr, (3.1.63)

leads to a replacement of the physical potential U by the normalized or modified

Roche potential Ω

Ω := −
Ψ d

G M1

−Ωq , Ωq :=
1

2

q2

q + 1
, d ≡ 1, (3.1.64)

taking the form19

Ω(r; q) =
1

r
+ q

[

1
√

1 − 2λr + r2
− λr

]

+
1

2
(q + 1)r2(1 − ν2). (3.1.65)

Note that the constant term Ωq has been subtracted, as in Kopal’s convention (Kopal

1959). Whereas this convention due to (3.1.58) does not change the force field

derived from the potential, it destroys the symmetry that otherwise would be con-

served between the two component potentials. For sufficiently small values of r we

note the asymptotic behavior

18 Note that later, when we also treat eccentric orbits, ω as defined in (3.1.62) will represent the

mean orbital angular velocity.
19 As briefly mentioned in Appendix C.3 this form of the potential can also be used to establish the

Roche coordinates, a system of partly orthogonal coordinates (u, v, w). However, these coordinates

are not of much practical use.
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r ≪ 1 ⇒ Ω(r; q) ≈
1

r
. (3.1.66)

Note that r is a dimensionless quantity. This follows from the definition d ≡ 1. If d

is known in physical units, then r scales accordingly.

If we want to compute the force in physical units, it follows from (3.1.64)

F =
G M1

d
∇Ω. (3.1.67)

Note that once we know the potential and its gradient we can compute the normal

vector, n, at each surface point by

n = n(r) = −
∇Ω
|∇Ω|

, ∇Ω =
(

∂Ω

∂x
,
∂Ω

∂y
,
∂Ω

∂z

)

. (3.1.68)

The negative sign in (3.1.68) ensures that the normal vector points inward. The

explicit formulas to compute ∇Ω in the most general case are provided on page 101.

3.1.5.2 Circular Orbits and Asynchronous Rotation

Already by the early 1950s there was well-established evidence for asynchronous

rotation in many close binaries; cf. Struve (1950). Some of the more interesting

Algols have rapidly rotating primaries [Van Hamme & Wilson (1990), Wilson

(1994)]. Fast rotation strongly deforms a star as is demonstrated for RZ Scuti and

RW Persei in the Pictorial Atlas (Terrell et al. 1992). Wilson (1994) also discusses

slow or subsynchronous rotation which is pertinent to the study of common envelope

evolution.

To model fast and slow rotation binaries, it is necessary to extend the concept

of Roche surfaces to asynchronous rotation. It is assumed that the stars rotate uni-

formly,20 so that star 1 rotates with angular velocity vector ω1. We further simplify

the dynamics by neglecting minor rotation-induced changes in the mass distribution.

We use ω to refer to the angular velocity vector of orbital rotation. The acceleration

of a mass element in the rotating frame with center in that star (Fig. 3.11) was

derived by Limber (1963) and has the form

r′′
1 : =

d2r1

dt2
= −

1

ρ
∇ p − ∇

(

G
M1

r1

+ G
M2

r2

)

+ ω × (ω × r01) + ω1 × (ω1×r1) − 2ω1×
(

dr1

dt

)

, (3.1.69)

20 An asynchronous theory by Peraiah (1969, 1970) includes even nonuniform rotation. But it

seems that it has not been applied to real observations or incorporated into a general light curve

program.
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Fig. 3.11 Angular momentum vectors of orbital and stellar rotation

where r1 is the radius vector from the center of star 1 to the point of interest, r01 is

the vector pointing from the center of mass to the center of star 1, ρ is the stellar

density, and p is the gas pressure. Note the different sign convention for the poten-

tials. The first term is the force due to pressure gradients in the stars, the second

term represents gravity, the last term is the Coriolis force, and the other terms are

centrifugal force and an offset from the center of mass.

If (3.1.69) is transformed to the corotating frame of the orbit with center in star 1

defined in Sect. 3.1.5.1, following Limber (1963), all other terms can be expressed

by means of an effective potential

Ψeff := G
M1

r1

+ G
M2

r2

+ ω2r01x1 + 1
2
ω2

1r2
ω1
, (3.1.70)

where rω1
denotes the distance between the point of interest and the rotation axis

of star 1. A special case arises when ω and ω1 are parallel to each other, i.e., ω ×
ω1= 0. In this case, the effective potential takes the form

Ψeff = G
M1

r1

+ G
M2

r2

+ 1
2
ω2r2

0ω+ 1
2
ω̃2r2

ω1
+ ωω̃r2

ω1
, ω̃ := ω1 − ω. (3.1.71)

Note that in the limit ω̃ = 0, the effective potential Ψeff is identical to the potential

Ψ in (3.1.59) describing the synchronous case. Here we will consider only the case

that ω and ω1 are parallel. For that case, Fig. 3.12 shows the x, y-plane and the

quantities r2
0ω, r01, rω1

, and x .

If, following Limber (1963), we now assume that the mass motions in star 1 with

respect to the rotating frame are negligible, i.e., r′′
1, r′

1, and as a consequence the

Coriolis forces are small compared to all other terms in (3.1.69), we end up with

∇ p = −ρ∇Ψeff. (3.1.72)

Thus, under this assumption, according to (3.1.72), surfaces of constant pressure and

constant density are identical with theequipotential surfaces of Ψeff. Thus, from now
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Fig. 3.12 Nonsynchronous rotation. Definition of geometrical quantities in the orbital plane

on, it is sufficient to concentrate on theeffective potential Ψeff. With the geometrical

relations

r2
ω1

= x2 + y2, r2
0ω = (x − xc)2 + y2 =

(

x2 + y2
)

− 2xxc + xc, (3.1.73)

and the definition of the rotational parameter F (the ratio of angular rotation rate to

the mean orbital revolution rate ω)

F :=
ω1

ω
, (3.1.74)

the term involving the centrifugal potential takes the form

1
2
ω2r2

0ω+ 1
2
ω̃2r2

ω1
+ ωω̃r2

ω1
= 1

2
ω2
[

r2
0ω+ (F−1)2 r2

ω1
+ 2(F − 1)r2

ω1

]

= 1
2
ω2
[

r2
0ω+

(

F2−1
)

r2
ω1

]

(3.1.75)

= 1
2
ω2
[

F2
(

x2 + y2
)

− 2xxc + xc

]

.

Combining (3.1.71) and (3.1.75) and proceeding as in Sect. 3.1.5.1 yields

Ω(r; q) =
1

r
+ q

[

1
√

1 − 2λr + r2
− λr

]

+ 1
2

F2(q + 1)r2
(

1 − ν2
)

. (3.1.76)

So, if we neglect the Coriolis term, the only difference between the potential includ-

ing uniform asynchronous rotation and the original one in (3.1.65) is that the cen-

trifugal term is multiplied by F2. But note that for asynchronous rotation there are

separate potential systems for the two stars. The dynamical extension of the Roche

models including asynchronous rotation not only complies with more realistic phys-

ical conditions but also allows us to model spectral line broadening, as discussed in

Sect. 3.6.
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Common envelope evolution is thought to lead to cataclysmic variables [see,

for instance, Warner (1995)] which contain white dwarf stars and erupt as classical

novae, recurrent novae, dwarf novae, and the novae-like variables (sometimes called

UX UMa stars). If one component of a binary undergoes evolutionary expansion the

binary’s outer envelope may begin to engulf the companion. If synchronism cannot

be maintained, the orbit decays in a tight spiral as the orbital motion becomes faster

than the rotation, which cannot keep up through the usual tidal locking mechanism

[see the review articles by Webbink (1992, 2008), Taam & Bodenheimer (1992),

Iben & Livio (1994) for references to original work in this field].

3.1.5.3 Eccentric Orbits and Asynchronous Rotation

At each phase Φ in the eccentric two-body problem the position and separation

d = d(Φ) of the components follow from Kepler’s equation (3.1.28). The force field

on any third object is time dependent and therefore nonconservative. This precludes

the existence of a static potential field and a relation such as (3.1.58). If, however, a

binary component can readjust to equilibrium on a timescale short compared to that

on which forces vary (orbital period P), Wilson (1979) has shown that it is possible

to define the effective potential

Ω(r; q, d) =
1

r
+q

[

1
√

d2 − 2λdr + r2
−
λr

d2

]

+
1

2
F2(q +1)r2(1− ν2). (3.1.77)

This potential may be used without significant inconsistencies, if the timescale for

nonradial oscillations is much smaller than the orbital period P . In the eccentric

orbit case d depends on phase Φ instead of Ω(r; q, d) so we also use the notation

Ω(r; q, Φ) in the context of eccentric orbits to indicate that the potential and stellar

surface depend on phase. We also need the gradient ∇Ω , i.e., the partial derivatives

∂Ω

∂x
= −

x

r3
+

q(d − x)

r̃3
+ F2(q + 1)x −

q

d2
, (3.1.78)

∂Ω

∂y
= −y

[

1

r3
+

q

r̃3
− F2(q + 1)

]

, (3.1.79)

∂Ω

∂z
= −z

[

1

r3
+

q

r̃3

]

,
r2 = x2 + y2 + z2

r̃2 = (d − x)2 + y2 + z2 (3.1.80)

and for the secondary component in the same coordinate system [see Wilson (1979,

Eq. 6)]

∂Ω

∂x
=

q(d − x)

r̃3
−

x

r3
− F2(q + 1)(1 − x) −

1

d2
. (3.1.81)

Note that in the circular-synchronous case, d = 1 and F = 1, (3.1.78) and (3.1.81)

give the same expression. The partial derivatives w.r.t. y and z are the same, anyway.
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The gradient ∇Ω is needed to compute the normal vector, n, according to

(3.1.68) and the local gravity as described in Sect. 3.2.1.

Because the potential (3.1.77) is phase dependent, binary stars moving in elliptic

orbits will change their shapes accordingly. The potential formalism is of course

only an approximation. What is really needed is an analysis of the response of the

stellar surface to varying tidal forces, including nonradial oscillations. Although, a

rigorous analysis and computation of the instantaneous volume taking into account

that stellar matter is compressible, has not yet been worked out, eccentric binary

modeling is often based on the following assumption: The shape of a star varies

along the orbit, but it is expected that its volume V remains essentially constant

[Avni (1976), Wilson (1979)]. For polytropic stars Hadrava (1986) has formally

proven that the contact of the stellar surface with its Roche lobe can occur only

at periastron. Therefore the stellar surface may be parametrized by the periastron

potential Ωp which then yields the periastron volume Vp assumed constant over

phase. The phase-dependent potential can then be found from Vp. In what follows

we pick up Wilson’s (1979) argument. A star’s critical lobe size sets an upper limit

for its size. In the circular, synchronous case, the maximum size is the Roche lobe

(however, if this size is exceeded, we still can have an over-contact binary). In the

eccentric case the effective critical lobe size is the one which causes the star to

fill its critical lobe exactly at periastron. Hut (1981) shows that rotation will tend

to synchronize to the periastron angular rate because of the strong dependence of

the tidal force on distance. The periastron-synchronized F is given by Hut (1981,

Eq. 44)

F2 =
(1 + e)4

(1 − e2)3
=

1 + e

(1 − e)3
. (3.1.82)

Analogous to the Lagrangian point L
p

1 in the circular case with synchronous rota-

tion, the equilibrium point xL
p
1

of vanishing effective gravity is, for a given F and

periastron separation dp = 1 − e, the solution of the equation

∂Ω

∂x
(xL

p
1
, y = 0, z = 0) = 0. (3.1.83)

The solution of this equation is further discussed in Appendix E.12. The poten-

tial Ωp corresponding to (xL
p
1
, 0, 0) yields Vp of the star by a volume integration.

WhereasΩ =Ω(Φ) varies along the orbit, the volume V of the star is kept constant,

V = Vp.

It should be noted that for e �= 0 or F �= 1 no over-contact configuration can be

stable but now a new configuration enters the stage: double-contact. For a further

discussion of binary morphologies we refer to Sect. 3.1.6.

As we have seen, the classical Roche model allows only for gravitational and

centrifugal forces. The modifications for eccentric orbits and asynchronous uniform

rotation make it possible to analyze a much larger group of binaries. The extended

Roche model provides a physically reasonable basis for the description of the

geometrical structure and, as we will see in Sect. 3.1.6, evolutionary processes
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of most systems of intermediate to late spectral type which are not too strongly

magnetized. However, in very early spectral-type binaries the interaction between

radiation and matter may become important because the radiation pressure increases

with the fourth power of the effective temperature.

3.1.5.4 Approaches Including Radiation Pressure

As seen in the literature references below there have been many efforts to extend the

Roche model and to include the radiation pressure expected in hot stars. Although

these efforts have not yet led to a consistent and commonly accepted model, due

to several deficiencies, it seems appropriate to discuss them briefly, to comment on

their deficiencies, to point the reader to the problems involved in including radiation

pressure, and hopefully, to raise further interest in the subject.

In very hot stars the radiation pressure is due to the interaction between elec-

tromagnetic radiation and matter and can be important. The radiation pressure

decreases the effect of gravity, depends on the momentum transfer associated with

absorbed or scattered photons, and is a complicated function of the local conditions.

Because a large fraction of the momentum transfer is due to absorption in prominent

ultraviolet resonance lines, the problem is related to the radiative acceleration of

stellar winds [see, for instance, Castor et al. (1975) or Hearn (1987)].

Dynamically, radiation pressure leads to complicated situations. Stars with radia-

tive envelopes have solutions at depth that are insensitive to surface boundary condi-

tions. Thus, controlled by the optical depths, not too far below the surface, the state

variables including the total radiation pressure [cf. Mihalas (1978, Eq. 1–46, p. 17)]

PR = 1
3
aT 4, a = 4

σ

c
= 7.5647 · 10−15 erg · cm−3K−4 (3.1.84)

will be constant on the standard Roche equipotential surfaces. Accordingly, to get

the shape of the photosphere, we integrate the structure equations inward along

normals to these potential surfaces and determines the starting height by requiring

asymptotically the constancy of state variables on equipotential surfaces. The solu-

tion thus obtained necessarily has horizontal pressure gradients in the surface layers

of nonspherical stars (Kippenhahn and Weigert, 1989), but they become vanishingly

small in deep layers. These gradients will give rise to “geostrovarPhic winds” anal-

ogous to the Earth’s jet stream. Because the depth of the photospheres of hot stars

on the main sequence is about 1% of the radius, this is the order of magnitude of the

deviations from Roche geometry that we could expect in best cases (Lucy 1997).

For very hot stars and certainly for WR components, the photosphere is formed in

the star’s radiatively driven wind and large deviations from Roche geometry will

arise as the problem becomes nonstatic.

In a binary system the radiation pressure influences not only the shape of the

surface by the gravitational force field but also deforms the companion’s surface

directly (this might be called the outer radiation pressure effect).
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Despite the physical effects and complexity mentioned above some early and

simple attempts to include radiation pressure have been made by Schuerman (1972),

Kondo & McCluskey (1976), Vanbeveren (1977, 1978), Djurasevic (1986), and

Zhou and Leung (1987). These approaches have in common that they use a modified

force field, and they consider only the inner radiation pressure effect due the radia-

tion of the star itself. They replaced the potential G M1/r1 of the hotter component

(and if necessary also that of the secondary accordingly) by

G(1 − δ)
M1

r
, δ :=

FR

FG
, (3.1.85)

where G is the gravitational constant, and FG is the force due to gravity

FG = G
M1

r2
. (3.1.86)

Assuming that δ is constant, the potential (3.1.59) in the binary system is now sup-

posed to be

− Ψrad(x, y, z) = G(1 − δ1)
M1

R1

+ G(1 − δ2)
M2

R2

+
ω2

2
r2

0ω. (3.1.87)

Note that FR accounts only for the interaction of stellar matter with the star’s own

radiation field and is derived as follows. At first, the radiation pressure, PR, acting

on a unit surface element is given by

PR =
1

c

∫ ∞

0

∫

ω

Iν cos2 γ dωdν, (3.1.88)

where γ is the angle between the surface normal and the incident radiation, dω

is the solid angle element, and Iν is the monochromatic intensity in the frequency

interval dν around ν . If ρ denotes the mass density, force and radiation pressure

are coupled by

FR = −
1

ρ
∇ PR. (3.1.89)

Equation (3.1.89) is true if PR includes all radiation pressure contribution from both

stars. However, in the papers above, using the monochromatic average opacity κν of

the envelope and absorption coefficient kν = κν/ρ per unit mass, a plane parallel

radiative or spherically symmetric transfer equation is assumed, and PR is replaced

by the inner radiation pressure. Then ∇ PR is replaced by the radial derivative of PR

and the radiation force per unit mass follows as

FR = −
1

ρ

∂PR

∂r
=

1

cρ

∫ ∞

0

∫

ω

κν Iν cos γ dωdν =
1

4πr2c

∫ ∞

0

kν Iνdν, (3.1.90)
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where c = 2.9979 · 108 m/s is the speed of light, and kν is an average absorption

coefficient of the envelope per unit mass. Thus, using (3.1.86), we finally get a

constant expression for δ

δ =
FR

FG
=

1

4πcG M1

∫ ∞

0

kν Iνdν. (3.1.91)

The assumption ∇ PR = ∂PR/∂r is true only for spherical stars. For nonspherical

stars, gravitation and flux-proportional inner radiation pressure do not vary with

the inverse square of the distance, r . Nevertheless, based on this approach, the

shape of equipotentials under the influence of the inner radiation pressure has been

investigated by several authors: Djurasevic (1986), Zhou & Leung (1987), Drechsel

et al. (1995), and Niedsielska (1997). Figure 3.13 (courtesy Drechsel) shows the

meridional intersections of equipotential surfaces of a binary system with mass

ratio, q = 1, for different δ1 values. The top part shows the shrinking of a fixed

equipotential surface (Ω1 = 3.75) with increasing δ1; the bottom part demonstrates

the influence of increasing inner radiation pressure on the extent of the Roche lobe

of the primary.

Fig. 3.13 Inner radiation pressure effects [Fig. 1 in Drechsel et al. (1995)]. Courtesy H. Drechsel

This approach, although used by many authors, has not been without criticism.

Howarth (1997) shows that the inner radiation pressure does not change the stellar

figure at all. His arguments are based on radiative equilibrium andvon Zeipel’s law

(see page 117). For a lobe-filling star the gravity at the inner Lagrangian point,
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L
p

1, is zero and thus according to von Zeipel’s law, the temperature (and hence the

inner radiation pressure) is also zero, and thus cannot change the location of L
p

1.

His mathematical argumentation is: According to von Zeipel’s law the flux vector F

is proportional to the gradient of the gravitational potential [see Eq. (3.2.10)]. The

radiative and gravitational acceleration of star 1 are antiparallel and coupled by

arad = −δg. (3.1.92)

This leads to the effective surface gravity acceleration

geff = g + arad = (1 − δ)g. (3.1.93)

According to (3.1.58), g is the (negative) gradient of the potential Ψ , so it is also

possible to represent geff as the gradient of the effective potential

Ψeff = (1 − δ)Ψ. (3.1.94)

The potential Ψeff differs from the modified potential Ψrad; Ψeff follows from Ψ by

simple scaling. On page 97 we derived the dimensionless potential Ω from Ψ by

dividing it by G M1. Note that if we divide Ψeff by (1 − δ)G M1 we get the same

dimensionless potential Ω . That clearly tells us that the inner radiation pressure

does not change the shape of the components.

The description of the radiation pressure also needs to consider the incoming

radiation of the companion (outer radiation pressure effect). Even under mild con-

ditions it is no longer possible to derive an analytical expression describing the

equipotential surface. Drechsel et al. (1995) treat the photosphere as a deformable

membrane subject to the radiation of the companion and compute iteratively its

shape. However, if inward integrations were made, enormous unbalanced pressure

gradients would be found in deep layers. Nevertheless, because it is the first time that

the inner radiation effect and the radiation pressure of the companion are considered

separately, we briefly sketch their approach coded into a light curve program.21

To account for the consequences of irradiation of the companion, Drechsel et al.

(1995) introduced two functions δ∗
j = δ∗

j (θ, ϕ, r ),

δ∗
j (θ, ϕ, r ) :=

FR(θ, ϕ, r )

FG(θ, ϕ, r )
, (3.1.95)

depending on the local coordinates of a surface point on component j . These func-

tions vary according to

0 ≤ δ∗
j (θ, ϕ, r ) ≤ δ j (3.1.96)

21 They used a circular orbit version of the Wilson–Devinney program. It is also the first time that

the outer radiation pressure has been coded into a light curve program.
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and take their maximum values at the intersection points of the lines connecting

both mass centers with the stellar surfaces (ϑ = 0◦) and the minimum values at the

stellar horizons (ϑ = 90◦).

For a given surface, the integration of the incident flux, F(θ, ϕ, r ), on a unit area

element located at (θ, ϕ, r ), is very similar to that used to compute the reflection

effect. The computation of δ∗
j (θ, ϕ, r ) is performed by the formula

δ∗
j (θ, ϕ, r ) = δ

FR(θ, ϕ, r )

FR
0 (θ, ϕ, r )

= δ
F(θ, ϕ, r )

F0(θ, ϕ, r )
, (3.1.97)

where FR(θ, ϕ, r ) and FR
0 (θ, ϕ, r ) are the radiation forces associated with F(θ, ϕ, r )

and F0(θ, ϕ, r ), and F(θ, ϕ, r ) is a reference flux incident on a unit area element

located at (θ, ϕ, r ) perpendicular to the direction of F0(θ, ϕ, r ). The reference flux

enables us to couple δ∗
j (θ, ϕ, r ) to the inner radiation pressure parameter δ. Whereas

the computation of F(θ, ϕ, r ) involves all eclipse effects, F0(θ, ϕ, r ) does not. The

reference radiation force is computed as

FR
0 (θ, ϕ, r ) = δFG(θ, ϕ, r ) (3.1.98)

which, using (3.1.95), leads to the first part of equation (3.1.97). Although formula

(3.1.97) looks simple, the computations are complicated by the fact that the refer-

ence flux can only be computed for a predefined orientation of the irradiated surface.

The surface in turn adjusts itself according to incident flux. Thus an iterative proce-

dure is necessary which assumes first a surface normal pointing to the mass center

of the irradiating star. The surface normal is then improved until convergence.

Once the functions δ∗
j (θ, ϕ, r ) are known, the modified Roche potentials

Ω rad
1 (r1; q) =

1 − δ1

r1

+ q





1 − δ∗
2 (θ1, ϕ1, r1)

√

1 − 2λr1 + r2
1

− λr1



+ 1
2
(q + 1)r2

1

(

1 − ν2
)

(3.1.99)

for and in the coordinate frame of component 1 and

Ω rad
2 (r2; q) = q

1 − δ2

r2

+
1 − δ∗

1 (θ2, ϕ2, r2)
√

1 − 2λr2 + r2
2

−λr2 + 1
2
(q + 1)r2

2

(

1 − ν2
)

+
1 − q

2

(3.1.100)

for and in the coordinate frame of component 2 are used to compute the stellar

surfaces and surface normal vectors. That in turn leads to new values of δ∗
j (θ, ϕ, r )

and so on.

As computed by Drechsel et al. (1995), in extreme cases such as the one shown

in Fig. 3.14 increasing radiation pressure can force the secondary to switch from

inner to outer contact configuration. So besides changing the stellar shapes the

system configuration can be changed completely due to the shift of the positions

of the Lagrangian points and the altered shapes and extents of the Roche lobes. In
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Fig. 3.14 Effects of full radiation pressure [Fig. 3 in Drechsel et al. (1995)]. Courtesy H. Drechsel

scenarios with δ1 and δ2 of a few percent Drechsel (1997, private communication)

reports that the radii of the stars change only by a few percent as well.

Although the modeling of the inner and outer radiation pressure effects of the

previous paragraph are based on doubtful assumptions, the computations indicate

that radiation pressure can have drastic effects in binary systems and thus require us

again to be careful regarding the physical assumptions. Let us therefore summarize

the assumptions and their deficiencies and point the reader to the physics to be

considered.

Even the modeling of the inner radiation pressure needs to incorporate the gra-

dient of the radiation pressure as done by Howarth (1997), not the radial derivative,

because the local physics involves the entire force field. The reason is that a local

point on the surface sees only the entire force field, not the separate gravities of the

two stars and not the centrifugal force. The outer radiation pressure will lead to hor-

izontal pressure gradients in the surface layers causing instabilities and fluctuations

on the surfaces of the stars. Thus the problem is not static. The “potential functions”

Ω rad in the Drechsel et al. membrane formalism are not potential functions in the

strict sense because their gradient does not generate the net force field. At best, we

can hope that if radiation pressure is sufficiently small the potential is only slightly

perturbed and that ∇Ω rad approximates the force.

So despite many efforts there is no consistent model for Roche geometry includ-

ing radiation pressure. If the radiation pressure is negligible as in most stars there

is no need to consider it. If it becomes relevant (e.g., in Wolf–Rayet binaries or

X-ray binaries) the stars are so hot that the radiation pressure effects become very

important and require a dynamical treatment. In these cases, there are additional
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effects such as radiation-driven colliding stellar winds, as discussed in Sect. 3.4.4.4,

that require further modifications of our binary model.

3.1.6 Binary Star Morphology

Whereas the original classification of EBs was phenomenological (for types EA,

EB, EW see Sect. 1.2.2), based on observed light curves, morphological classi-

fication based on equipotentials provided more physical insight. Associated with

the concept of equipotentials are “limiting surfaces” or “limiting lobes.” A limiting

lobe is the volume enclosed by a limiting surface. The usefulness of morphological

classifications is that each of the stable configurations is generated by a structural–

evolutionary process.

Let us start with the circular orbit and synchronous case. The equipotentials of

(3.1.65) are identical with the surfaces of zero relative velocity in the restricted

three-body problem [Szebehely (1967), Kopal (1978)]. There exist five Lagrangian

points L
p
i , i = 1, . . . , 5, characterized by the requirement,22 ∇Ω = 0. The

Lagrangian point, L
p

1, is also called the inner Lagrangian point and is of particu-

lar relevance for EB stars because it is critical to the concepts of detached, semi-

detached, and over-contact binaries. L
p
1 lies between the two stars (see Fig. 3.15),

and at that point surfaces of equal potential coalesce in such a manner that the

Fig. 3.15 Lagrangian points L
p

1 and L
p

2 in the BF Aurigae system. This is Fig. 3 in Kallrath &

Kämper (1992)

22 In the more general cases of eccentric orbits or asynchronous rotation we will use the term

equilibrium points rather than Lagrangian points.
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surfaces passing through L
p

1 are the largest closed equipotentials enveloping the two

stars separately. L
p

1 marks the inner Lagrangian surface and the Roche lobes of the

components; the relative sizes of the Roche lobes depend directly on the mass ratio

such that the star with greater mass has the larger lobe. If one of the stars fills its

Roche lobe (semi-detached binary), it may overflow the critical surface, transferring

mass to its companion through L
p

1. If both stars satisfy this condition, we call the

system a contact binary.23 The modified potential at the inner Lagrangian surface

is called Ω I and that at the outer, ΩO. Note that these quantities depend only on

q. The latter potential marks the effective limit of the binary; matter beyond this

surface is lost from the binary system through the outer Lagrangian point, L
p

2. When

a particle leaves the binary through L
p

2 its energy is too small to escape to infinity.

However, it is then no longer forced to corotate with the binary and, for most mass

ratios, acquires enough energy by gravitational interaction with the binary to spiral

to infinity. If components are in contact, i.e., Ω I ≥ Ω ≥ ΩO, then Ω describes the

surface of the common envelope. Such a system is an over-contact binary.

We are now in a position to connect the notions of lobe-filling stars and the

values of Roche potential values. If only one component accurately fills its Roche

lobe the system is semi-detached. If neither fills its Roche lobe, it is detached.The

computation of L
p

1 and of the critical potentialsΩ I andΩO is explained in Appendix

E.12. The degree of contact is measured by the contact parameter, f , sometimes

called the fill-out factor or parameter :

f =
Ω I −Ω

Ω I −ΩO
, Ω ≤ Ω I. (3.1.101)

Note that f = 0 when the component fills its lobe, i.e., Ω = Ω I; and f = 1 when

Ω = ΩO, but when one of the components is within its Roche lobe, the meaning of

the contact parameter can be extended: f < 0 for that component.

The fill-out factors need to be computed for each component separately in each

component’s own reference frame. They are only reasonably defined for circular

and synchronous orbits (d = 1 and F1 = F2 = 1). Thus we have

f1 := f (Ω1, q), f (Ω, q) :=
Ω I(Ω, q) −Ω

Ω I(Ω, q) −ΩO(Ω, q)
, Ω ≤ Ω I(Ω, q),

(3.1.102)

where the functionsΩ I(Ω, q) andΩO(Ω, q) are evaluated as described in Appendix

E.12. To compute the fill-out factor of component 2, it is necessary to transform Ω2

into the coordinate system of component 2:

Ω ′
2 = q ′Ω2 + 1

2

(

1 − q ′) , q ′ =
1

q
. (3.1.103)

23 This configuration is a special case (e = 0, F = 1) of what on 113 page is called a double-

contact binary. As is discussed later, a contact binary is not likely to exist. Nevertheless, it is

interesting from a mathematical point of view.



3.1 System Geometry and Dynamics 111

The inverse transformation to (3.1.103) is

Ω2 = qΩ ′
2 + 1

2
(1 − q), (3.1.104)

which enables us to compute f2

f2 := f (Ω ′
2, q ′). (3.1.105)

The fill-out factor should not be confused with a similar term, f R, also described as

the fill-out parameter, introduced by Rucinski (1973):

f R =







Ω I/Ω, if Ω > Ω I,

Ω I −Ω

Ω I −ΩO
+ 1, if Ω < Ω I.

(3.1.106)

Detached systems haveΩ > Ω I and f R < 1, lobe-filling components have f R = 1,

and over-contact systems are described by 1 ≤ f R ≤ 2. Similar to f1 and f2, for

computing f R
1 and f R

2 we have to apply the coordinate transformations described

above.

Another definition being used in Binary Maker 3.0 is

f BM =
{

Ω I/Ω − 1 , Ω > Ω I

f , Ω ≤ Ω I
, (3.1.107)

which is properly normalized for detached systems between −1<f BM ≤0 as well.

For circular orbits and synchronous rotation the Roche potential approach led to

the morphological types of detached, semi-detached, and over-contact binaries. The

names and the full set of categories were used first by Kopal (1954) but the term

“over-contact” dates back to Kuiper (1941) who already understood the relevant

principles. Unfortunate or not, many authors have used the adjective contact, rather

than over-contact, for binaries with common envelopes. However, in a more general

context (namely eccentric orbits, asynchronous rotation) a consistent approach is

possible only if we have a concept in which the word contact has a meaning in the

sense “in contact with a critical surface.” To stress again, the word contact refers

to contact with a limiting surface (not necessarily with the other component). In

that sense, the term “semi-contact” would be a more accurate usage than “semi-

detached.” For the case of circular orbits and synchronous rotation, the “degree of

contact” can be quantitatively described by the term contact parameter, or some-

times, fill-out factor, f , defined according to (3.1.101). It measures the degree to

which a component fills its Roche lobe: 0 if the potential matches that of the inner,

and 1 if it matches the outer Lagrangian surface.

For circular orbits and synchronous rotation the limiting surfaces are the inner

Lagrangian surface (the Roche lobes) and the outer Lagrangian surface. These sim-

ple scenarios already explain many observed configurations and enable us to link
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them to evolutionary states taking into account evolutionary expansion, gravitational

radiation, mass loss and exchange, and magnetic braking. The first three morpho-

logical types are the following:

1. Detached binary systems, where both components are within their lobes. The

fill-out factor of each component is negative. If the components are small com-

pared with their Roche lobes, their shapes closely approximate spheres. Whereas

morphology and evolutionary state are related for semi-detached and over-

contact binaries, such a connection does not exist in detached systems.

2. Semi-detached systems, with one component within its critical lobe, whereas

the other exactly fills its lobe ( f = 0 for this component). This morphological

type includes Algols, cataclysmic variables, and some X-ray binaries,24 in which

one component is highly evolved and in which mass transfer occurs. Algol itself

may serve as an example of the Algol type. In general, the lobe-filling star can

lose matter through the inner Lagrangian point.

3. Over-contact systems or common envelope binaries, where each component has

a surface larger than its Roche lobe. Mechanical equilibrium requires that the sur-

faces match in potential. That is, the common surface must coincide with a single

equipotential above the Roche lobes (0 < f1,2 ≤ 1, and f1 = f2). Configurations

are limited by the outer Lagrangian surface. This morphological type explains W

UMa stars very well. Whereas in all over-contact binaries the more massive star

is larger than its companion, Binnendijk (1965, 1970) defined two subclasses of

W UMas observationally: W-type and A-type W UMa stars on the basis of the

larger star being cooler or hotter than the other, respectively; i.e., the primary

minimum being an occultation or a transit. So we have A-type contact systems,

in which the more massive star has the greater surface brightness and the W-type

systems, in which the more massive and larger star has less surface brightness.

Our present interpretation [Lucy (1976), Flannery (1976), Robertson & Eggleton

(1977), Wilson (1978), and Lucy & Wilson (1979)] is that W-types are formed by

slightly over-contact binaries with moderate mass ratio such as 0.4–0.6 and with

components close to the zero age main sequence (ZAMS), and that A-types are

somewhat evolved – on the main sequence but not on the ZAMS. Configurations

with one component larger than its critical lobe while the other is not do not

have closed surface equipotentials and are not expected to exist for more than

a few orbits. However, the early (extremely brief) stages of common envelope

evolution specifically involve exactly this configuration [cf. Webbink (1992),

Taam & Bodenheimer (1992), or Iben and Livio (1994)]. Binaries in which both

components exactly fill their Roche lobe ( f1 = f2 = 0; the true contact system

as we might use the term) could in principle exist. But no mechanism is known

by which they could come into existence and they are not expected to be stable

against small perturbations. Small effects caused by evolutionary changes lead

to either the semi-detached or over-contact scenario.

24 The basic model of X-ray binaries is a close binary system with a “normal” star (main sequence

or giant, in exceptional cases also a degenerate star) filling its Roche lobe and transferring matter

to the compact object, a neutron star, or a black hole (Krautter 1997).
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4. Double-contact system (Wilson, 1979), where each component fills its lobe (see

Fig. 3.16) exactly, and at least one rotates supersynchronously. For asynchronous

rotation (F �= 1) or eccentric orbits (e �= 0), over-contact binaries can no longer

exist. The extreme case is a centrifugally limited binary or a double-contact sys-

tem, where two components fill their limiting lobes but do not touch each other.

β Lyrae and V356 Sagittarii are likely candidates. What is the astrophysical

meaning of double-contact binaries? It is observed that some Algol primaries

(among those with primaries well within their Roche lobes) rotate much faster

than synchronously, some even close to or approximately at the centrifugal limit.

An underlying physical process to account for that fast rotation is spin-up by

the accretion process. As described in Wilson (1994), gas transferred from the

contact component arrives with considerable angular momentum and converts

orbital to rotational angular momentum. The outer envelope of the primary

component now spins-up. Rather than the star expanding to reach the lobe, the

limiting lobe contracts to meet the star. The secondary component rotates syn-

chronously and already fills its limiting lobe (the ordinary Roche lobe).

Fig. 3.16 The double-contact binary RZ Scuti. This figure, reproduced from the Pictorial Atlas

(Terrell et al. 1992, p. 342) and provided by Dirk Terrell, shows the shape of RZ Scuti at phases

0, 0.05, . . . , 0.5. Courtesy D. Terrell

In summary, the following stable configurations can occur:

• detached: both components are smaller than the critical or limiting lobe;

• semi-detached: one component is smaller than the critical lobe, while the other

fills its critical lobe at periastron;
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• double-contact: each component exactly fills its critical lobe (again, at perias-

tron); and

• over-contact for F = 1 and e = 0 only: common envelope binary.

In Chap. 4, we show and discuss how a priori knowledge about the configuration

of a binary system can be used as a constraint. The Wilson–Devinney program, for

example, implements such explicit constraints by different modes of operation.

3.2 Modeling Stellar Radiative Properties

Ignorantia legis neminem excusat (Ignorance of the law excuses none)

The computation of the flux emitted from the binary components requires the inte-

gration of local quantities over the surfaces. In the Roche potential models, espe-

cially in the circular orbit and synchronous rotation case, the stellar surface S′ is

defined as the set of all points rs on the equipotential surface (3.1.65) specified

by Ω0,

S′ = S′(q,Ω0) := {rs |Ω(rs, q) = Ω0}. (3.2.1)

For each star, in the circular orbit and synchronous rotation case, the surface is

parametrized by only two quantities: q andΩ0. For fixed q, the largerΩ0 the smaller

the star, and vice versa. The surface defined by the set S′ of vectors or points rs

has the surface area S =
∫

S′ dσ . Scaling with R2 gives the real surface measure.

The differential surface element dσ in spherical coordinates was given in (3.1.5),

repeated here for convenience,

dσ =
1

cosβ
r2 sin θdθdϕ. (3.2.2)

Corresponding to the equipotential condition

Ω(rs, q) = Ω0, rs = (rs, θ, ϕ), (3.2.3)

it is possible to define the function25

rs : [−π, π ] × [0, 2π ] → IR+, (θ, ϕ) → rs(θ, ϕ), (3.2.4)

which gives the distance of a surface point rs to the center of the star. The computa-
tion of the surface area follows as

S = S(Ω0) =
∫

S′
dσ =

∫ 2π

0

∫ π

0

1

cosβ
r2

s (θ, ϕ) sin θdθdϕ (3.2.5)

and the volume is

25 In order to define a function we explicitly define the domain of its argument, here θ and ϕ.
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V = V (Ω0) =
∫ 2π

0

∫ π

0

∫ rs (θ,ϕ)

0

r2
s (θ, ϕ) sin θdrdθdϕ. (3.2.6)

In the eccentric orbit case, there is no potential in the strict sense as discussed in

Sect. 3.1.5.3. However, as discussed on page 102, there is good physical reasoning

that the volume remainsconstant along the orbit. Thus, the shapes of the stars vary

with phase but we require that the volume remains constant. At first, V = V (Ωp) is

computed according to (3.2.6) where Ωp is the potential at periastron. Note that Ωp

plays the rôle Ω0 played in the circular orbit case. Then, for a given phase Φ, the

corresponding Roche potentialΩΦ is computed.ΩΦ is derived from the requirement

that it yields a stellar surface which leads to the correct volume, i.e., V (ΩΦ) =
V . Therefore, to compute ΩΦ the following iterative procedure based on Wilson

(1979):

Ω
(k)
Φ →

(

Ω(rs ; q, Φ) = Ω
(k)
Φ

)

→ r (k)
s (θ, ϕ) → V

(

Ω
(k)
Φ

)

(3.2.7)

is applied until, after a number of iterations, k = 0, . . . , K ,

∣

∣

∣
V
(

Ω
(K )
Φ

)

− V

∣

∣

∣
≤ ε (3.2.8)

a predefined tolerance is achieved. The result is again a radial function rs(θ, ϕ)

defining the stellar photosphere.

The computation of the flux emitted by the stellar photosphere is based on several

assumptions about the underlying photospheric physics. These include the choice of

a model atmosphere and several physical effects:

• gravity brightening;

• limb darkening;

• reflection effect; and

• blackbody radiation, gray atmosphere, or a model atmosphere.

In addition, special physical effects such as dark or bright spots on the star surfaces

might be included.

3.2.1 Gravity Brightening

Hydrostatic equilibrium is equivalent to constant density and pressure on equipo-

tential surfaces. If we assume that density ρ, temperature 26 T , and pressure p are

related to each other by an equation of state, e.g., the ideal gas law,

26 Note that this temperature is the local thermodynamic temperature which differs conceptually

from the effective temperature defined as a function of bolometric flux.
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p = RρT, R = 8.31451 J · mol−1K−1, (3.2.9)

with the universal gas constant R, then on equipotentials we see constant tempera-

ture as well. So, the star in hydrostatic equilibrium is homogeneous on each equipo-

tential.

A rotating star differs from a nonrotating star in shape, local surface gravity

acceleration, and surface brightness. It develops oblateness and a pole-to-equator

variation in surface brightness. This variation is called gravity brightening (some-

times, especially in the older literature, called gravity darkening). This phenomenon,

for radiative envelopes, has its origin in the temperature gradient in and near

the surface. The atmosphere is assumed to be locally plane-parallel (that implies

we need to consider only one geometrical dimension), but irradiated from below

by a radiative flux varying across the stellar surface. According to von Zeipel’s

theorem 27 this flux and, due to the Stefan–Boltzmann law (3.2.15), the tempera-

ture are also determined by the gradient (w.r.t. the optical depth τ ) of the source

function in the subphotospheric layers. The result is that this flux is proportional

to the effective surface gravity acceleration g at the given point of the surface. A

modern derivation of this result is found in Kippenhahn & Weigert (1989, Eq. 42.6,

p. 436) and reads

F =
4ac

3κρ
T 3 dT

dU
g = −k(U )g, g = −∇U, (3.2.10)

where F is the vector of radiative energy flux and g is the effective gravitational

acceleration consisting of gravitational and centrifugal acceleration. The propor-

tionality factor k(U ) describes the conduction of this radiative transport and depends

only on the potential U because the temperature, T = T (U ), and opacity κ(ρ, T ) =
κ(U ) depend only on potential (Kippenhahn & Weigert, 1989, p. 436). If we want

to compute the radiative flux on a given equipotential it varies only with g and is

antiparallel to g.

Gravity brightening is thus described by a relation between the local effective

temperature Tl (or the local bolometric flux) and the local surface gravity accelera-

tion. For our purpose is sufficient to consider only the modulus of g, i.e., according

to (3.1.58) we get

g = |g| = |▽U | = g0 |▽Ω| , (3.2.11)

where g0 is a proportionality factor. Thus, for each surface point rs ∈ S′ we express

the local surface gravity acceleration in terms of potential gradient components of

the gradient of the Roche potential,

27 There are three papers by von Zeipel (1924a, b, c) related to the radiative equilibrium of distorted

stars. Relevant to our problem is Eq. (36) in the first paper, and Eqs. (90) and (91) in the third paper.
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gl = g(rs) := g0|▽Ω(rs)| = g0

√

(

∂Ω

∂x

)2

+
(

∂Ω

∂y

)2

+
(

∂Ω

∂z

)2

. (3.2.12)

Further in the book the subscript l will indicate “local.” Once gl is known, the local

bolometric flux Fl = F(rs) is computed according to

Fl = Fp

(

gl

gp

)g

, g =
{

1.00, von Zeipel theorem,

≈ 0.32, Lucy’s law,
(3.2.13)

where the index p refers to the pole of a star, and the exponent g should not be

confused with the modulus of g. The upper part of (3.2.13) summarizes the von

Zeipel theorem by von Zeipel (1924a) for stars in radiative equilibrium. Lucy’s law

established by Lucy (1967) gives the relation for stellar envelopes in convective

equilibrium. The exponent 0.32 is an estimate derived numerically from tables of

convective stellar envelopes.

Let us make a few more remarks on the von Zeipel theorem. The radiative equi-

librium in regions with different g (and consequently also the optical depths of

particular equipotentials) gives rise to temperature gradients along the equipotential

surface. We should expect that this temperature gradient leads to a mass flow (merid-

ional28 circulation) parallel to the surface which tends to homogenize the physical

conditions in the layer. Thus, strictly speaking, it is not possible for a rotating and

tidally distorted star to be in hydrostatic and radiative equilibrium simultaneously.

The complicated dependence of the temperature on optical depth in the photosphere

in radiative equilibrium immediately violates the underlying assumptions of the

homogeneity on equipotentials. If we give up the radiative equilibrium assumption

and assume that the horizontal homogenization would be effective in the photo-

sphere and lead to weaker temperature variations on equipotentials, then we can use

the result due to Hadrava (1987, 1988), who showed that the flux would vary, under

these circumstances, such that

F ∼ g0.56, (3.2.14)

and that limb darkening would also depend on g. To close the discussion on von

Zeipel’s theorem we conclude that a rigid analysis of the problem should include

hydrodynamic calculations of meridional circulations in the atmosphere and also

the computation of three-dimensional radiative transfer (giving up the assumption

of a local plane parallel atmosphere), keeping in mind that the theorem is an approx-

imation which in many binaries seems to represent the situation appropriately.

As is obvious from (3.2.13), gravity brightening is strong in distorted stars hot

enough to have radiative envelopes. Early-spectral-type close binaries such as TU

Muscae [cf. Andersen & Grønbech (1975)] are the best examples. In these systems,

28 Meridional circulation is for instance described by Tassoul (1978, Chap. 8) or Kippenhahn and

Weigert (1989, pp. 437–443).
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the bolometric flux is directly proportional to local gravity. Because bolometric flux

and local effective temperature are coupled by the Stefan–Boltzmann law

Fl ∼ T 4
l , (3.2.15)

from (3.2.13) with β := g/4 we can derive a similar relation for the local effective

temperature

Tl = Tp

(

gl

gp

)β

, β =
g

4
=
{

0.25, von Zeipel-theorem,

≈ 0.08, Lucy’s law,
(3.2.16)

where Tp is the polar effective temperature. The polar temperature is the highest

temperature on the star and therefore higher than the “spectroscopically observed”

effective temperature Teff, which is some kind of average (weighted with aspect

effects). If the stars move in elliptic orbits, in contrast to Teff the polar effective

temperature, Tp, varies with phase. Therefore, Wilson (1979) recommends use of the

mean surface effective temperature Teff as input parameter. For a star with surface S,

Teff can be defined through the bolometric luminosity L and the Stefan–Boltzmann

law,

L = σ ST 4
eff, σ = 5.6705 · 10−8 J · m−2s−1K−4. (3.2.17)

On the other hand, Teff may be computed from the average flux over the surface

T 4
eff =

1

S

∫

S′
FldS′ =

1

S

∫

S′
Fp

(

gl

gp

)g

dS′ (3.2.18)

=
1

S

∫

S′
T 4

p

(

gl

gp

)g

dS′,

whence Wilson (1979) derives the reference temperature at the pole

Tp = Teff

[

S

/∫

S′

(

gl

gp

)g

dS′
]0.25

. (3.2.19)

Note that Tp and Teff are equal for spherical stars. Now that we have the local

temperature, Tl , and local surface gravityacceleration, gl , we are able to compute

the monochromatic or bolometric fluxes and intensities from stellar atmosphere

models, briefly as follows. From the gravity brightening law we compute the local

bolometric flux. The local bolometric flux plus a stellar atmosphere model enable

us to compute the bolometric and monochromatic intensities.
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3.2.2 Stellar Atmosphere Models

For a given chemical composition, stellar atmosphere models allow us to compute

the monochromatic intensity Iλ(Teff, log g, γ ) as a function of the effective tem-

perature, Teff, the logarithm, log g, of the surface gravity, and the aspect angle, γ .

They allow integration over photometric passbands for the computation of bolo-

metric intensities. Frequently used stellar atmosphere models are those by Mihalas

(1965), the Uppsala model atmospheres by Gustafsson et al. (1975), and the Kurucz

(1979, 1993) stellar atmosphere models. Some light curve programs (e.g., the

Wilson–Devinney program) have included stellar atmosphere corrections. Others

have empirical or semi-empirical corrections [Hill & Rucinski (1993); Linnell

(1991)]. Milone et al. (1992) and Van Hamme & Wilson (2003) apply Kurucz’s

stellar atmospheres to the Wilson–Devinney light curve model. The requirement

to use an accurate model for the radiation physics becomes crucial when the binary

components have very different temperatures. The use of stellar atmospheres is most

valuable to analyze light curves simultaneously at two or more wavelengths. In order

to have a consistent model it is important to incorporate log g correctly. Otherwise

there would be only one radiative parameter, namely Teff. The consequence would

be that a computed eclipse may be too deep in one passband and not deep enough

in another.

3.2.3 Analytic Approximations for Computing Intensities

Light curves directly show relative radiative power or observed radiative flux

because the telescope collects integrated light from the stellar system and does not

resolve the details of the surface. However, it is useful to think of the process of

emission at the stars’ surfaces.

The computation of intensities by means of stellar atmosphere models is very

time consuming, so usually a simple analytical approximation is used to calculate

the specific intensity [cf. Mihalas (1978, p. 2)] at the surface of the stars, namely,

the local monochromatic intensity Il(λ) which has units of energy/unit surface

area/time/solid angle/wavelength. In the simplest case the computation starts with

blackbody radiation,29 i.e., Il (Tl, λ) = Bλ(Tl) with Bλ(Tl) being the Planck function

Bλ(T ) :=
2hc2

λ5
℘(λ, T ), ℘(λ, T ) :=

1

ehc/kλT − 1
, (3.2.20)

29 A blackbody is a (hypothetical) perfect radiator of light that absorbs and reemits all radiation

incident upon it.
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where Planck’s constant, h = 6.62608 ·10−34 Js, Boltzmann’s constant k = 1.3807 ·
10−23 J/K, and the speed of light, c = 2.9979 · 108 m/s. Alternatively, we also write

the Planck function in the form

Bν(T ) :=
2πν3

c2

1

ehν/kT − 1
. (3.2.21)

The blackbody assumption holds strictly only where there is no net flux of radiation

(and thus in no real star, and, after all, we see the radiation that emerges from its

surface). It is a useful starting point, and sometimes not a bad approximation to real

surfaces, but it is only a very rough approximation for most real stars. Although

an ideal radiator has no limb darkening, we can regard (3.2.20) as representing the

emergent intensity normal to the surface and introduce a limb-darkening factor, as

in Sect. 3.2.4.

3.2.4 Center-to-Limb Variation

Neglecting the center-to-limb variation (CLV) is equivalent to assuming that the

stellar disks have uniform brightness. There is ample evidence from the Sun and

other stars, however, that surface brightness varies from mid-disk to the limb. Stel-

lar surface imaging by microlensing30 [cf. Sasselov (Sasselov 1998a, b)] is used

to measure stellar CLV. CLV, as the term is used in this section, is the depen-

dence of intensity on angular distance from the surface normal (see Fig. 3.17). It

arises because temperature increases with depth in stellar atmospheres, and the line-

of-sight at the limb does not penetrate into high-temperature regions as does the

line-of-sight through the disk center. Therefore, in order to compute the intensity

at an arbitrary point, a factor D(µ) needs to be computed. Let γ denote the angle

(sometimes called the aspect angle) between the surface normal n(rs) in point rs

and the arbitrary direction e, in which radiation is emitted, so that

µ := cos γ = cos γ (rs) = n(rs) · e(rs, Φ), 0 ≤ µ ≤ 1. (3.2.22)

Limb brightening is important only forchromospheric and coronal emission and far-

ultraviolet light curves, so we will concentrate in this section only on limb darken-

ing, which affects the visible radiation from a stellar photosphere. The simple and

traditional monochromatic limb-darkening law is

Dλ(µ) = 1 − xλ(1 − µ) = 1 − xλ + xλ cos γ (3.2.23)

with a limb-darkening coefficient xλ. Note the wavelength dependence of x indi-

cated by the subscript λ. As discussed at the end of this section, similar coefficients

30 Microlensing occurs if the light of a star is refracted and amplified by the gravity field of another

star just moving through the line-of-sight.
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e

n
γ

γ

Fig. 3.17 Center-to-limb variation. This figure shows the aspect angle γ (angle between normal

vector n and radiation emission direction e) appearing in the mathematical formulation of the limb

darkening. The right part of the figure illustrates that the depth of the atmosphere region (and thus

temperature) accessible to an observer varies with the aspect angle γ

and laws can be established for the bolometric case. For notational convenience

we drop the wavelength dependence in the rest of this section. The associated

(monochromatic or bolometric) flux F received from the (spherical) stellar disk

with radius R that is displayed in Fig. E.8 can be computed as

F =
∫ 2π

0

∫ R

0

dF(u, ϕ). (3.2.24)

The contribution of a differential surface element to the flux is

dF(u) = I (u)ududϕ (3.2.25)

with the intensity distribution (here, for the linear limb-darkening law)

I (u) = D(µ)I0 = (1 − x + x cos γ )I0, I0 = 1, (3.2.26)

where I0 is the normal emergent intensity; for spherical stars this is the normal

emergent intensity at disk center. Observing the (spherical star) relation

sin γ =
u

R
, (3.2.27)
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the differential du and r can be eliminated using

du = R cos γ dγ. (3.2.28)

It then follows that

F =
∫ 2π

0

∫ π/2

0

dF(γ, ϕ), dF(γ, ϕ) := Dλ cos γ I0 R2 sin γ cos γ dγ dϕ,

(3.2.29)

with the effective limb-darkening factor, D,

D =
F

I0 R2
=
∫ 2π

0

∫ π/2

0

[

(1 − x) sin γ cos γ dγ dϕ + x sin γ cos2 γ
]

dγ dϕ,

(3.2.30)

we eventually get (assuming a unit disk, i.e., R ≡ 1)

F = D I0, D = π
(

1 −
x

3

)

. (3.2.31)

The linear limb-darkening law is a one-parameter law. It is only a very rough rep-

resentation of the actual emergent intensity. Accuracy is increased if we consider

two-parameter, nonlinear limb-darkening laws. These laws and their coefficients

are derived from stellar atmosphere models [see Van Hamme (1993) and references

therein], e.g., by least-squares fitting of the chosen expression to the normalized

intensities of the atmosphere model, tabulated as a function of µ. Some approaches

impose the condition of conservation of total emergent flux and some do not.

The most simple class of nonlinear relations involves polynomials, such as

D(µ) = 1 − x(1 − µ) − y(1 − µ)p. (3.2.32)

For (3.2.32) the associated flux F (P) over the entire disk is

F (P) = π

(

1 −
x

3
−

y
1
2

p2 + 3
2

p + 1

)

I0, (3.2.33)

where I0 is again the normal emergent intensity.

In particular, Linnell (1984) has used the quadratic limb-darkening law (p = 2)

D(µ) = 1 − x(1 −µ) − y(1 −µ)2 =: 1 − u1 − u2 + u1 cos γ + u2 cos2 γ (3.2.34)

with limb-darkening coefficients u1 = x + 2y and u2 = −y. In that case the

monochromatic flux F (2) received from the stellar disk displayed in Fig. 3.17 is

given by

F (2) = π
(

1 − 1
3
x − 1

6
y
)

I0 = π
(

1 − 1
3
u1 − 1

2
u2

)

I0. (3.2.35)
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The Wilson–Devinney program includes the logarithmic law

D(µ) = 1 − x(1 − µ) − yµ lnµ, FLOG = π
(

1 − 1
3
x + 2

9
y
)

I0, (3.2.36)

proposed by Klinglesmith & Sobieski (1970). The square-root law

D(µ) = 1 − x(1 − µ) − y
(

1 −
√
µ
)

, FSRL = π
(

1 − 1
3
x − 1

5
y
)

I0, (3.2.37)

has been investigated by Dı́az-Cordovés & Giménez (1992) and is now also included

as an option in the WD-program.

Note that the nonlinear limb-darkening laws reduce to the linear law (3.2.23) if

y = 0. Unlike x in the linear law, the coefficients y are not restricted to nonneg-

ative values. In least-squares analyses we should check how strongly x and y are

correlated. Usually, we should not adjust both.

Whatever limb-darkening law is used, the local intensity I follows:

I = I (cos γ ; g, T, λ) = Dλ(µ)IN(cos γ = 1; g, T, λ), (3.2.38)

where IN(cos γ = 1; g, T, λ) is the local normal monochromatic intensity, and γ, g,

and T are also local quantities. The most simple case is to assume IN to be equal to

the blackbody radiation defined in (3.2.20). More accurate modeling requires that

I be computed from a model atmosphere, with such local effects as spots, promi-

nences, faculae, and gas streams .

More complicated limb-darkening laws have been proposed for the Sun, and the

form of the limb darkening varies with wavelength, especially when the radiation

comes predominantly from regions other than the visible photosphere. Thus the

center-to-limb variation for the Sun from 200 to 300 nm may be fitted with log-

arithmic among other limb-darkening laws; cf. Kjeldseth-Moe & Milone (1978).

In the far-ultraviolet, below ∼ 160 nm, limb brightening occurs because ultraviolet

arises primarily from the chromosphere where temperature increases with height.

Bolometric limb-darkening coefficients can be obtained by numerically integrat-

ing the model monochromatic intensities over all wavelengths. Bolometric coeffi-

cients can then be derived similar to the monochromatic coefficients. Van Hamme

(1993a) lists bolometric limb-darkening coefficients as well as monochromatic coef-

ficients derived from Kurucz’s model atmospheres.

3.2.5 Reflection Effect

In a binary system the presence of a companion star leads to an increased radiative

brightness on the side that faces toward the companion. The cause is heating by the

radiant energy of the companion. That in turn leads to an increase of the tempera-

ture calculated according to (3.2.15). Because heating caused by mutual irradiation

is the physical cause, it is somewhat misleading to use the expression reflection

effect. However, in very hot binaries a considerable fraction of the incident radiation
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is simply scattered by free electrons, so in that case the term reflection effect is

reasonably appropriate.

As illustrated in Fig. 3.19, one effect of reflection on binary star light curves

is to raise the light around the secondary eclipse relative to that near the primary

eclipse. Another is to produce a concave-upward curvature between eclipses (cur-

vature opposite to that from ellipsoidal variation). The reflection effect is usually

modeled by mean global parameters such as the bolometric albedo, without con-

sideration of the microphysics. For binaries whose components have similar tem-

peratures and are close to but not actually over-contact, it may be necessary to

consider multiple reflection [see, for instance, Kitamura and Yamasaki (1984) or

Wilson (1990)]. BF Aurigae [cf. Kallrath & Kämper (1992), Van Hamme (1993b),

Kallrath & Strassmeier (2000)] is an example for such a binary. The first star heats

the second star, and the (now warmer) second star then heats the first star more than

otherwise expected because of its own raised temperature. This process is iterative,

leading to higher temperatures on the facing hemispheres. Tassoul & Tassoul (1983)

investigated gradient-induced diffusion as another potentially important effect, at

least close to the terminator regions of the reflection-illuminated hemispheres.

Heating caused by reflection can be a strong effect. The current champion is

HZ Herculis with a 1.m5 reflection amplitude (cf. Lyutyi et al. 1973). Figure 3.18

shows the light variation of the close binary V664 Cassiopeiae, the nucleus of the

planetary nebulae HFG 1. According to Grauer et al. (1987) , Bond et al. (1989),

and Bond & Livio (1990), an extremely hot primary heats one hemisphere of a

larger and cooler main sequence companion in this noneclipsing binary classified as

a reflection variable according to the General Catalog of Variable Stars [cf. Sterken

& Jaschek (1997)]. The separation is sufficiently small so that reflection produces

significant variability of the total light.
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Fig. 3.18 Light variation caused purely by the reflection effect. The figure shows the B light curve

of V664 Cassiopeiae, the close binary nucleus located in the planetary nebulae HFG 1. Data,

courtesy Howard E. Bond
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In a quantitative picture, let subscript t refer to that star for which the reflection

heating is to be investigated (the target or irradiated star). The index s refers to

the irradiating source star. In an Algol-type system the irradiating star would be

the smaller, hotter, “primary” component; this hotter component is our initial source

star s. In the same Algol system, the irradiated star would be a yellow subgiant or

giant. Here it is our initial target star, t . In Wilson–Devinney argot, these are stars 1

and 2, respectively.

Let Tl denote the local temperature at a surface point, rl , of the target star, com-

puted according to (3.2.13). A conventional approach in light curve reflection mod-

eling is to compute, for each surface element, the ratio of the integrated bolometric

irradiance flux Fs (i.e., incident flux) (coming from our source star s) to the local

“undisturbed” bolometric flux, Ft , and to derive a modified effective temperature T ′
l

according to

T ′
l = 4

√

Rt Tl, Rt := 1 + At

Fs

Ft

. (3.2.39)

Here At is the bolometric albedo of the target star specifying the local ratio of the

reradiated to the incident energy over all wavelengths. The local reflection factor,

R, is the ratio of the total radiated flux (including the fraction due to reflection)

and the internal flux according to the gravity brightening law, so that R ≥ 1. For

atmospheres in radiative equilibrium, and therefore for local energy conservation,

A = 1. For stars in convective equilibrium, the albedo may be lower (0 ≤ A ≤ 1)

which follows from the thermodynamical requirement that the entropy in deeper

convection regions is the same on both irradiated and nonirradiated hemispheres.

It is reasonable to follow Rucinski (1969) and set A = 0.5 for convective atmo-

spheres. This value has been derived from computational experiments. We can

interpret A = 0.5 as follows: A star with a convective envelope locally reradiates

about half of the external heating energy, while the rest emerges from the entire

surface.

In order to compute Rt we need to compute the ratio of Fs/Ft of bolometric

fluxes. Let T ′
l be the increased temperature at rl due to the absorbed and repro-

cessed flux from the other component. Further, let ρ be the distance between the

point, rl , and the center of the irradiating source star; Ft (Tl), the local bolometric

flux at rl ; Fs, the bolometric irradiance flux from star s received at rl ; and At , the

bolometric albedo (the fraction of Fs which is “reflected”). Once T ′
l is known the

monochromatic flux follows from Planck’s law or from a model atmosphere.

The computation of T ′
l is based on the following assumption: The temperature,

T ′
l , and the sum of the effective irradiance and internal flux, At Fs + Ft , are coupled

by Stefan–Boltzmann’s law according to

T ′
l

Tl

= 4

√

At Fs + Ft

Ft

= 4

√

1 +
At Fs

Ft

. (3.2.40)
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Ft is computed similarly to (3.2.13). Flux conservation guarantees that

∫

S′
Ft dσ

′ = Lbol
t , (3.2.41)

i.e.,

Ft = Ft (rl) = Lbol
t

|∇Ω|g
∫

S′ |∇Ω|gdσ ′ . (3.2.42)

The accuracy of reflection modeling depends on how the incident flux, Fs , is com-

puted. First consider a simple inverse square law treatment, and some corrections

for penumbral and ellipsoidal effects. If it is assumed that bolometric flux decreases

with the square of the distance ρ, the incident flux Fs is given by31

Fs = Fs(rl) = Lbol
t

cos ε

4πρ2
, (3.2.43)

where ε is the angle between the direction toward rl and the normal vector n(rl ).

The ratio Fs/Ft is

Fs

Ft

=
Lbol

s

Lbol
t

cos ε

4πρ2

∫

S′ |∇Ω|gdσ ′

|∇Ω|g
. (3.2.44)

In Wilson et al. (1972) a physically more realistic model is presented in which ellip-

soidal geometry is assumed for the irradiating star. It is explicitly considered that

the irradiating star might only be partially above the local horizon. Relation (3.2.44)

for Fs/Ft is therefore modified by two factors E (for ellipsoidal correction) and P

(for penumbra correction) which describe a more detailed geometry. In Appendix

E.29 a detailed derivation of the relation for E and P is given, which leads to

Fs

Ft

=
Lbol

s

Lbol
t

cos ε

4πρ2

∫

S′ |∇Ω|gdσ ′

|∇Ω|g
E P, (3.2.45)

where ε is also defined in Appendix E.29. The computation of the ratio of bolometric

luminosities is further discussed in Appendix E.5. So, finally, we can compute the

reflection factor

Rt = 1 + At

Fs

Ft

. (3.2.46)

Eventually, in Kitamura & Yamasaki (1984) and Wilson (1990), we find an accurate

computation of the incident flux integrated over the visible surface of the irradiating

31 This is the case, for instance, if the irradiating star is spherical.
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star. In that case (compare Appendix E.25 where ε is replaced by γA) we have an

expression of the form

Fs = Fs(rl ) =
∫

S
′′′

I (cos γ ; g, T, λ)
cos γ cos ε

4πρ2
dσ, (3.2.47)

where S′′′ indicates that we integrate over that part of the irradiating star’s surface

that is visible from rl . Note that all quantities in the integrand of (3.2.47) depend on

source star properties.

Figure 3.19 illustrates the reflection effect and how light curves change when the

albedo, A1, of the hotter star is varied from 0 to 1.

The impinging radiation is not merely reflected from the receiving star but heats

up the impacted surface, which then reradiates32 toward the irradiating star (source

star). Multiple reflections are thus needed to treat the effect properly, and the flux

at each point of both components must be integrated to consider each subsequent

reflection. The process is, of course, iterative because each reflection produces

higher temperatures on both initial target and source stars. Iterations are stopped

when the multiple reflection computations come to a constant distribution of surface

effective temperature, or we might simply ask for a certain number of iterations.
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Fig. 3.19 Light curves with albedo varying from 0 to 1. Temperatures were T1 = 20,000 and

T2 = 3,600 K. Light curves were produced with Binary Maker 2.0 (Bradstreet 1993) with the

albedo A2 varying between 0 and 1

32 The multiple reflection effect is part of the Wilson–Devinney model of the early 1990s (Wilson

1990). Multiple reflection seems to be significant only in a small fraction of binaries.
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The multiple reflection effect involves many iterative computations and thus

much computing time, it is advised to pay close attention to the structure and logic

of the computations (see Appendix E.25).

3.2.6 Integrated Monochromatic Flux

Eventually, the monochromatic flux or light from component j is

ℓ j (Φ) =
∫

S′
χ (rs)I (cos γ ; g, T, λ) cos γ dσ, (3.2.48)

where χs is the characteristic function defined in (3.3.2) ensuring that we only con-

sider those points rs , or equivalently, we integrate only over those parts of the stellar

surface which are visible to the observer on Earth. In spherical polar coordinates

(3.2.48) takes the form

ℓ j (Φ) =
π
∫

0

2π
∫

0

χ (rs)I (cos γ ; g, T, λ)
cos γ

cosβ
r2 sin θdϕdθ. (3.2.49)

In most light curve programs, for reasons of efficiency, the integrand is only evalu-

ated if χs(Φ) = 1.

Adding all contributions of the binary system, an observer at unit distance

receives the total flux ℓ(Φ),

ℓ(Φ) = ℓ1(Φ) + ℓ2(Φ) + ℓ3, (3.2.50)

while an observer at distance D receives the flux

ℓD(Φ) =
1

D2
ℓ(Φ). (3.2.51)

The light ℓ3 of a third source, usually a third star far away from the binary system,

is ordinarily assumed to be independent of time or phase Φ. Astrophysical interpre-

tations of third light are discussed in Sect. 3.4.1.

3.3 Modeling Aspect and Eclipses

Exitus acta probat (The end justifies the means)

The computation of ℓ j (Φ) in (3.2.49) requires not only the stellar surface S′ defined

in (3.2.1), but in addition, for considering eclipses, the visible stellar surface S′′:

S′′ = S′′(q,Ω0, F, e;Φ) := {rs | rs ∈ S′ and rs visible}. (3.3.1)
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The attribute “visible” means rs ∈ S′ so that the observer receives flux emitted

from a point rs . In particular, this requires that rs be on the side of the star fac-

ing the observer and that the other component does not eclipse the point rs . The

characteristic function, χ (rs), summarizes this condition:

χ (rs) :=
{

1,

0,

rs visible,

rs not visible.
(3.3.2)

This function is the product of two characteristic functions, χ A(rs) and χ B(rs). The

first one is the horizon and self-eclipse function

χ A(rs) :=
{

1,

0,

rs is not beyond the component’s own horizon,

rs is beyond the horizon.
(3.3.3)

The second one is the companion eclipse function

χ B(rs) :=
{

1,

0,

rs is not eclipsed by the companion,

rs is eclipsed by the other component.
(3.3.4)

According to the orientation of the normal vector, n, and the line-of-sight vector,

s, introduced in Sect. 3.1.1, and as illustrated in Fig. 3.20, for convex surfaces,

i.e., positive curvature on the whole surface, χ A(rs) can be expressed by the aspect

angle γ and the relation

χ A(rs) =
{

1, if cos γ < 0,

0, else.
(3.3.5)
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Fig. 3.20 Geometrical condition for visible points. Only points with cos γ < 0 are visible to the

observer
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The situation is more complicated for surfaces that have local negative curvatures

such as over-contact equipotentials. In that case, self-eclipses are possible. We have

outlined in a formal way how to restrict the range of integration over the visible part,

but we also need to explain how χ (rs) is computed in real light curve programs.

Thus we need a procedure that indicates whether or not a point on a star is visible

from Earth. A necessary condition for a surface point rs to be visible is that its

associated angle γ = γ (Φ) between s and n(rs) computed according to (3.1.16)

fulfills the condition

cos γ < 0. (3.3.6)

Thus, in principle all those points fulfilling (3.3.6) on both stars can be identified and

establish our function χ A(rs). Depending on phase an eclipse might occur or not.

In the trigonometric relations involving the phase, Φ, we rather need the true phase

angle, θ , defined in Sect. 3.1.2. Thus, whenever a term such as sinΦ or cosΦ occurs,

it means rather sin θ or cos θ , where θ is computed according to (3.1.19) in the

circular case and according to (3.1.37) in the eccentric case. Figure 3.21 shows the

eclipse geometry and units. Although treating the eclipse geometry requires many

subtle details the basic ideas are simple. The first step is a sort of global checking

whether at phase Φ an eclipse is possible at all or not. For spherical stars with

relative radii r1 and r2, an eclipse occurs only if δ, the projected (plane-of-sky)

distance between the centers of the components, fulfills the relation

δ ≤
r1 + r2

d
, r j :=

R j

a
, j = 1, 2, (3.3.7)

where δ is computed according to (3.1.9) in Sect. 3.1.1, i.e.,

δ2 =
(

ys
)2 +

(

zs
)2 = d2(Φ)

(

sin2 Φ + sin2 i cos2 Φ
)

. (3.3.8)

plane of sky

δ

d sin i sin Φ

d cos i

Fig. 3.21 Projected plane-of-sky distance. The projected plane-of-sky distance can be used to test

whether an eclipse can occur
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Within the Roche model the largest value for r j (θ, ϕ) might be used as the radius r j

and then (3.3.7) might be applied.

If an eclipse is not excluded, the next step is to identify which star is in front (this

star cannot be eclipsed at this phase). In Appendix E.21 we describe how this test is

performed in the WD program. The next step is to compute and represent the horizon

of the front star in the plane-of-sky coordinates; this step is full of tricky details

related to numerical accuracy and varies among different light curve programs. Once

this representation is available, the grid points representing the surface of the distant

star can be tested w.r.t. eclipse by comparing its plane-of-sky coordinates with those

of the horizon. This procedure establishes the function χ B(rs).

3.4 Sources and Treatment of Perturbations

In omnia paratus (Ready for all things)

3.4.1 Third Light

The light l3 of a third source, usually a third star far away from the binary

system,33 is assumed to be independent of time or phase Φ. Third light has become

more interesting now that companions can be discovered with the new generation

of interferometers. The presence of the light of a third star decreases the depths of

both eclipses because addition of a constant to a positive function diminishes its

“fractional” or “percent” variation. As third light decreases the depth of eclipses

it roughly simulates a system with lower inclination. A hot companion may make

a greater relative contribution to system flux in the ultraviolet, whereas a cooler

companion will be a stronger contributor in the infrared. In the intermediate or far

infrared, emission from circumstellar dust can contribute to the background. If the

third body has a spectral type different from the close binary components, the added

flux will be different in different passbands, and the third light may be modeled to

determine the nature and apparent brightness of the third star. In 44i Bootis, third

light is contributed by the primary component of a visual binary star system in which

the secondary is the EB. The angular semi-major axis is only ∼3.8 arc-sec (Linshan

et al. 1985), and the separation over the next half-century will not exceed ∼2.5

arc-sec.

The third component is brighter than the hotter, more luminous component of

the over-contact binary (Hill et al. 1989) by at least a magnitude in V and so con-

tributes a significant amount of “third light,” unless the component somehow can

be excluded from the measurement. It is also difficult to exclude its scattered light

from spectra.

33 The binary system and the third star may establish a gravitationally bound triple system. By

“far away,” however, we mean compared to the separation of the eclipsing binary components.

Typically, the third component may be seen as a very close visual binary with the combined light

of the eclipsing system, or may not even be resolved optically.
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Sometimes, as is the case for VV Orionis, there is spectroscopic evidence for a

third body in the form of disturbances of the radial velocity curve [cf. Scarfe et al.

(1994)]. In that particular case, however, Van Hamme & Wilson (2007) have shown

that the light and radial velocity curves of VV Orionis can be fitted without third

light. It may be possible to demonstrate the existence of a third body by analysis of

times of minima. A linear relation between Observed–Computed times of minimum

plotted versus time implies a simple correction to the period; a parabola implies a

constant rate of period change; and a sinusoid implies apsidal motion34 or variation

in arrival time (light-time effect) due to orbital motion of the close binary around

the system center of mass (binary plus third body). Apsidal motion can be due to

gravitational perturbations (e.g., by a third body), finite nonspherical mass distribu-

tion of the stars (not point masses), and general relativistic effects [cf. Quataert et al.

(1996)].

In light curve modeling, third light ℓ3 is usually added to the computed light as a

constant

ℓ(Φ) = ℓ1(Φ) + ℓ2(Φ) + ℓ3. (3.4.1)

The partial derivative ∂ℓ/∂ℓ3 is therefore constant, namely

∂ℓ

∂ℓ3

(Φ) = 1, (3.4.2)

which might be exploited in derivative-based least-squares analysis.

3.4.2 Star Spots and Other Phenomena of Active Regions

As is observed on our own Sun (Fig. 3.22 ), stars can have spots. Stellar surface

imaging by microlensing [cf. Sasselov (1998a, b)] shows directly that spots are

present on other stars as well. A star spot is a region with higher or lower tem-

perature than the surrounding photosphere, and thus it modifies the local flux. By

way of physical analogy to the Sun, we should expect magnetic spots to result from

convection in the outer envelope and differential rotation. Accompanying phenom-

ena include small “pores,”35 umbral and penumbral dark regions, and spot groups.

Additional phenomena are bright flocculi (Latin for tufts of wool) or plages (French

for the white sand on a beach) – most easily seen in the lines of Ca II H&K and

Hα – and faculae (“little torches”), sometimes called “white-light plages.” Finally,

34 The term apsidal motion refers to the rotation of lines of apsides of an eccentric binary orbit,

or the rotation of the periastron. Apsidal motion is caused by perturbations to the 1/r gravitational

potential and indicates deviations from Keplerian elliptic motion.
35 Pores are small sunspots. This is a term in solar research. Pores are usually at the resolution

limit on visual images of the solar disk. We would need an enormous number of these to make a

difference to hemispherical flux values, of course.
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Fig. 3.22 Sun spots. This white light image of the Sun was taken in Calgary on September 3,

1988, in the early afternoon (20:05 UT) by Fred M. Babott. It shows spot groups, spot umbrae,

penumbrae, pores, and toward the limb, faculae. Courtesy F. M. Babott

we mention solar prominences, best seen in Hα, but also seen in “white light,” which

are bright off the limb but may appear as dark filaments when projected onto the

photospheric disk.

In the light curve context, many researchers have included star spots into light

curve models. Poe & Eaton (1985) give most of the historical and technical back-

ground for the analysis of spotted stars. A more recent review is by Linnell (1993).

In this book, we characterize spots, as in the Wilson–Devinney model, by four

parameters: latitude θ , longitude Φ, angular radius ρ, and temperature factor t f .

Some authors use the colatitude θ c := 90◦ − θ instead of θ. The spots subtend

circular solid angles at the star centers and, in their ideal form (infinitely fine grid of

the surface), are essentially circular areas on the surface, except for the effect of the

star’s asphericity, and the ellipticity of features, such as round spots, produced by

foreshortening, most noticeable at the limbs. Φ is the longitude of the spot-center.

The reference direction is the line of centers, and Φ increases as in a right-handed

system (set up separately for each component). The spot-center colatitude θ c is zero

at the North (+z) pole and increases to 180◦ at the other pole. As seen from the North

pole, the binary orbit is described counterclockwise. The spot angular radius ρ is

half the angle subtended by the spot at the center of the star. The spot temperature

factor t f is the ratio between the local surface temperature and the local undisturbed

temperature. Due to reflection and gravity effects, the surface temperature across

a spot may not be constant. Temperature factors less than and greater than unity

correspond to cool spots and hot spots, respectively. As noted above, such a char-

acterization of spot regions can at best be only a rough approximation of the true
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physical situation. Below, we give a mathematical representation of that simplified

approach, as it exists in the Wilson–Devinney model.

Let the angles θ c and ϕ represent a point on the surface of the star. In addition θs

and ϕs refer to the coordinates of a particular surface spot with radius ρs . From the

cosine law of spherical trigonometry, the angular distance ∆s of the point (θ, ϕ) to

the center of the spot s follows as

cos∆s = cos θ c cos θ c
s + sin θ c sin θ c

s cos(ϕ − ϕs), (3.4.3)

where θ c and θ c
s denote the colatitudes, and cos(ϕ − ϕs) can be computed as

cos(ϕ − ϕs) = cosϕ cosϕs + sinϕ sinϕs . (3.4.4)

From (3.4.3) it is easy to check whether the point (θ, ϕ) “lies” within the spot. If so,

the spot-free local temperature Tl in (θ, ϕ) is modified by the temperature factor t f .

This is summarized in the formula

T SC
l = Tl

{

t f , if ∆s ≤ ρs,

1, if ∆s > ρs,
(3.4.5)

where T SC
l denotes the local temperature after the spot correction has been applied.

A slightly more realistic model is that of Hill & Rucinski (1993), which allows

for elliptical spot regions, with the major axis as an optionally adjustable parameter.

However, elliptical spots may cause problems because the least-squares problem

may easily become overparametrized.

A further complication arises from the dynamics of a binary system: Except in

the synchronously rotating, circular orbit case, the physical surface of a star moves

w.r.t. (model) grid elements, so that the spot longitude can be a function of time.

Magnetic spots, as observed on our Sun, take part in the motion of the surface.

In contrast, an accretion hot spot on an asynchronously rotating star (in circular

orbit) could remain fixed with the grid. In an eccentric orbit the grid rotates at a

nonuniform rate so a time-dependent spot longitude transformation36

ϕ(Φ) = 360◦FΦ −
180◦

π
(υ − υ0) + ϕ0 (3.4.6)

needs to be applied, where F is the rotation parameter (3.1.74), Φ is the orbital

phase, and υ is the true anomaly; subscript 0 refers to conjunction. Note that Φ and

υ need not be in the ranges 0 and 1 and 0 to 2π , respectively, so that the effects of

longitude drift for spots can be followed over many orbital cycles.

36 Some kinds of spots (such as accretion hot spots) do not rotate with a star. For such cases, the

transformation is not applied; therefore, ϕ(Φ) = const.
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At least some of the difficulties occurring in the analysis of EB light curves

which show unequally high consecutive light curve maxima37 might be overcome

by including star spots in the model [Yamasaki (1982), Milone et al. (1987), Hill

et al. (1989, 1990)], although there are probably several physical effects that produce

unequal maxima (Davidge & Milone 1984).

As other light curve parameters, spots and their parameters (θ, ϕ, ρ, t f ) can

be estimated by least-squares methods. Budding & Zeilik (1987) and Zeilik et al.

(1988) use adjustable spot parameters to represent the light curves of short-period

systems with RS CVn-like phenomena. Historically, a Wilson–Devinney spot param-

eter (t f ) was first optimized by Milone et al. (1987), in the light curve analysis of

the contact system RW Comae Berenices; by repeated trials with slightly readjusted

values, a parabola of Σwr2 versus t f was constructed and solved for the minimum.

This procedure was extended to all spot parameters by Milone et al. (1991). Spots

were automatically adjusted within the Wilson–Devinney program for the first time

by Kang & Wilson (1989). All of this work was done with the Wilson–Devinney

program of the early 1980s.

Spot parameters differ greatly from other light curve parameters, such as the mass

ratio or inclination, in that they can vary significantly on a relatively short timescale

(say days).38 A steady change in spot longitude with time, permits, in principle, the

determination of spot migration periods. However, the determination of spot param-

eters requires abundant, accurate, synoptic data and careful analysis. Complete light

curves must be obtained before the spot or spot groups achieve perceptible motion

in longitude. Spot fitting ideally should be subject to determinacy tests (Banks &

Budding 1990).

Must spots be used to model light curve perturbations? Even though most light

curve analysts would argue that their presence is likely, and in the interest of achiev-

ing a more physically realistic picture of the binary system, they should be modeled,

there are some doubts. As we have noted, the O’Connell effect may have more than

one origin, and without further substantial evidence, such as molecular absorption

features characteristic of M-stars in stars of otherwise higher temperatures [cf. Vogt

(1979), or Ramsey & Nations (1980)], or Doppler imaging from line-profile anal-

ysis, the assumption of a spot cause usually is not justified. Milone et al. (1987)

demonstrated that an analysis following rectification of the light curve produced no

significant differences in parameters from those modeled with dark spots placed on

either component, except for the parameters T2 and i , where the differences were

37 Sometimes called the O’Connell effect (Davidge & Milone 1984), named after D. J. K.

O’Connell (1951), who demonstrated that unequal maxima in light curves was not a “periastron

effect” because it is found predominantly in systems with circular orbits. Wesselink suggested

the new usage, which has become widely accepted. The effect has also been called the “Kwee

effect.” Unfortunately, it has become a practice to use these names as catch-all terms for a variety

of physical effects. As defined, it is purely phenomenological.
38 Active prominences vary on a scale of hours and flares even over minutes. Modeling such

effects would involve some stochasticity and is therefore not covered here.
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nevertheless small. Some effects spots have on light curves could also be produced

by circumstellar matter clouds (see Sect. 3.4.4.5).

Nevertheless, in some cases stellar surface imaging by microlensing shows spots.

In many other cases the following indications in light and color curves support the

existence of spots:

• phases of minima agree in, e.g., V and in V-I but not in U-B;

• color amplitudes increase when going to V → R → I as expected for cool spots;

and

• V-I, V-K, and U-B excess.

As spots have relatively short life times and change in size quickly, one would like to

fit curve-dependent spot parameters, and be able to make allowance for differential

stellar rotation and latitude migration of spot groups. A disadvantage is the increased

number of parameters leading to uniqueness problems.

3.4.3 Atmospheric Eclipses

The term “atmospheric eclipse” refers to an eclipse of a star by one with an extended

atmosphere. The classical example is that of ζ Aurigae, in which the width of the

eclipse is greater in the ultraviolet than in longer wavelengths [see Fig. 1 in Wilson

(1960, p. 441), based in turn on Roach & Wood (1952)]. We extend this idea to

include eclipses of underlying radiation by overlying material of a different nature

than chromospheric and coronal layers in their average, “quiet” state. Readers inter-

ested in extended atmospheres themselves are referred to Wehrse (1987) or Wolf

(1987).

Atmospheric eclipses occur in binary systems in which at least one component

has an extended atmosphere. The EB V444 Cygni (WN5+O6) is such a system,

with partial eclipses at both primary (at λ = 424.4 nm the depth is 0.225 in light

units normalized to 1) and secondary minimum (depth 0.141) and with insignificant

reflection and ellipticity effects. Here the WN5 component has an extended atmo-

sphere and is in front at primary minimum, which is an atmospheric eclipse. For

simplicity the stars are considered as spheres and the orbit as circular. Light curve

modeling of early-type stars with essentially spherical geometry has been carried

out by a number of investigators, and Roche geometry modeling of eclipses by

translucent plasma clouds in the atmospheres of early-type systems was developed

by Kallrath and Milone at the University of Calgary (Milone 1993), and is now in

the 2007 WD version. Such clouds might be produced by stellar wind interactions.

The mathematical formalism (see Sect. 6.4) usually includes a term such as

I A(ξ ) = I 0
[

1 − e−τ (ξ )
]

, (3.4.7)

which represents the amount of radiation absorbed by the extended atmosphere of

the WN5 component. Here I 0 denotes the brightness at the center of the disk of the

normal O6 star, and τ (ξ ) is the optical depth along the line-of-sight intersecting the
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WR component at a distance ξ from its center when the disk of the WR component

is viewed by transillumination. Transillumination means, in addition to the light

reflecting and originating from the surface of the WR disk, we see light from the O6

star passing through the extended atmosphere.

In the past light curves of early-type systems such as DQ Cep and V444 Cyg were

analyzed by treating atmospheric eclipses as perturbations to photospheric eclipses

but now it is possible, and perhaps more appropriate, to use a consistent model

including all physical effects in a binary system simultaneously.

3.4.4 Circumstellar Matter in Binaries

Circumstellar matter in binaries may occur in gas streams, rings and disks, clouds,

and boundary regions of colliding stellar winds. Distinction among these categories

depends on one’s focus. Gas streams may establish rings and disks, stellar winds

might be considered as special kinds of gas streams, and boundary layers of collid-

ing stellar winds might be considered as clouds with a special geometry. What the

categories have in common is that they absorb, reemit, scatter, and thereby redirect

the star light.

The existence of circumstellar material was detected first by Wyse (1934) who

found Balmer emission in several Algol-type binaries. That this material is often

manifested as an accretion disk has been known since the pioneering observations of

RW Tauri by Joy (1942) in the early 1940s. Spectra showed double-peaked emission

line features that could be explained if they arose from a ring of material circling

the hotter and more massive star. Struve painstakingly observed Algols for many

years [see Struve (1944), for example], and a large number of high-quality spectra

demonstrated that these features were characteristic of Algols, not anomalies in a

handful of systems. About the same time, Kuiper (1941), in a paper on β Lyrae,

pointed out the importance of the inner Lagrangian point L
p

1 in understanding gas

flows in interacting binaries.

Spectroscopic and photometric observations showed another peculiarity of Algols.

The hotter, more massive primaries were clearly main sequence stars, but the less

massive secondaries had radii much too large for the main sequence (i.e., they were

evolved subgiants or giants). The so-called Algol paradox begs the question: How

does a binary evolve to the point where the low mass star is evolved, but the high

mass star is still on the main sequence?

Roche geometry provides the key that solves the puzzle. See any of the sources

Crawford (1955), Hoyle (1955, pp. 197–200), or Pustylnik (2005) for a wonderful

explanation of the modern resolution of the Algol paradox. Algol-type systems are

stable because the less massive star is filling its Roche lobe. As matter is transferred,

the physical size of the lobe increases because of the increasing separation of the

stars, which slightly detaches the star from the lobe. The star is expanding on a

nuclear timescale, so mass transfer events tend to be sporadic and of small scale.

Hoyle (1955) and Crawford (1955) proposed that Algols were systems that

had experienced large-scale mass transfer and that the less massive secondary had
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originally been the more massive star. It evolved first, overflowed its Roche lobe, and

transferred enough mass to the other star to reverse the mass ratio. Morton (1960)

showed that a binary system with the more massive star filling its Roche lobe is

unstable to mass transfer. When the more massive star loses mass through the L
p
1

point, its Roche lobe shrinks because its mass becomes smaller and the separation

of the stars decreases. Although Morton failed to take the latter fact into account,

the decreasing separation only increases the rate of mass transfer and creates a

classic instability. The mass transfer is very rapid in the early stages and becomes

continually slower toward the end of the process. A further important point is that

the equilibrium radius of the mass-losing star can change as a result of mass loss.

Whether it increases or decreases depends on the star’s evolutionary state. Highly

evolved stars (that still retain their envelopes) tend to increase their radii upon losing

mass. Detailed reviews of the evolution of Algols were published by Plavec (1968)

and Paczynski (1971). Batten (1973b, 1976) discusses and reviews observations of

the flow of matter within binary systems. Gas streams can become evident in spec-

troscopic data and may influence radial velocities, or produce peculiar light curve

disturbances. The situation in the detached system VV Orionis is discussed in some

detail in Sect. 3.4.4.2. In addition to Batten’s reviews, the whole proceedings of

the IAU Symposium 73, edited by Batten (1973a), is a useful source and covers

many aspects of the topic, e.g., Plavec’s (1973) review on the evolutionary aspects

of circumstellar matter in binary systems. Finally, we mention the proceedings of

the IAU symposium, edited by Appenzeller & Jordan (1987), which cover many

aspects of circumstellar matter around single stars as well.

Spectroscopic observations made with the International Ultraviolet Explorer led

Plavec (1980) to identify a group of systems (the W Serpentis stars) that appeared

to be in the rapid phase of mass transfer. In some of these, such as β Lyrae [Wilson

(1974); Wilson & Terrell (1992)], the gainer is completely engulfed by the circum-

stellar material. Wilson (1981) worked out structural models of these thick disks

and proposed that the gainer has been spun up by the accreting material to the

centrifugal limit, thus preventing the material from settling onto the star. However,

viscous and tidal interactions will eventually decrease the angular momentum of

the stars, allowing the disk material to be accreted. This leaves the system in a

state where both stars fill their limiting lobes. For the less massive secondary, the

limiting lobe is the classical Roche lobe. For the rapidly rotating primary, the limit-

ing lobe is bounded by the equipotential that has the equatorial material rotating at

the centrifugal limit. Systems in such a configuration, the so-called double-contact

binaries, were predicted by Wilson (1979) and analysis of observations shows that

these systems do indeed exist (Wilson et al. 1985). Over time, tidal forces will slow

the rotation of the primary to synchronism, and it then will become an Algol-type

system.

The later stage of mass transfer in an Algol-type system is small scale and spo-

radic and is understood39 as follows. A key point is that the stars move farther apart

39 A more complete discussion of this problem would also involve the equilibrium radius of the

mass-losing star; cf. Plavec (1968).
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to conserve angular momentum when flow is from the less to the more massive

star. The subgiant star expands on a nuclear timescale (i.e., slowly). Each small

burst of transferred matter produces relatively large increases in the critical lobe size

as the binary conserves orbital angular momentum, i.e., the separation of the stars

increases, and the star slightly detaches from the lobe. Thus the transfer process

tends to turn itself off, and proceeds in small episodes as the star undergoes its

evolutionary expansion. This is the slow phase of mass transfer. Early in the mass

transfer process the situation is quite different. The mass-losing star then is the more

massive one, and as mass is transferred the stars come together to conserve angular

momentum, and the lobe size decreases. Thus, mass transfer tends to run away and is

limited only by the thermal timescale of the envelope (rapid phase of mass transfer).

Mezzetti et al. (1980) provide statistics of 55 Algol-type EBs related to mass transfer

and mass loss.

3.4.4.1 Gas Streams

Whereas light curve models imply static or quasi-static physics, circumstellar gas

streams, if modeled correctly, require a fully dynamical treatment based on the equa-

tions of radiation hydrodynamics. A full treatment may be beyond present-day com-

puting power, but the rapid increase in computing power over the last few decades

has made it possible to make the models more and more realistic and to model the

gas flow in Algol-type systems, as well as the radiation that arises from the gas.

When insufficient computer power was available, gas streams, and also rings

and disks, were often modeled with multiple particle trajectories; see, e.g., Gould’s

(1959) particle path model (for details see Sect. 3.4.4.2), Kruszewski’s (1967) anal-

ysis on exchange of matter inclose binary systems and ring formation, or Smak’s

(1978) analysis of the escape of particles from disks in close binary systems. For

a review of problems of gaseous motions within binary stars we refer to Huang

(1973).

Prendergast (1960) showed that the mean free path of gas particles was much

smaller than the separation of the two stars, indicating that a hydrodynamical treat-

ment of the problem was necessary. Due to a lack of computing power at the time,

Prendergast’s solutions were limited by simplifying assumptions, such as ignoring

the pressure gradient terms in Euler’s equation and assuming hydrostatic support

perpendicular to the orbital plane. An improved treatment was given by Prendergast

& Taam (1974), who simulated solutions of the Boltzmann equation rather than

solve a set of difference equations. Unfortunately, their scheme had an inherent

artificial viscosity which was coupled to the grid resolution, but the results of their

application to a system similar to U Cephei were intriguing, indicating, among other

things, that mass transfer was nonconservative (i.e., some mass was ejected from the

binary).

Another important contribution to understanding mass transfer in Algols was

by Lubow & Shu (1975). Using matched asymptotic expansions, they developed

a semi-analytical model of the gas flow. Exploiting the existence of a parameter

labeled ε
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ε =
a

ωd
, a2 =

kT

m
, (3.4.8)

with a being the isothermal sound speed ω the orbital rotation rate, and d the binary

separation, they reduced the parameter space of the equations to that of one parame-

ter: the binary mass ratio. They also treated gas flow near the Lagrangian point, L
p

1.

Lin & Pringle (1976) outlined a two-dimensional, many-body approach to the

problem where the gainer is of negligible size compared to the stars’ separation,

such as in cataclysmic variables and X-ray binaries. Their’s was apparently the

first fully Lagrangian method for treating gas flows in close binaries. The scheme

included viscosity, but did not treat pressure gradients. Based on their simulations,

Lin and Pringle concluded that disks can be well defined and comparable in size to

the Roche lobe.

Whitehurst (1988b) extended the Lin and Pringle model to include pressure gra-

dients as outlined by Larson (1978). Larson’s approach, assuming that the particles

are extended, deformable gas clouds, is somewhat simplistic, although not too con-

fining because the disk is dominated by angular momentum transport. Whitehurst’s

major simplifying assumption was that the energy dissipated in particle interactions

was instantaneously radiated away through the disk surface. This makes the pressure

calculations somewhat crude, but it was obviously the next step to take in the devel-

opment of models of mass transfer. Whitehurst (1988a) applied his model to the SU

UMa star Z Chamaeleontis and achieved impressive agreement with observed light

curves, containing superhumps.40

With the advent of 8-m class telescopes and more sensitive detectors, the next

few years promise great progress in the study of circumstellar material in Algols.

Newly developed models and observational techniques (especially polarimetry)

should greatly improve our understanding of mass transfer in binaries, and therefore

binary star evolution.

3.4.4.2 Gas Stream in the VV Orionis System

Based on a particle path model, Duerbeck (1975) has studied gas streams in VV

Orionis. He discusses the consequences of circumstellar matter for the light curve,

equivalent widths of the hydrogen lines, and the Hβ-index. His analysis gives us an

illustrative example of how special features can be added to an otherwise standard

EB analysis.

The disturbances or irregular features in the light curve during phases 0.6 and

0.7 are interpreted as light loss caused by scattering through particles of a stream.

The basic parameter describing this gas stream is its particle density. The geometry

40 Superhumps are periodic increases in brightness of 20–30% that occur during superoutbursts

(outbursts lasting 10–14 days as opposed to normal outbursts lasting 2–3 days). The superhump

period is somewhat longer than the orbital period of the system and is explained by the precession

of the (elliptical) accretion disk.
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Fig. 3.23 Trajectories in a binary system. This figure, Fig. 9 in Duerbeck (1975), illustrates the

first hypothesis. There is one gaseous stream present; the trajectories are computed according to

Gould (1959). Courtesy H. W. Duerbeck

and its flow pattern are taken from Gould’s (1959) particle path model. The model

computes trajectories within the framework of the restricted three-body problem

and uses an ejection velocity of 400 km/s. Figure 3.23 shows typical trajectories

or orbits. There exist escape orbits, connecting trajectories, and loops originating

and ending on the same component. As shown in Fig. 3.24, neglecting the pressure

gradient, the trajectories form a gas stream which can absorb light.

Under reasonable assumptions it is shown that the gas stream is almost com-

pletely ionized, which allows concentration on electron scattering. In that case,

neglecting multiple light scattering, the transmitted intensity IT after passing the

gas stream is related to the incident light intensity I0 by

IT = I0e−kx , k = 6.655 · 10−25ne cm2, (3.4.9)

where x is the path length and ne is the electron number density in cm−3.

Duerbeck’s approach was to derive ne directly from comparing the observed light

curve with the light intensity I0 derived from the Russell–Merrill model, and inde-

pendently from the equivalent widths of lines. Two hypotheses were checked against

observations by applying (3.4.9) to the “unperturbed” light computation:

1. One gas stream ejected is from that part of the secondary’s surface, which is

heated by the hotter component. From the observed light curve, i.e., transmitted

light IT , Duerbeck estimated that about 10% of the light of the secondary is lost

by scattering. This yields x = 10−12 cm and ne = 1.5 · 1011 cm−3 and agrees

well with the values 1011 ≤ ne · cm3 ≤ 2.6 · 1011 derived from the equivalent

widths of hydrogen lines.
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Fig. 3.24 Gas streams in VV Orionis. This figure, Fig. 10 in Duerbeck (1975), shows the two gas

streams involved in the second hypothesis. Courtesy H. W. Duerbeck

2. Two gas streams (indicated as I and II in Fig. 3.24) exist, i.e., in addition to

the hypothesis above, another gas stream flow from the primary to the secondary

should be present. This explains both the disturbance at phase 0.35 and the asym-

metry of the primary minimum.

In both cases, the discussion involves only the geometry of the gas stream pro-

jected onto the orbital plane. Although the model produces plausible results and

qualitatively explains features in the observed light curve, it might be worthwhile

to reanalyze the data with a modern light curve program based on Roche geometry

including some special features for streams or clouds.

3.4.4.3 Disks and Rings

Algols and other binaries with slow or intermediate mass transfer develop thin disks.

To consider the disks and rings in the model requires the computation of the gas

flow, radiative properties (in particular, emission line strengths and profiles), and

the calculation of the spectral energy distribution by spatial integration taking into

account Doppler shifts and eclipses. In some cases, disks can be approximated as

non-self-gravitating and governed by celestial mechanics in the first approximation,

but with nonnegligible viscous and pressure interactions.

Różyczka & Schwarzenberg-Czerny (1987) present and solve two-dimensional

hydrodynamical models for the stream–disk interaction in cataclysmic binaries,

focusing on the collision region. As an example of a fully three-dimensional stream–

accretion diskcomputation we refer to Dgani et al. (1989) who computed the
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time-dependent interaction between the stream from the inner Lagrangian point and

the accretion disk, and the response of the disk to an increase in the mass transfer

rate.

Terrell (1994) applied the method of Smoothed Particle Hydrodynamics (SPH) to

the problem and also made a detailed computation of the spectral energy distribution

of the radiation emitted by the gas. Pressure gradients were calculated in the usual

manner for SPH [see Monaghan (1992) and references therein], but the viscosity

was computed with a newly developed algorithm [Terrell & Wilson (1993); Terrell

(1994)]. Viscosity was modeled by allowing particles within a specified distance

of one another to exchange momentum, with close encounters being stronger than

more distant ones. This scheme avoids problems inherent in earlier models such as

artificial acceptance/rejection of interactions based on a Cartesian grid, as in the Lin

and Pringle scheme. Terrell also computed Hα line profiles by coupling the radia-

tive transfer code of Drake & Ulrich (1980) to his hydrodynamics code and found
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Fig. 3.25 Disk formation in SX Cassiopeiae. This plot, part of Fig. 1 in Terrell and Wilson (1993,

p. 32), shows the disk formation at 0.32, 1.11, 3.18, and 7.96 orbital revolutions caused by an

episodic mass flow event. Courtesy D. Terrell
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reasonably good matches with the observedprofiles of several Algol-type binaries.

He also used the more extensive radiative transfer code of Ko & Kallman (1994)

which treats several atomic species, but further work must be done to improve the

efficiency of the calculations. Terrell & Wilson (1993) computed the disk matter

distribution and motion. Figure 3.25 shows their result for SX Cassiopeiae disk

images at 0.32, 1.11, 3.18, and 7.96 orbital revolutions. Based on these calcula-

tions, their objective is to derive observable quantities such as spectralline profiles

or polarization properties of photospheric radiation scattered by thedisk.

3.4.4.4 Stellar Winds

In addition to the radiation pressure effects discussed in Sect. 3.1.5.4, additional

complicated physics is required in hot binary systems. If the components of a binary

are hot and produce a sufficiently large radiation pressure as in some Wolf–Rayet

stars [cf. Pollock (1987) and White & Long (1989)], they establish radiation-driven

hypersonic counterflowing stellar winds [see, for instance, Castor et al. (1975) or

Hearn (1987)]. An X-radiation emitting sheet (Prilutskii & Usov 1976) between

both stars can block out light emitted toward the observer by one of the stars and

significantly modify the light curve and other binary observables. Interested readers

should consult Siscoe & Heinemann 1974 and Campbell (1997).

Kallrath (1991) and Stevens et al. (1992) computed the hydrodynamical proper-

ties of such colliding winds and the properties of the contact discontinuity estab-

lished in binary systems. Although Neutsch et al. (1981) and Neutsch & Schmidt

(1985) use only simple models for the interface in the context of binary star analysis

and compute the effect of this boundary layer on line profiles in HD 152270, their

approach is nevertheless instructive.

In hot binaries the opacity increases at the wind interface so as to affect the

radiative flux between components. The interface might be considered an attenuat-

ing region and could be incorporated into the model as described in Sect. 3.4.4.5.

3.4.4.5 Attenuating Clouds

As in Wilson (1998, 1999) let us use the term “cloud” (more precisely defined,

below) to refer to a circumstellar light-attenuating gas or dust region. The atten-

uation might be due to Thomson scattering, to scattering with (arbitrary) power

law wavelength dependence (such as Rayleigh scattering), to continuum opaci-

ties, and true absorption, e.g., discrete wavelength absorption features as ultravi-

olet Balmer lines. Circumstellar matter follows dynamical trajectories, so we might

expect there to be little effect from attenuating regions that are fixed in a coordinate

frame that rotates with the binary, but such is not entirely the case. A few binaries

[e.g., RZ Sct, AX Mon (Elias et al. 1997)] have approximately stationary loci of

circumstellar gas that extinct light and distort the light curves. A boundary layer

produced by colliding stellar winds in hot binary systems is another example. In

general, the loci may be stream–stream, stream–disk, or stream–wind interaction
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regions. Efforts to represent such light curve distortions via bright or dark star spots

sometimes rule out a spot explanation and point to essentially fixed attenuation

regions (hereafter, “clouds,”for brevity). The Wilson–Devinney model includes nc

spherical semi-transparent clouds specified by their locations (x, y, z) (in a rectan-

gular frame that corotates with the stars; coordinate frame C1 defined in Sect. 3.1.1),

cloud radius r , density ρ, electron density ne, and mean molecular weight per free

electron µe. The part of the line-of-sight that passes through the various clouds

is computed individually for the lines-of-sight to all surface points and individu-

ally for all clouds. Regions of variable density can be made by nesting individual

clouds. Regions of nonspherical shape can be approximated by overlapping spher-

ical clouds. Each cloud is allowed its own attenuation law, 41 whose general form

is

dτ

ds
= σene + (κλ + κsb)ρ, (3.4.10)

where τ is the optical thickness, σe is the Thomson scattering cross-section per elec-

tron, s is the distance along the line-of-sight (in cm), κλ is a wavelength-dependent

opacity, and κsb is an additional opacity for a specific passband (κ in cm2/g). The

κsb term might represent, for example, opacity due to absorption lines averaged over

a particular passband. The κλ term is

κλ = κ0λ
α, (3.4.11)

where κ0 and α are input quantities. Each cloud has its individual κ0, α, and κsb.

However, to make it easy to change the κsb of all clouds together, the κsb’s are

not entered directly as individual members. Instead we enter an overall κsb and the

fractions fc that applies for each cloud. Thus

κsbc = fcκsb, (3.4.12)

where all the fc can be unity if κsbc is to be the same for all clouds c, or non-unity

if κsbc is to differ from cloud to cloud. The model computes absolute lengths from

the system geometry, including the orbital semi-major axis. A first application is to

AX Monocerotis (Elias et al. 1997).

3.5 Modeling Radial Velocity Curves

Motu proprio (By one’s own motion)

Radial velocities usually are extracted from spectra taken at modest spectral disper-

sions (1–3 nm/mm of reciprocal linear dispersion) through the averaged measure-

41 At present the clouds only attenuate starlight that pass through them, but they may be made to

scatter starlight toward the observer in a future program version.
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ments of absorption line shifts on CCD images. Since they first came into use, the

physical size of CCD chips has restricted their wavelength registration range, and

as a consequence, velocities have been based on fewer lines than was the case with

photogravarPhic or even Reticon detectors of the more recent past.

A powerful means of acquiring good spectral resolution over a large spectral

range is through Echelle spectra. These spectra have a large number of orders,

each of which has a short spectral range. A cross-disperser is needed to separate

the orders. Both background subtraction and ghost images require extra attention

in processing, but the advantages of this two-dimensional spectroscopic technique

outweigh the disadvantages if enough flux is available. A frequently used method

is cross-correlation (see Sect. 2.2.1) of the program star spectrum against that of

a velocity standard, with due allowance taken for the reduction of velocities to

the Sun. The resulting radial velocities indicate the Doppler shifts of one or both

components. Whether Doppler shifts of both components are visible depends on the

relative brightness of the less luminous component.

Proximity effects in close binary systems distort not only light curves but also

radial velocity curves. The curves are affected by a star’s nonsphericity, surface

brightness distribution, line strength variation over the surface, aspect dependence

of spectral line strength, and eclipses. In binaries with strong tidal distortions or

reflection effect heating, these effects have to be accounted for when estimating

masses or other quantities derived from velocities.

Even in the case of rotating spheres in a binary the eclipse of part of one of the

components results in a phase-dependent shift of the estimated velocity and reflects

the dominance of one of the eclipsed star’s limbs. In particular, the rotation of the

partially eclipsed component distorts the velocity curve. Schlesinger (1909, p. 134)

gives already a clear explanation of this “rotation effect ”: “The rotation of the bright

star has another consequence in certain parts of the orbit. In general we obtain light

from the whole disk and the observed velocity is equal to that of the center of the

star. Just before and just after light minimum, however, this is not the case; before

the minimum the bright star is moving away from us and part of its disk is hidden

by the dark star. The part that remains visible has on the whole an additional motion

away from us on account of the rotation; the observed velocity will therefore be

greater than the orbital. On the other hand, just after minimum the circumstances

are reversed so that the observed velocity is less than the orbital.” Now this effect is

called the Rossiter effect42 after Rossiter (1924).

Radial velocity measurements differ from those expected for point sources in

other ways as well. That is illustrated in Fig. 3.26 which shows the radial velocity

42 Rossiter also uses the term “rotational effect.” For β Lyrae he measured an amplitude of

13 ± 2 km/s and in his paper he wrote: “This is called rotational effect.. .. This is, I believe, the first

time that this rotational effect has been isolated and measured and eliminated from the least-squares

adjustment of the elements. Professor Schlesinger has suspected it in δ Librae (he referred directly

to the page 134 of Schlesinger’s paper) and . . .. ”
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Fig. 3.26 Modeling of the Rossiter effect in AB Andromedae. This plot, produced with Binary

Maker 2.0 using the parameter file aband in the examples collection, shows the radial velocity

curves for a point source (solid line) and a distorted binary (dotted line)

curves of the W UMa-type43 EB AB Andromedae. The solid line shows the radial

velocity curve we would expect if both stars were point sources. The dotted line is

the one including proximity effects. Note the great difference near eclipse phases.

Any program capable of computing photometric light curves should be able to

compute radial velocity curves, with only slight extra programming. Intuitively, we

expect that measured radial velocities do not correspond to those associated with

point masses moving on Keplerian ellipses but rather to the “centers-of-light.” The

effective radial velocities are the average radial velocities weighted with the local

intensities over the stellar surface.

In order to derive results which are independent of the period P and semi-major

axis a, the radial velocities may be treated as follows. For radial velocity curves

produced by a pair of point masses (see Fig. 3.27) it has been common practice to

consider

ωa =
K1 + K2

sin i
, qsp =

M2

M1

=
a1

a2

=
K1

K2

, (3.5.1)

where the undistortedradial velocity amplitudes K1 and K2 directly give the spectro-

scopic mass ratio qsp. The quantity ω (not to be confused with the argument of peri-

astron) is the time-averaged angular velocity of the orbital motion. If we consider

deformed stellar surfaces and compute the radial velocity contribution from each

surface element, it is not appropriate to keep K1 and K2 in the analysis because they

are not uniquely defined in the presence of proximity effects. The natural parameters

43 The Rossiter effect is very significant in strongly distorted eclipsing binaries with short periods

as is the case in W UMa-type stars.



148 3 A General Approach to Modeling Eclipsing Binaries

Fig. 3.27 Radial velocity curves for point masses. This figure (Courtesy J. D. Mukherjee) shows

the radial velocities for a binary system with two point masses

to replace K1 and K2 are the directly physical parameters a1 and a2. An arbitrary

surface element dσ at position r = r(r ; λ,µ, ν) on the surface of the primary com-

ponent, seen from the direction s = (sx , sy, sz), produces the contribution V (dσ ) to

the radial velocity curve

1

ωa
V (dσ ) = vc + v, vc = −

q

1 + q
sy = −

a1

a
sy, (3.5.2)

where vc is the (dimensionless) constant radial velocity of the center-of-mass of the

primary, and v is the local radial velocity of dσ in a corotating coordinate system

with origin in the center-of-mass of the primary component. Note that velocities

are given in units of aω. In those units, in a rotating coordinate frame centered at

component 1, v is given by [compare Wilson & Sofia (1976, pp. 183–184)]
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v =
r

a

(

λsy − µsx

)

, (3.5.3)

where r is the distance from the origin, and λ, µ, sx , and sy are the direction cosines

defined in (3.1.1) and (3.1.15 ). The effective radial velocity is now computed by

averaging over the surface, weighted by the intensity Iλ of dσ in the direction s to

the observer. A finite grid-point value is computed for each phase Φ:

∆Vλ =
∫

Iλvdσ
∫

Iλdσ
, (3.5.4)

where
∫

Iλdσ is the integrated flux ℓ(Φ) at phase Φ. This yields the radial velocity

curve V (Φ):

1

ωa
V (Φ) = Vc(Φ) +∆Vλ(Φ) (3.5.5)

of the primary, with an analogous expression for the secondary. In absolute units we

eventually get

V j (Φ) = −a jω sinΦ sin i + ωa∆Vλ j (Φ) + γ, j = 1, 2. (3.5.6)

Here a constant velocity, γ , is added to account for the velocity of the center-of-mass

of the binary system.

More realistic modeling of the proximity effects and their influences on the

radial velocity curves might consider the variation of line strength. To measure line

strength the line equivalent width is used. On stars with negligible winds, it depends

on effective temperature, surface gravity, and aspect angle alone. The formalism

discussed above computes the global mean radial velocities based on flux-weighted

local velocities, but ideally they should also be weighted by equivalent width. Van

Paradijs et al. (1977) seem to be the first to have done so. Van Hamme & Wil-

son (1994) explored the effects of line strength weighting for a small number of

binaries and found that the difference between flux-only and [flux/equivalent width]

weighted proximity effects were, at most, a few percent of the velocity amplitude in

those examples. Van Hamme & Wilson (1997) extended the approach to eccentric

orbits and asynchronous rotation. Again the result is confirmed that for high mass

X-ray binaries or binaries with extreme mass ratios the effect of the variation of

line-strength is of the order of a few percent. Nevertheless, observers are encour-

aged to list the lines used to measure the radial velocities in their papers. In order

to exploit the line-weighting formalism correctly it is recommended to publish the

radial velocities for individual lines when line-strength effects are expected to be

significant
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3.6 Modeling Line Profiles

Divide et impera (Divide and conquer)

after Philip of Macedon (359–336 B.C.)

Accurate modeling of line profiles enables us to estimate stellar rotation rates as has

been discussed in Sect. 2.2.3. In the context of light curve modeling it is natural to

use a theory of stellar line broadening for the local profile and a binary star model

for the rotational theory (Mukherjee et al. 1996). That strategy avoids the overhead

produced by stellar atmosphere theory. The relevant input quantities are the effective

temperature, T , the damping constant, Γ , including both natural and collisional

damping, the number of absorbers, N f , the microturbulent velocity, vtur , the ratio

of continuum scattering opacity to total continuum opacity, ρ, the monochromatic

ratio of line opacity to continuum opacity, βν , at frequency ν, and the fraction, 1−ε,

of absorbed photons which are scattered. This leads to the auxiliary quantity, λν ,

defined as

λν :=
(1 − ρ) + εβν

1 + βν
. (3.6.1)

Mukherjee et al. (1996, Sect. 3) obtain the emergent intensity, Iν(0, µ), for given µ

defined in equation (3.2.22):

Iν(0, µ) = (a + pνµ) +

(

p −
√

3a
)

(1 − λν)
√

3
(

1 +
√
λν
) (

1 +
√

3λνµ
) . (3.6.2)

The expressions for evaluating a, b, and the probability, pν , that a photon is thermal-

ized in an interaction with an atom or ion are given in Mihalas (1978, pp. 312–313).

For the continuum intensity, Ic(0, µ), Mukherjee et al. obtain

Ic(0, µ) = (a + bµ) +

(

b −
√

3a
)

ρ
√

3
(

1 +
√

1 − ρ
) (

1 +
√

3(1 − ρ)µ
) . (3.6.3)

Finally, they obtain the residual intensity, relative to the continuum:

rν(µ) =
Iν(0, µ)

Ic(0, µ)
, (3.6.4)

which is then integrated by their light curve program to yield the residual flux. The

velocity needed for the calculation of a line profile is ∆Vλ as computed in (3.5.4).

Line profiles are generated for each surface element. Figure 3.28 shows how the

intrinsic line profile changes as T , Γ , N f , and vtur are changed. To get the line

profile for the entire star the local line profiles are weighted according to the flux

from each of these areas. Figure 3.29 shows an example of profiles computed at
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Fig. 3.28 Variation in the intrinsic line profile. This plot, Fig. 1 in Mukherjee et al. (1996), shows

the influence of several parameters on the intrinsic line profile (µ = 1): clockwise from lower left,

the number of absorbers, effective temperature, microturbulent velocity, and the damping constant.

Courtesy J. D. Mukherjee

Fig. 3.29 Line profiles and Rossiter effect. This plot, Fig. 4 in Mukherjee et al. (1996), shows

the Rossiter effect on the line profiles in S Cancri. The phase of observation is 0.184. The orbital

shifts corresponding to phases 0.05 and 0.184 differ by too small an amount to show significantly.

Courtesy J. D. Mukherjee
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several phase shifts (0.01, 0.02, 0.03, 0.05) for S Cnc. The phase of the observa-

tions is 0.184. The orbital shifts corresponding to phases 0.05 and 0.184 differ by

too small an amount to show up significantly. In order to compare the computed

line profiles with observed ones they are convolved with the instrumental profile.

The instrumental profile is usually represented by a Gaussian given in terms of

full width at half maximum. The last step in getting the final line profile is to

take phase smearing into account by averaging computed line profiles from the

beginning and end of the observation interval. In case the interval is sufficiently

small the profile can be calculated at the phase corresponding to the middle of the

interval.

3.7 Modeling Polarization Curves

Embarras de choix (Embarrassment of choice)

As an example of how additional observables may be incorporated into a light curve

model we can consider circumstellar polarization based on scattering in optically

thin stellar envelopes.

Chandrasekhar (1946a, b) stimulated interest in polarized radiation from binary

stars when he showed that eclipses would break the disk symmetry and allow limb

polarization to be observed. In a binary system with a nonspherically symmetric cir-

cumstellar envelope, various processes (such as scattering, reflection, and Zeeman

splitting of spectral lines in the presence of a magnetic field) can produce a small

contribution to the intrinsic linear and/or circular polarization in the total light from

the system. The type and degree of polarization will vary over the binary period and

will depend on the polarizing mechanism (Thomson scattering , Rayleigh scattering,

and others), the distribution of scattering material, and the aspect of the system as

seen by an observer.

In principle, polarization data provide a chance to derive the inclination i and thus

masses of binary stars in the case of noneclipsing spectroscopic binaries because in

this case i is not available from either light curves or radial velocity curves. How-

ever, the main polarization mechanism(s) need to be identified and the model must

be rather good.

In a binary star system, two main sources of polarization have to be considered:

Photospheric polarization, namely the limb polarization effect predicted by Chan-

drasekhar (1946a, b) and circumstellar polarization . The additional observables are

the Stokes quantities

Q = P cos 2θp, U = P sin 2θp, (3.7.1)

where θp is the position angle (measured conventionally counterclockwise from

North) of maximum signal as an analyzer is rotated, and
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P =
Fmax − Fmin

Fmax + Fmin

. (3.7.2)

Net photospheric polarization should be zero for a centrally symmetric star face even

if there is significant polarization at the limb, as expected when electron scattering is

important. Eclipses break the symmetry and can lead to net observable polarization,

called the limb eclipse effect. Although many attempts have been made to detect the

limb eclipse effect, its unambiguous detection remains elusive. Kemp et al. (1983)

claimed to have detected it in Algol, but this claim is not universally accepted.

Wilson & Liou (1993)presented an analysis of the Kemp et al. (1983) observa-

tions and argued that their model, based on the Wilson–Devinney light curve model,

showed that the eclipse effect caused a significant part of the rapid variation of the

Stokes quantities during primary eclipse.

Wilson & Liou (1993) used the relations outlined in Brown et al. (1978) to com-

pute polarization arising fromcircumstellar matter. Later, Terrell and Wilson (unpub-

lished) combined a gas flow program [Terrell (1994), Terrell & Wilson (1993)] with

the Wilson–Liou program to compute observable polarization curves. As can be

seen in Fig. 3.30,the polarization curves are very sensitive to the location of and

physical conditions in the circumstellar gas. In these simulations, the ionization

scheme was relatively simple, but the results show that polarimetry can be a very

effective tool. The ionization is computed either from theSaha equation (telling us

the relative populations of two adjacent stages of ionization)

Ni+1

Ni

= B
(kT )3/2

ne

e−χi/kT , (3.7.3)

or the Boltzmann–Saha equation (giving the number of atoms available for a transi-

tion and so to produce a given spectral line)

Nis

N
≈

Nis

Ni−1 + Ni + Ni+1

=
Nis

Ni

/[

Ni−1

Ni

+ 1 +
Ni+1

Ni

]

(3.7.4)

with

Nis

Ni

= Ce−χs/kT . (3.7.5)

The Saha and Boltzmann–Saha equations involve the following symbols: Nis the

relative number of atoms in any state of excitation, s, of a stage of ionization i ; N ,

the sum populations of all ionization states; ne, the electron density; χi , the ion-

ization potential between adjacent stages of ionization; and some proportionality

constants, B and C , which include several atomic constants.
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Fig. 3.30 Polarization curves of SX Cassiopeiae. This plot, Figs. 4-24 to 4-29 in Terrell (1994),

shows mass transfer events of several durations. The upper curves are the U curves, the lower

curves the Q curves. Courtesy D. Terrell

Polarization observations of Algol-type binaries are relatively rare for several

reasons. Although bright, Algol has low circumstellar activity. The more active

systems are too dim for existing telescope/polarimeter combinations. However,

polarimetry has seen increased interest in recent years, and the combination of more

sensitive polarimeters and the new 8-m class telescopes will be able to collect and
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detect enough photons to achieve reasonable signal-to-noise ratios. Although there

are very few observations to compare to the model at present, the availability of

larger telescopes equipped with efficient polarimeters promises to make polarimetry

a very powerful probe of interacting binaries in the next few years.

A desirable polarization model would be based on the solution of the hydro-

dynamic flow equations, including viscosity and pressure, providing the electron

densities of circumstellar gas elements for many points in space. Today there are

no well-developed programs to do the full dynamical circumstellar computations.44

In order to compute Q and U, limb and circumstellar polarization are combined as

in Wilson & Liou (1993) . The limb polarization is computed from the Wilson–

Devinney light curve model, and the circumstellar polarization is computed by

the relations given in Brown et al. (1978) assuming optically thin pure electron

scattering.

3.8 Modeling Pulse Arrival Times

Binaries that contain an X-ray pulsar are very rich data sources. Besides radial

velocity and light curves they also provide pulse arrival times. As in the previous

sections, we need to be able to compare observed and theoretical quantities, in

this case pulse arrival times in addition to other observables. Therefore, following

Wilson & Terrell (1998), we write the pulse arrival time in Heliocentric Julian Date,

τ , as

τ = τref + S(n − nref)Pp +∆t −∆tref, (3.8.1)

with τref being the arrival time of a reference pulse (which defines pulse phase zero)

and ∆t and ∆tref the light time delays due to orbit crossing for a given pulse and the

reference pulse, respectively. S is the number of days in a second of time (1/86400),

Pp is the pulse period in seconds, and n is an integer assigned to an observed pulse.

Equation (3.8.1) establishes our model for computing the pulse arrival times. The

delays ∆t depend implicitly on the common light curve parameters q, i , a, and e

according to

∆t = R⊙
Sadq sin i

c(1 + q)
cos(360◦θ ), (3.8.2)

where R⊙ is the radius of the Sun in kilometers, d is the instantaneous separation

of the two stars in units of a, θ is the geometrical phase defined in (3.1.20), and c is

the speed of light in kilometers per second.

44 For some specific applications, it certainly could be done – probably within a year or less of

development. The real problem is that there are almost no published observations to test the idea

(or sufficiently accurate and numerous ones, covering at least several consecutive orbits). So there

is little motivation at present to do the calculations.
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Wilson & Terrell (1998) proceed as follows to compute ∆t . The pulse ephemeris

is used to obtain time. The first two terms on the right-hand side of (3.8.1) are

interpreted as time, τp, kept by the pulsar clock and measured in Heliocentric Julian

Date, i.e.,

τp = τref + S(n − nref)Pp. (3.8.3)

This time, tp, is coupled to the orbital phase, Φ, according to ( 2.1.1):

Φ = Φs + f rac

{

τp − T0

P

}

, (3.8.4)

where T0 denotes the reference epoch, P is the orbital period, and Φs is a constant

offset which in most cases is simply zero. The next step is to compute the mean

anomaly M according to (3.1.34). This gives the true anomaly, υ, the geometrical

phase, θ , and, finally, the separation, d.

So, the pulse arrival model involves the following set of adjustable parameters:

τref, q, i, a, e, ω, E0, Pp, P.

As noted by Wilson & Terrell (1998), the parameters can be adjusted by differential

corrections and analytic derivatives exist for nine parameters.

An analysis by Wilson & Terrell (1994, 1998) of data from a binary containing

an X-ray pulsar is briefly outlined in Sect. 7.3.1.

3.9 Self-Consistent Treatment of Parallaxes

As pointed out in Chap. 1 (page 22) the distance D or parallax π of a binary can

(in favorable cases) be derived if both light and radial velocity curves are available.

If parallax data are available for the binary, for instance, from the Hipparcos mis-

sion [cf. Rucinski & Duerbeck (1997)], or if it is a member of an object (e.g., star

cluster, galaxy) with known distance, nπ ≥ 1, measured values πk of the parallax

might be available. Thus, on the one hand, the parallax is a systemic observable

and, on the other hand, it is a model parameter to be estimated by the least-squares

analysis.

Let us now consider the parallax π as a parameter in the EB model, and let D

denote the distance of the binary connected to π by

π =
kπ

D
. (3.9.1)

If the distance is measured in parsecs and the parallax is measured in arc-seconds,

the constant is kπ = 1. To couple the parallax to the binary model it is more conve-

nient to measure the distance in units of the semi-major axis a.
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First, we include the parallax both as an observable and also as an adjustable

parameter. Second, instead of the normalized light or flux ℓ (Φ) usually used in

light curve analysis, the flux ℓD (Φ) in absolute physical dimensions [energy/time/

wavelength/unit receiver area] must be used in the least-squares analysis. Note

that this requires absolute calibration of the photometric systems as discussed in

Sect. 5.1.2.3.

The addition of parallaxes to light curve analysis slightly extends the least-

squares function (see Chap. 4). The contribution of parallax as an observable is

nπ
∑

k=1

wk

(

oobs
πk − ocal

π

)2 =
nπ
∑

k=1

wk

(

πobs
k − π cal

)2
, π cal = π, (3.9.2)

where the weights are derived from the standard deviations of the parallaxes accord-

ing to (A.3.4). With a derivative-based least-squares algorithm the analytic deriva-

tives are

∂ocal
π

∂π
= 1,

∂ocal
rv

∂π
(Φ) = 0,

∂ℓD

∂π
(Φ) = −2

π

kπ
ℓD (Φ) , (3.9.3)

which follows directly from (3.2.51) and (3.2.1). As the computation of radial veloc-

ities does not explicitly depend on the parallax, the radial velocities’ partial deriva-

tives are zero. An obvious point is that, in the absence of radial velocity curves

(semi-major axis a is not known in that case) π cannot be determined because

a/D = aπ/kπ = const and a is unconstrained.

3.10 Chromospheric and Coronal Modeling

The extension of observables to include spectrometric data and very narrow line

profile information, the availability of X-ray and ultraviolet data from space plat-

forms, infrared and even radio data, make it possible to model the details of stellar

chromospheres and coronae with improved accuracy.

It is well known that strong spectral lines, such as Hα, or Ca II H&K, originate

much higher in the photosphere than does the continuum. From rocket and space

platforms, such as NRLs stigmatic solar spectrograph data on Skylab, the far ultravi-

olet emission regions have been mapped in great detail. Of particular interest are the

He II spectroheliographic images at 30.4 nm which map coronal holes. Figure 3.31

above shows the Sun in the far-ultraviolet region.

Ability to model these features requires capability in a light curve code that does

not exist. The disk of the Sun, for example, is silhouetted by the active regions

and chromospheric network behind the limb; it is dark in the far-ultraviolet and

X-ray regions. The emission in many passbands comes exclusively from active

regions, and the optical depth may be so low outside these regions that only patches

of the Sun may be visible in an otherwise dark field. The emission may arise
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Fig. 3.31 He II spectroheliogravarPhic image of the Sun. This Skylab photograph (Experiment

S082A) shows the Sun at 30.4 nm. Courtesy R. Tousey, US Naval Research Laboratory (NRL)

solely from an annulus around the dark disk. There is every reason to suspect

that a similar situation is to be found in other stars with convective envelopes, at

least of solar type. As described in Strassmeier (1997, Chap. 9), many observa-

tional data, e.g., the Ca II H&K lines, are also available for active stars and active

chromospheres.

3.11 Spectral Energy Distribution

Bona diagnosis, bona curatio (Good diagnosis, good cure)

Plotting flux (essentially brightness) versus frequency or wavelength of light

of an astronomical object gives its spectral energy distribution (SED). Studies of

individual EBs (cf. Siviero et al. (2004) and Marrese et al. (2005) for example)

have shown that including flattened SEDs may be used as an external check of

the model solution, where individual spectral lines of echelle spectra are com-

pared with Kurucz (1993) model atmospheres. Flattened spectra are used instead of

flux-calibrated spectra because observed echelle spectra are virtually impossible to

flux-calibrate. There are good ways to calibrate B&C spectra but not echelle spec-

tra, and the latter are mainly used for RV studies. Hence flattened spectra. Despite

the fact that some information is lost, fortunately there are many spectral lines and
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their profiles and equivalent widths are strongly dependent on Teff, log(g/g0), vrot,

and [M/H].

SED data are useful in solving the inverse EB problem as discussed by Prša

& Zwitter (2005b). Their program PHOEBE described in Sect. 8.2 already takes

a step in that direction by using a synthetic spectra database to test whether flat-

tened, wavelength-calibrated spectra match synthetic spectra within a given level

of significance. As the spectra depend on [Teff, log(g/g0), vrot]1,2 and metallicity,

they can in favorite cases provide valuable insight to break the often experienced

problem of degeneracy among light curve parameters (often, Roche potentials Ω1,

Ω2, and inclination i), or to support (for well determined radii) the determination of

the yielded synchronicity parameters F1 and F2, because the only way to compen-

sate for the change in rotational velocities for any predetermined radii is to break

the corotation presumption. This may be especially important in analysis of well-

detached systems, as demonstrated by Siviero et al. (2004).

3.12 Interstellar Extinction

To αγ κάθι απ ó µικρó αγ κυλώνει (A thorn stings even if it’s small)

In the field of EB analysis interstellar extinction and reddening usually have not

been treated as part of EB models. A binary star appears fainter if its light passes

through regions of the interstellar medium filled with dust and gas particles causing

absorption and scattering. If scattering by dust or grain solids is the main cause the

process is roughly described by Mie scattering. As in Mie scattering the amount of

scattered light in optical wavelengths decreases with wavelength, more blue light

is removed, i.e., the apparent B brightness decreases (percentwise) more than the

apparent V brightness, and objects appear reddened. Because the difference B − V

increases with extinction, the color excess

E(B − V ) = (B − V ) − (B − V )0 (3.12.1)

is a useful measure of interstellar extinction. The quantity (B − V )0 is the intrinsic

color index of the object. The (U − B) color excess is defined similarly. The effect of

interstellar extinction on the V band is described by the attenuation, AV , expressed

in magnitudes. As the ratio R = AV /E(B − V ) ≈ 3.1 is a good approximation to

most directions across the sky, an estimated value of AV is derived directly from the

observed color excess by

AV = 3.1E(B − V ). (3.12.2)

Regardless of how AV (or other passband attenuations) has been estimated, in EB

analysis it is traditionally subtracted uniformly for all phases from photometric mag-

nitudes, i.e.,
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(V − AV ) − MV = 5 log D − 5, (3.12.3)

where MV is the absolute magnitude in the V band and D is distance. Prša & Zwit-

ter (2005a, b) questioned whether this type of correction is adequate, especially if

interstellar extinction and the color difference between the binary components are

large.

Instead, Prša & Zwitter (2005a) treated reddening systematically in the context

of data fitting. They determined E(B−V ) from multi-color EB light curves by com-

paring several color indices in-and-out of eclipse and demonstrated that estimation

of E(B−V ) from least-squares analysis requires light curves in three or more bands.

As interstellar extinction and reddening depend on wavelength, one has to integrate

over the wavelength of a passband instead of using a simple effective wavelength,

λeff, in the calculations.

Wilson (2008) remarks in his development of the direct distance estimation

scheme that, although interstellar extinction increases distance estimates, its associ-

ated reddening decreases temperature estimates. Reduced theoretical temperatures

reduce predicted absolute fluxes and so decrease distance estimates. Thus, in regard

to distance determined from light curve analyses, extinction and reddening partly

offset one another and, accordingly, the overall effect of extinction on distance

determination is less than one might suppose. Wilson (2008, Sect. 7) also inves-

tigated the possibility of determining the attenuation A through the least-squares

analysis. Note that attenuations in different passbands are connected through the

Jason Cardelli & Mathis approximation functions and thus only one attenuation A

is a free parameter. Although this is indeed possible given accurate absolute light

curves in three passbands, it is not very practical as the sensitivity with respect to

the calibration of the light curves is too strong. Small deviations in the calibration

lead to significantly wrong values of A. The situation might be improved if the three

bands are widely separated in wavelength.

3.13 Selected Bibliography

This section is intended to guide the reader to recommended books or articles on the

physics involved in modeling EBs, or binaries in general.

• The review article by Wilson (1994) gives an excellent overview of Light Curve

Models. It provides a historical view and discusses the embedded astrophysics.

• The Proceedings of IAU Symposium 51 provides many useful contributions on

gas streams (Batten, 1973b).

• Readers interested in the Structure and Evolution of Close Binary Systems are

pointed to the Proceedings of IAU Symposium 73 (Eggleton et al. 1976).

• On the topic of stellar atmospheres, Alter’s (1963) Astrophysics: The Atmo-

spheres of the Sun and Stars has excellent physical insights. Theoretical Astro-

physics by Ambartsumyan (1958) is a classic work; an excellent book. Stellar

Atmospheres by Mihalas (1978) is the most detailed reference on this topic.
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• A compact source on the Theory of Rotating Stars is provided by Tassoul’s (1978)

book.

• Warner (1995) provides in his book Cataclysmic Variable Stars useful material

on mass transfer and accretion disks. This book also contains background on

other astrophysical topics relevant to EB modeling.

• The Tidal Evolution in Close Binary Systems is discussed and quantitatively

investigated in the excellent paper by Hut (1981).

• The book Magnetohydrodynamics in Binary Stars by Campbell (1997) gives

an outline of early work in binary stars and introduces the fundamentals of

magnetohydrodynamics and binary star theory. It also covers X-ray binary pul-

sars,accretion disk magnetism, and stellar and disk winds.

• A brief review onX-ray binaries, their classification, and observational facts is

given by Krautter (1997).

• A useful introduction into the field of active stars, stellar spots, active chromo-

spheres, and stellar magnetic fields is provided in the book Aktive Sterne by

Strassmeier (1997).

• New Techniques and Limitations of Light Curve Analysis by Hadrava (2005) pro-

vides an overview on light curve modeling and analysis with a historical intro-

duction very recommended to the reader.
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Różyczka, M. & Schwarzenberg-Czerny, A.: 1987, 2-D Hydrodynamical Models of the Stream–

Disk Interaction in Cataclysmic Binaries, Acta Astron. 37, 141–162

Rucinski, S. M.: 1969, The Photometric Proximity Effects in Close Binary Systems. I. The Dis-

tortion of the Components and the Related Effects in Early Type Binaries, Acta Astron. 19,

125–153

Rucinski, S. M.: 1973, The W UMa-Type Systems as Contact Binaries. I. Two Methods of Geo-

metrical Elements Determination. Degree of Contact, Acta Astron. 23, 79–120

Rucinski, S. M. & Duerbeck, H. W.: 1997, Absolute-Magnitude Calibration for the W UMa-Type

Systems Based on HIPPARCOS Data, PASP 109, 1340–1350



166 3 A General Approach to Modeling Eclipsing Binaries

Sasselov, D. D.: 1998a, Surface Imaging by Microlensing, in R. Donahue & J. Bookbinder

(eds.), Cool Stars, Stellar Systems, and the Sun, No. 154 in 10th Cambridge Workshop, ASP

Conference Series, pp. 383–391, Astronomical Society of the Pacific, San Francisco, CA

Sasselov, D. D.: 1998b, The Chromaticity of Microlensing, in R. Ferlet & J. P. Maillard (eds.),

Variable Stars and the Astrophysical Return of Microlensing Surveys, pp. 141–146, Editions

Frontiers, Paris, France

Scarfe, C. D., Barlow, D. J., Fekel, F. C., Rees, R. F., Lyons, R. W., Bolton, C. T., McAlister, H. A.,

& Hartkopf, W. I.: 1994, The Spectroscopic Triple System HR 6469, AJ 107, 1529–1541

Schlesinger, F.: 1909, The Algol Variable δ Librae, Publ. Allegheny Obs. Univ. of Pittsburgh 1,

123–134

Schuerman, D. W.: 1972, Roche Potentials Including Radiation Pressure, Ap. Sp. Sci. 19, 351–358

Siscoe, G. L. & Heinemann, M. A.: 1974, Binary Stellar Winds, Ap. Sp. Sci. 31, 361–374

Siviero, A., Munari, U., Sordo, R., Dallaporta, S., Marrese, P. M., Zwitter, T., & Milone, E. F.:

2004, Asiago eclipsing binaries program. I. V432 Aurigae, A&A 417, 1083–1092

Smak, J.: 1978, The Escape of Particles from Disks in Close Binaries, in A. N. Zytkow (ed.),

Nonstationary Evolution of Close Binaries, No. 2 in Symposium of the Problem Commission

“Physics and Evolution of Stars”, pp. 111–116, PWN – Polish Scientific Publishers, Warsaw,

Poland

Søderhjelm, S.: 1980, Geometry and Dynamics of the Algol System, A&A 89, 100–112

Sterken, C. and Jaschek, C. (eds.): 1997, Light Curves of Variable Stars – A Pictorial Atlas,

Cambridge University Press, Cambridge, UK

Stevens, I. R., Blondin, J. M., & Pollock, A. M. T.: 1992, Colliding Winds from Early-Type Stars

in Binary Systems, ApJ 386, 265–287

Strassmeier, K. G.: 1997, Aktive Sterne – Laboratorien der solaren Astrophysik, Springer, Wien,

Austria

Struve, O.: 1944, The SpectrogravarPhic Problem of U Cephei, ApJ 99, 222–238

Struve, O.: 1950, Stellar Evolution, Princeton University Press, Princeton, NJ

Szebehely, V.: 1967, Theory of Orbits: The Restricted Problem of Three Bodies, Academic Press,

London

Taam, R. E. & Bodenheimer, P.: 1992, The Common Envelope Evolution of Massive Stars, in E. P.

J. V. den Heuvel & S. A. Rappaport (eds.), X-Ray Binaries and Recycled Pulsars, Vol. 377

of NATO ASI Science Series C: Mathematical and Physical Sciences, pp. 281–291, Kluwer

Academic Publishers, Dordrecht, Holland

Tassoul, J.-L.: 1978, Theory of Rotating Stars, Princeton Series in Astrophysics, Princeton Univer-

sity Press, Princeton, NJ

Tassoul, J.-L. & Tassoul, M.: 1983, Meridional Circulation in Rotating Stars. IV – The Approach

to the Mean Steady State in Early Type Stars, ApJ Suppl. 264, 298–301

Terrell, D.: 1994, Circumstellar Hydrodynamics and Spectral Radiation in Algols, PhD thesis,

Department of Astronomy, University of Florida, Gainesville, FL

Terrell, D., Mukherjee, J. D., & Wilson, R. E.: 1992, Binary Stars – A Pictorial Atlas, Krieger

Publishing Company, Malabar, FL

Terrell, D. & Wilson, R. E.: 1993, Spectral Energy Distributions of Circumstellar Gas in Algols,

in E. F. Milone (ed.), Light Curve Modeling of Eclipsing Binary Stars, pp. 27–37, Springer,

New York

Tsesevich, V. P. (ed.): 1973, Eclipsing Variable Stars, A Halsted Press Book, Wiley, New York

Van Hamme, W.: 1993a, New Limb-Darkening Coefficients for Modeling Binary Star Light

Curves, AJ 106, 2096–2117

Van Hamme, W.: 1993b, The New Wilson Reflection Treatment and the Nature of BF Aurigae,

in E. F. Milone (ed.), Light Curve Modeling of Eclipsing Binary Stars, pp. 53–68, Springer,

New York

Van Hamme, W. & Wilson, R. E.: 1990, Rotation Statistics of Algol-Type Binaries and Results on

RY Geminorum, RW Monocerotis, and RW Tauri, AJ 100, 1981–1993

Van Hamme, W. & Wilson, R. E.: 1994, Binary Star Radial Velocities Weighted by Line Strength,

Mem. Astron. Soc. Ital. 65, 89–92



References 167

Van Hamme, W. & Wilson, R. E.: 1997, Radial Velocity Proximity Effects for Selected Exam-

ples, in E. F. Milone (ed.), Proceedings of the AAS 1997 Meeting – Binary Section, pp. 1–10,

University of Calgary, Calgary, AB

Van Hamme, W. & Wilson, R. E.: 2003, Stellar Atmospheres in Eclipsing Binary Models, in U.

Munari (ed.), GAIA Spectroscopy: Science and Technology, Vol. 298 of Astronomical Society

of the Pacific Conference Series, pp. 323–328, San Francisco

Van Hamme, W. & Wilson, R. E.: 2007, Third-Body Parameters from Whole Light and Velocity

Curves, ApJ 661, 1129–1151

Van Paradijs, J., Takens, R. J., & Zuiderwijk, E. J.: 1977, Systematic Distortions of the Radial

Velocity Curve of HD 77581 (Vela X-1) Due to Tidal Deformation, A&A 57, 221–227

Vanbeveren, D.: 1977, The Influence on the Critical Surface of Radiation Pressure, X-Rays and

Asynchronisation of Both Components in a Binary System, A&A 54, 877–882

Vanbeveren, D.: 1978, The Influence of the Radiation Pressure Force on Possible Critical Surfaces,

Ap. Sp. Sci. 57, 41–51

Vogt, S. S.: 1979, A Spectroscopic and Photometric Study of the Star Spot on HD 224085, PASP

91, 616

von Zeipel, H.: 1924a, Radiative Equilibrium of a Double-Star System with Nearly Spherical Com-

ponents, MNRAS 84, 702–719

von Zeipel, H.: 1924b, The Radiative Equilibrium of a Rotating System of Gaseous Masses,

MNRAS 84, 665–683

von Zeipel, H.: 1924c, The Radiative Equilibrium of Slightly Oblate Rotating Stars, MNRAS 84,

684–701

Warner, B. (ed.): 1995, Cataclysmic Variable Stars, Cambridge University Press, Cambridge, UK

Webbink, R. F.: 1992, Common Envelope Evolution and Formation of Cataclysmic Variables and

Low-Mass X-Ray Binaries, in E. P. J. V. den Heuvel & S. A. Rappaport (eds.), X-Ray Binaries

and Recycled Pulsars, Vol. 377 of NATO ASI Science Series C: Mathematical and Physical

Sciences, pp. 269–280, Kluwer Academic Publishers, Dordrecht, Holland

Webbink, R. F.: 2008, Common Envelope Evolution Redux, in E. F. Milone, D. A. Leahy, & D. W.

Hobill (eds.), Astrophysics and Space Science Library, Vol. 352 of Astrophysics and Space

Science Library, pp. 233–257

Wehrse, R.: 1987, Theory of Circumstellar Envelopes, in I. Appenzeller & C. Jordan (eds.), Cir-

cumstellar Matter, IAU Symposium 122, pp. 255–266, Kluwer Academic Publishers, Dor-

drecht, Holland

White, R. L. & Long, K. S.: 1989, X-Ray Emission from Wolf–Rayet Stars, ApJ 310, 832–837

Whitehurst, R.: 1988a, Numerical Simulations of Accretion Disks. I. Superhumps – A Tidal Phe-

nomenon of Accretion Disks, MNRAS 232, 35–51

Whitehurst, R.: 1988b, Numerical Simulations of Accretion Disks. II. Design and Implementation

of a New Numerical Method, MNRAS 233, 529–551

Wilson, O. C.: 1960, Eclipses by extended atmospheres, in J. L. Greenstein (ed.), Stellar Atmo-

spheres, Vol. VI of Stars and Stellar Systems, pp. 436–465, University of Chicago Press,

Chicago, IL

Wilson, R. E.: 1974, Binary Stars – A Look at Some Interesting Developments, Mercury, pp. 4–12

Wilson, R. E.: 1978, On the A-Type W Ursae Majoris Systems, ApJ 224, 885–891

Wilson, R. E.: 1979, Eccentric Orbit Generalization and Simulaneous Solution of Binary Star Light

and Velocity Curves, ApJ 234, 1054–1066

Wilson, R. E.: 1981, A Generalization of the Henyey and Integration Methods for Computing

Stellar Evolution, A&A 99, 43–47

Wilson, R. E.: 1990, Accuracy and Efficiency in the Binary Star Reflection Effect, ApJ 356,

613–622

Wilson, R. E.: 1994, Binary-Star Light-Curve Models, PASP 106, 921–941

Wilson, R. E.: 1998, Computing Binary Star Observables (Reference Manual to the Wilson–

Devinney Programm, Department of Astronomy, University of Florida, Gainesville, FL, 1998

edition



168 3 A General Approach to Modeling Eclipsing Binaries

Wilson, R. E.: 1999, A Fluorescence and Scattering Model for Binaries, in R. Dvorak (ed.), Modern
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Chapter 4

Determination of Eclipsing Binary Parameters

The determination or estimation of physical parameters from EB light curves and/or

radial velocity curves is an inverse problem and can be formulated as a nonlinear

least-squares problem. It is solved by optimizing the agreement between the calcu-

lated light and the observed light curve. The parameter vector x corresponding to

minimum deviation is the system solution, and the calculated light curve produced

from it is said to be the best fit to the data. A measure of the deviation is the weighted

sum of the squared residuals.

In this chapter, we formulate the inverse problem and describe numerical meth-

ods used in the EB community to solve the least-squares problem. Intentionally, we

give a rather formal approach closer to today’s education of physicists and mathe-

maticians. In addition, Appendix A provides a more general background on least-

squares problems. Regarding the analysis of light curve data, we suggest some rules

for estimating initial parameters and for interpreting and checking the consistency of

light curve solutions; In addition, we discuss the interpretation of errors associated

with the derived parameters. Of all these issues, the interpretation of the solution

is of greatest importance because it transforms the mathematical results into useful

physical information.

4.1 Mathematical Formulation of the Inverse Problem

Per aspera ad astra (Through arduous labors, to the stars)

after Seneca (4 B.C.–A.D. 65)

For a set {tck | 1 ≤ k ≤ nc} of given timelike quantities and a given m-dimensional

parameter vector x ∈ IRm , an observable Oc of curve-type c, 1 ≤ c ≤ C

Ocal
c (x) :=

{

(tck, ocal
ck )

∣

∣ ocal
ck := ocal

c (tck), 1 ≤ k ≤ nc

}

, (4.1.1)

may be calculated at nc points tck in time based on a light curve model, in the way

described in Chap. 3. This problem, the mapping

x →
{

Ocal
1 (x), . . . ,Ocal

c (x), . . . ,Ocal
C (x)

}

(4.1.2)

J. Kallrath, E.F. Milone, Eclipsing Binary Stars: Modeling and Analysis, Astronomy

and Astrophysics Library, DOI 10.1007/978-1-4419-0699-1 4,
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is called the direct problem. Note that we consider C observables simultaneously.

For present purposes, it is not essential that different observables in simultaneous

light curve fitting are measured at the same time; in general we have tc1k �= tc2k .

The problem of finding the parameter vector x which best fits a set of C given

observed light curves {Oobs
1 , . . . ,Oobs

c , . . . ,Oobs
C }

Oobs
c :=

{

(tck, oobs
ck ) | 1 ≤ k ≤ nc

}

, 1 ≤ c ≤ C, (4.1.3)

with each of them consisting of nc data points is called the inverse problem. The

inverse problem yields the mapping {Oobs
1 , . . . ,Oobs

c , . . . ,Oobs
C } → x, of course,

only in the sense of a statistical estimation.

In order to formulate the inverse problem, we introduce the column vectors o and

c containing the observables ock of the sets Oobs
c and Ocal

c (x):

o := (oobs
11 , oobs

12 , ..., oobs
1n1
, ..., oobs

c1 , oobs
c2 , ..., oobs

cnc
, ..., oobs

C1 , oobs
C2 , ..., oobs

CnC
)T,

(4.1.4)

c := (ocal
11 , ocal

12 , ..., ocal
1n1
, ..., ocal

c1 , ocal
c2 , ..., ocal

cnc
, ..., ocal

C1, ocal
C2, ..., ocal

CnC
)T, (4.1.5)

and the vector d(x) of light residuals (observed minus calculated):1

d(x) := o − c(x), dck(x) := oobs
ck − ocal

ck . (4.1.6)

Note that the total number of data points involved in the problem is

n := n1 + · · · + nc + · · · + nC . (4.1.7)

In addition, let w := (w1, ..., wn)T �= 0 be a column vector, the components of

which represent the nonnegative weights of the individual observations. Further-

more, it is convenient to define a matrix W which, in the case of uncorrelated data,2

is a diagonal matrix

W := diag(w11, w12, ..., w1n1
, ..., wc1, wc2, ..., wcnc

, ..., wC1, wC2, ..., wCnC
).

(4.1.8)

In addition, we define the weighted residual vector R(x)

R(x) =
√

W · d(x), (4.1.9)

Rck(x) =
√
wck

(

oobs
ck − ocal

ck

)

. (4.1.10)

Weighting is an important part of the data analysis, so in Sect. 4.1.1.5 we comment

further on it.

1 The overdetermined system d(x) = 0 is also called equations of conditions.
2 Unlike the analysis of photographic plates in astrometry where errors in x and y are strongly

correlated, eclipsing binary light curve and radial velocity curve data are not correlated with each

other.
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To solve the inverse problem and to derive the unknown parameter vector x

describing the physics of the binary from the observed curves Oobs
c , it appears

reasonable to vary x until the deviation between the calculated observable Ocal
c (x)

and Oobs
c attains a minimum in a well-defined sense. In data analysis several cri-

teria are used. Mathematically they can be expressed as the problem to minimize

the norm ‖R‖p with p ∈ {1, 2,∞}. In this book at most places, we will use

p = 2. For the case p = 1, we refer the reader to Branham (1990, Chap. 6).

An alternative approach to data analysis is robust estimation [cf. Press et al. (1992,

pp. 694– 698)].

Since the days of Gauß (see Sect. 4.1.4), it has been customary3 to use the

weighted sum of squared residuals (p = 2)

f (x) := RTR =
n
∑

ν=1

R2
ν (x) = dT

Wd =
n
∑

ν=1

wν

(

oobs
ν − ocal

ν

)2
(4.1.11)

as a measure of this deviation if we are convinced that the distribution of the errors

can be described by a normal distribution. A parameter vector x in a light curve

model is called the light curve solution or system solution, x∗, if

f∗ ≡ f (x∗) = min{ f (x) | x ∈ S ⊂ IRm}. (4.1.12)

The subset S ⊂ IRm , called the feasible region, is implicitly determined by a set of

constraints as in (A.2.2), i.e., functional relations (often equations or inequalities)

applied to components of the parameter vector x. Whereas f∗ is unique, x∗ is very

often not. In nonlinear models, this might be caused by the structure of the model;

in linear models, correlations between parameters undermine the uniqueness of x∗.

Concerning the minimization of the quadratic form or function f (x), it is equivalent

to minimize the corresponding function f (x) defined as the standard deviation σ fit

f (x) = σ fit =

√

√

√

√

n

n − m − 1

/

∑

ν=1

wν

√
RTR. (4.1.13)

This gives a measure independent of the number m of free parameters and the

number of data points, n. Thus, the inverse problem of light curve analysis is

reduced to the following problem: Given a light curve model and a parameter vector

x = (x1, x2, ..., xm)T, we seek a solution in multidimensional parameter space mini-

mizing the quadratic form RTR. Equivalently, as a measure for the quality of the fit,

we minimize σ fit, which is normalized by the number of observed data points and

free parameters.

3 Gauß showed that the weighted sum of squares gives the most probably correct results. In mod-

ern terminology, the least-squares procedures, under the assumptions described in Appendix A.3,

provide a maximum likelihood estimator (Brandt, 1976, Chap. 7).
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Light curve analysis leads to a typical situation for fitting model functions (here,

the light curve model) to data. In this case, it is a nonlinear parameter estimation,

which in this form is a special case of unconstrained optimization. However, strictly

speaking, we are confronted with a nonlinear constrained optimization problem.

The optimization is subject to bounds

li ≤ xi ≤ ui . (4.1.14)

An example is li = 0 and ui = 1 for the eccentricity e. Another constraint, seldomly

mentioned explicitly, is a nonlinear and implicit relation among the mass ratio q, the

Roche potentials Ω1 and Ω2, and the rotation factors F1 and F2 . This relation (note

that f1 and f2 denote the filling (or “fill-out”) factors; they should not be confused

with f (x))

“ f1,2 < 0” ∨ “0 < f1 = f2 < 1” ∨ “sign( f1) + sign( f2) = −1” (4.1.15)

guarantees that a feasible binary configuration is produced. These configurations are

• detached: two stars inside their critical lobes ( f1 < 0, f2 < 0 ⇔ sign( f1) +
sign( f2) = −2); or

• semi-detached: one star filling its critical lobe whereas the other one is well inside

its critical lobe ( f1 < 0, f2 = 0 or f1 = 0, f2 < 0 ⇔ sign( f1)+ sign( f2) = −1);

or

• over-contact: both stars establish an over-contact binary in the synchronous case

(0 < f1 = f2 < 1); or finally,

• double-contact: both stars filling their critical lobes in the asynchronous case

( f1 = f2 = 1).

The necessary and sufficient conditions for the existence of a minimal point x∗ of

(4.1.12) can be expressed in terms of the first and second derivatives and some

Lagrange multipliers (see Appendix A.2). The nonlinear structure of the problem

requires an iterative solution algorithm, and it forces us to distinguish between

global and local minima. x∗ is called global minimum if for all x ∈ S the relation

f (x∗) ≤ f (x) (4.1.16)

holds. In contrast, x∗ is called local minimum, if x∗ satisfies (4.1.16) only for a local

sphere Bε(x∗)

Bε(x∗) := {x ∈ S | ‖ x − x∗‖2 < ε } (4.1.17)

around x∗ with a suitable ε > 0. Finally, an algorithm for solving our least-squares

problem is said to converge globally if from an arbitrary initial point x0 ∈ S it

converges to a local (or global) minimum x∗. However, unless f (x) is a convex

function, there is no algorithm available which could be proven to converge to the

global minimum x∗. So, in solving nonlinear least-squares problems, at best we can
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prove that we have reached a local minimum. We might have reached the global

minimum but we are usually not able to prove it formally.

4.1.1 The Inverse Problem from the Astronomer’s Perspective

4.1.1.1 The Input Database

The analysis of a photometric light curve alone cannot provide absolute dimensions

of the stars or the orbit. The reason for this is a scaling property: if all geometric

properties of a binary system are doubled, original light curves can be reproduced

by shifting to a larger distance. The distance and surface brightnesses, which would

either individually or in combination determine the scale of the model, are known

only under exceptional circumstances, e.g., if the binary is a member of a well-

studied star cluster.

Light curves can provide relative quantities (radii in terms of the semi-major

axis a, information on temperature, relative luminosities, perhaps the photometric

mass ratio, the shapes of the stars) and the orientation and eccentricity of the orbit

(inclination i , argument of the periastron, ω). Radial velocity curves can provide

a sin i , i.e., the scaling factor a in physical units if i is known. When a and the

mass ratio q are known, the masses can be found unambiguously from (4.4.14)

and (4.4.16). Note that in order to derive definite masses and orbital dimensions

[viz. (4.4.16) and (4.4.17)] from a radial velocity curve, the inclination needs to

be known. Thus, the absolute determination of EB parameters requires at least one

light curve and radial velocity curves for both components. The following tables list

combinations of observables needed to derive certain binary parameters in favorable

cases:

1 = at least one photometric light curve;

2 = only one radial velocity curve;

3 = both radial velocity curves, but no light curve;

4 = at least one photometric light and one radial velocity curve; and

5 = at least one photometric light curve and both radial velocity curves:

1 2 3 4 5

a1 sin i or a2 sin i
√ √ √ √

a sin i , a1,2 sin i , M1,2 sin3 i
√ √

a, a1,2, M1,2, R1,2, L1,2, d (
√

)
√

e, ω, P
√ √ √ √ √

γ
√ √ √

qsp

√ √

qph (
√

) (
√

) (
√

)

i , R1,2/a, L2/L1, g1,2, A1,2, F1,2, x1,2, ℓ3

√ √ √

T2

√
(?) (?)

√ √
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The photometric mass ratio qph indicated by (
√

) can be determined with much

confidence only for lobe-filling or over-contact systems. Unfortunately, the incor-

rect notion that qph derives mainly from ellipsoidal variation has gained moderately

widespread acceptance. The actual situation is that qph comes from coupling the

Roche configuration to the radii of the stars. Thus, the same light curve characteris-

tics that define the radii4 also define qph, but only when the radii can be related to the

equipotential configuration. There are two distinct cases. In a semi-detached binary

the radius of the lobe-filling star fixes the lobe radius, and thus the mass ratio. Best

results are obtained for complete eclipses. In an over-contact binary with complete

eclipses, the ratio of the radii is fixed by elementary considerations [see (4.4.1)]. The

ratio of radii in turn is essentially a unique function of the mass ratio for over-contact

equipotentials, with minor dependence on the degree of over-contact (Wilson 1978).

Essentially all published values of photometric Fs are for rapidly rotating Algols.

Two conditions help in determining the values of F . First, eclipse circumstances

(shape and depth) are altered by rotationally induced oblateness. Second, and more

subtle, the proximity effects due to reflection and ellipsoidal variation of the sec-

ondary star are effectively enhanced by the reduced brightness of the fast rotating

primary for observers near the orbit plane.

The question mark in parentheses (?) indicates a chance that the temperature(s)

can be derived from spectral features. In order to compute T2 from a light curve

solution, T1 has to be known in advance (e.g., derived from color or spectral type); of

course we could also fix T2 and adjust T1. The quantity a1 sin i can be obtained from

a single-lined system, and a sin i from a double-lined system to give lower limits

for the orbital size a = a1 + a2. In ideal cases, an eclipsing, double-lined system

therefore provides everything needed. Whether or not a given system does so in fact

is a matter to be determined. The light curve of an EB depends nonlinearly on the

parameters, so solving the inverse problem, and thus minimizing F(x) or f (x) =
σ fit(x), requires to navigate all the pitfalls of nonlinear multiparameter fitting.

4.1.1.2 General Problems of Nonlinear Parameter Fitting

Binary parameters can become correlated: Changes in one parameter can nearly be

compensated by a combination of changes in other parameters. Unfortunately, this

problem is usually present in light curve analysis (Wilson 1983), and it is an intrinsic

property of the problem. The problem can be imagined geometrically by considering

the hyperspace formed by the sum-of-squares of the residuals, plotted as a function

of the parameters (see Figs. 4.1, 4.2, 4.3 and 4.4). The valleys in this hypersurface

are long and narrow, so that a small error in the direction taken by the solution vector

at each step can cause the algorithm to run up and down the sides of the narrow

valley instead of along its axis which would bring it much faster to the solution. The

first problems of correlations are numerical difficulties in solving the linear algebra

4 In detached systems, correlations of qph with Ω1, Ω2, and other parameters make it almost

impossible to derive accurate photometric mass ratios. In lobe-filling or over-contact binaries either

of Ω1 or Ω2 is eliminated from the adjustable parameter list.
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Fig. 4.1 Sum of the squared residuals versus parameters. Example of weighted sum of squared

residuals
∑

wr2 versus T and i . The plot [Fig. 1 in Stagg & Milone (1993, p. 80)] shows data

produced during the modeling of the binary NH30 in the globular cluster NGC 5466

problem [the rows of the Jacobian matrix J (see Appendix A.3.3) are nearly linear

combinations of each other]. This difficulty may be enhanced if the linearization

makes use of numerical partial derivatives (finite-difference approximations). The

situation becomes even worse when the linearized problem is solved by using the

normal equations (4.3.9). In that case, the condition number of J is squared.

The second problem is the nonlinearity itself, which bends the long, narrow val-

leys and prevents iterations from taking a large step along the valley axis, before it

starts to run up one side of the valley. Consequently, step-size limiting algorithms

are commonly used to prevent Differential Corrections from making the solution

worse rather than better.

4.1.1.3 Special Problems of Nonlinear Parameter Fitting

in Light Curve Analysis

In addition to these frequently encountered problems, a few aspects are especially

important in connection with light curve analysis.

First, the influence of parameters on the shape of the light curve is strongly phase

dependent. Slight changes of the temperature T2 of the secondary star may show up

only near the eclipses. The albedos A1 and A2 have an effect mainly on the shoulders

of the minima. Spots affect the light curve only when they appear on a part of the
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Fig. 4.2 Sum of the squared residuals versus parameters. Example of weighted sum of squared

residuals
∑

wr2 versus q and Ω . The plot [Fig. 3 in Stagg and Milone (1993, p. 83)] shows data

produced for the over-contact binary H235 in the open cluster NGC 752

star visible to the observer. Thus, the derivative, ∂x p
lcal
k (x) of calculated light lcal

k (x)

with respect to a spot parameter, x p, say, longitude, is zero over a range of phase

values.

The second problem that may occur is the existence of local minima in parameter

hyperspace (see Figs. 4.1, 4.2, 4.3 and 4.4). It is very difficult to prove unique-

ness in the m-dimensional parameter space S as that requires initial solutions in all

the hyperspace valley regions. Such questions become important when analyzing

light curves with primary and secondary minima of similar depths, for example. In

the case of BF Aurigae, two well-separated local minima of σ fit occur (Kallrath &

Kämper 1992). One reason is the dual possibility of atransit or occultation eclipse

at primary minimum. The two assumptions lead to solutions with σ fit values of

comparable size. Such nonuniqueness problems can sometimes (as in the BF Auri-

gae system) be overcome by additional information, such as spectral line ratios (in

an SB2). Milone et al. (1991) dealt with such uniqueness questions by perturbing

the parameters of their TY Bootis solution by about 10%, one at a time, and iter-

ating each time to a new solution. This technique still begs the question about the

location of the deepest possible minimum in parameter space because the range

of parameters explored is limited in such a procedure. In the case of TY Bootis,

confidence in the solution was enhanced somewhat by good radial velocity curves.

Different models, though, can arise from different assumptions about the assumed
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Fig. 4.3 Contour plot of
∑

wr2 versus T and i . The plot [Fig. 2 in Stagg and Milone (1993,

p. 82)] shows data produced during the modeling of NH30

temperature of one of the components. What temperature scale should we use when

deciding the temperature of one of the components? Detailed atmospheres for these

kinds of systems are sorely needed before color indices can be de-reddened and used

in models.

There are two aspects of analyzing data sets that highlight the problem of strong

parameter correlation: The numerical difficulties and the uniqueness problem. The

numerical difficulties can be overcome, for instance, by the method of multiple sub-

sets described in Sect. 4.3.2. “Overcoming” in this context means that the algorithm

finds a parameter solution with a value of the least-square function close or almost

identical to the minimum value. This formulation brings up the second problem: The

uniqueness problem. We sometimes face very flat minima with similar values in the

least-squares function around the solution. If light is scaled to unity, differences in

σ fit smaller than, say, 10−3 are usually not statistically significant.

The correlation or uniqueness problem can often be overcome if it is possi-

ble to reduce the number of free parameters. For example, limb-darkening coeffi-

cients might be taken from a model atmosphere; albedos and gravity brightening

parameters might be fixed. Such decisions have to be made with care because they

could bias a solution toward an incorrect model. We have to bear in mind that this
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Fig. 4.4 Contour plot of
∑

wr2 versus q and Ω . The plot [Fig. 4 in Milone (1993, p. 84)] shows

data produced during the modeling of H235

procedure can artificially improve determinacy but introduce the wrong physics.

Perhaps the most honest approach is to solve the problem, find a decent fit and a

corresponding parameter vector, and clearly state the uniqueness problem. In addi-

tion, we should try to establish confidence limits for the parameters.

4.1.1.4 On the Use of Constraints

In mathematical optimization problems (Appendix A.2) and constrained least-

squares problems (Sects. 4.2.2 and Appendix A.4), constraints are relations among

parameters. In optimization theory, constraints are implicit relations connecting sev-

eral parameters and decreasing the size of the solution space. Sometimes, if con-

straints are available in explicit form, they can be used to eliminate unknown param-

eters directly [see, for instance, (4.1.19)]; explicit constraints reduce the dimen-

sionality of the solution space, i.e., the number of adjustable parameters. In some

light curve programs, such as the Wilson–Devinney code, explicit constraints are

exploited directly in the model. If emission-line activity or secular period change

indicates that one component of the binary fills its Roche lobe, the lobe potential
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can be replaced by the critical value. The eclipse-duration constraint (Wilson, 1979)

is another example.

As described in Appendix E.11 for the special case of circular orbits and syn-

chronous rotation, the relation

Θe = Θe(i,Ω, q) (4.1.18)

contains the semi-duration Θe of the X-ray eclipse and allows us to eliminate the

inclination i , the potential Ω , or the mass ratio q. Usually, (4.1.18) is inverted w.r.t.

Ω , i.e.,

Ω = Ω(i, q,Θe), (4.1.19)

which expresses the fact that the X-ray eclipse duration puts a limit on the size of

the optical star (the X-ray star has negligible dimension).

4.1.1.5 Assignment of Weights

In the context of light curve analysis, a weight assigned to each data point can be

regarded as the product of three (hopefully) independent factors

w = wintrwfluxwc, (4.1.20)

with the following meaning as in Wilson (1979):

1. wintr is an intrinsic weight. If normal points are used, wintr is often taken to be

the number of data points averaged to produce the “normal” (sometimes called,

“binned data”) point;

2. wflux is a flux-dependent weight (see below); and

3. wc is a curve-dependent weight.

We discuss the importance of each factor in turn. For unbinned data, most observers

take wintr = 1; however, experience suggests that binning data saves computer

time and provides a measure of scatter for each binned point. The calculation of

the standard deviation of each binned point obviously requires the use of correct

values for the uncertainty in each individual point, if known, or, instead, one can

avoid reliance on individual datum weights by applying the factor wflux, as we shall

see below. Some practitioners prefer to use merely the number of individual data

points in each bin for wintr, irrespective of scatter in those data. If this is done, if the

light-dependent weights are selected appropriately, and if the data do indeed scatter

accordingly with the flux level, then the effect may be nearly the same as if the

weights of the individual data points were calculated from their intrinsic errors and

applied directly. But there are no guarantees! Like the issue of dome flats versus sky

flats in CCD photometry (see Sect. 2.1.4), the issue of binning or not binning raises

the specter of religious warfare among practitioners. If you want to be safe, perform

a solution both ways, but compute the weights correctly in each case!
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wflux may be set to 1 if and only if the weight factor wintr is computed so as to

reflect the actual intrinsic error in each observation. If this is not the case, wlight must

be selected carefully. Let ∆ℓ denote the standard deviation of a single observation

in units of normalized light ℓ. The precision of a photometric observation usually

depends on the star brightness. The dependence of the precision on light level ℓ is

governed by the source of the noise. Figure 4.5, adapted from the classical review

article by Code & Liller (1962, p. 285), shows the noise contributions to various

regimes of star brightness. Note that for the brightest stars, “seeing” or scintillation

dominates; for fainter stars, “shot noise” is most important, and for the faintest stars,

fluctuations in the sky background contribute significantly to the noise. The sky

background and level of seeing vary from site to site and night to night, of course,

so the figure should be considered a rough guide only and not a prescription for

any specific case. In the context of light curve analysis, Linnell and Proctor (1970)

define the relation between ∆ℓ and ℓ by an exponent b, b ∈ {0, 0.5, 1}, as follows:

∆ℓ = β · ℓb (4.1.21)

yielding a weight of

wflux =
1

ℓ2b
(4.1.22)

if we chose the constant β as unity. For photoelectric observations of most stars that

can be observed with some modicum of precision, in a “photometric sky,” shot noise

is usually the most important contribution to the noise. In this case, and otherwise
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Fig. 4.5 Noise contributions in various regimes of star brightness. Adapted from Fig. 1 in Code and

Liller (1962, p. 285). For the brightest stars, “seeing” or scintillation dominates; for fainter stars,

“shot noise” is most important; and for the faintest stars, fluctuations in the sky background con-

tribute significantly to the noise. Notice the region where the shot noise due to the sky background

(“Sky Limited”) becomes dominant over the shot noise from the star



4.1 Mathematical Formulation of the Inverse Problem 181

ideal circumstances, e.g., full quantum efficiency, the errors are Poisson-distributed

and are determined by photon statistics. This means that the expected uncertainty

in an observation of n photons is
√

n; therefore, b = 0.5. If the errors are constant

on the magnitude scale, such as those due to scintillation noise, the major source of

noise for bright stars in an otherwise perfect sky, one should use b = 1. This arises

because of the relation between magnitude differences and light fluctuations: ∆m =
1.086∆ℓ/ℓ so that if ∆m = const we have ∆ℓ ∝ ℓ. Finally, if the major source of

the noise is “read noise” from a CCD chip, or detector noise from a photoconductive

device, the errors are independent of light level and b = 0. See Young et al. (1991)

for a detailed assessment of the sources of photometric error.

In many cases, the appropriate choice of flux-dependent weight is not clear

because several sources of noise can occur together. Variable sky transparency can

be a major source of noise and may contribute in more than one way, especially if

the observations are made near a bright city sky, where increased cloudiness means

also an increase in the sky brightness and the shot noise associated with it. In such a

case, not even clever instruments such as the Rapid Alternate Detection System (see

Chap. 2) or other two-star photometers may be able to improve much on the error

in the data for the following reason: As the star dims, it also undergoes irregular

fluctuations as cloud transparency varies, and, on top of this, the fluctuations in

sky brightness as well as the shot noise in the sky flux all contribute to the noise

level. Clearly the separation of the comparison and program stars on the sky and the

spatial and temporal scales of cloud variation play critical roles in determining how

well these compensatory photometry systems can overcome the intrinsic difficulties.

This having been said, we hasten to note that we would not be without one! Many,

many nights of useful data collected on otherwise useless nights attest the value of

RAD systems because we can sometimes make up deficits in precision by increases

in integration time or through the superposition of data. The main difficulty arises

when the data are phase limited to an extent that longer integration or superposition

is impractical.

The use of a nonzero value for b assumes that the data have not been binned

or otherwise averaged. If they have been binned, and the standard deviations of

the means are used to establish the weights of each averaged or binned point, the

resulting weight should have already contained some light-dependent factor; in such

a case, the appropriate value for b is 0. Otherwise, the weighting factors will no

longer be independent, and systematic trends in the residuals may result.

The curve-dependent weights wc are important for the simultaneous analysis

of either a set of several light curves or possibly a set of light and radial velocity

curves (see Sect. 4.1.1.6). Each light or velocity curve has its own variance which

can be used to weight the data in that curve. Usually, but not always, light curves

in shorter wavelengths, such as the Johnson U, show larger scatter than those in

longer wavelengths, such as V or I. The scatter may be intrinsic, such as active

region emission, or arise from variable atmospheric extinction, to which ultraviolet

photometry is especially susceptible, or may also come from auroral emission. The

latter explanations are less likely if the data are obtained from the variable and com-

parison stars simultaneously, as in a CCD or multichannel photometer, but spatial
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variations in auroral emission are possible. In any case, we need to provide a weight

or a measure of accuracy for the light curve as a whole. In the Wilson–Devinney

program, a variance σc is required. Usually, σc is the standard deviation of a single

observation (rather than of the mean), and thus the associated weight follows (see

Appendix A.3 for reasoning) as

wc =
1

10, 000σ 2
c

. (4.1.23)

The factor 10,000 ensures that we get weights of convenient size. This error or

standard deviation may be computed from differences between consecutive, phased

observations within a specified interval, such as 0.005p (or more in the maximum

part of an EA-type light curve). The computed error will then be of the form

σ =

√

Σn
i=1(∆ℓi )2

p(n − 1)
, (4.1.24)

where p is the number of pairings, probably less than 2n, where n is the number of

independent observations i because not all parts of the light curve may be equally

well covered. Alternatively, σ may be computed from the fit error of a truncated

Fourier series representation of the light curve outside of the eclipse. This method is

not without pitfalls, however. Perturbations may influence the light curve and cause

higher-order terms in the Fourier series of the form

ℓ(Φ) =
M
∑

m=1

[Am sin(mΦ) + Bm cos(mΦ)] , (4.1.25)

where M is restricted such that the representation is reasonably realistic (M = 2; in

contact systems, perhaps M = 4 or more depending on perturbations). If M is too

small, the fit error will be larger, and the weight of the light curve in the modeling

process will be lower than that of other light curves. This is not a good idea if the

perturbations themselves are to be modeled, say, with star spot simulations, because

the leverage for spot parameter determinations will then be shortened. If the modeler

is not convinced of the physical existence of spots but nevertheless wishes to model

the system as well as possible, the only alternative at present is to rectify the light

curve of those perturbations by subtraction or division of the “unexplained” sine

term components of the Fourier representation, as prescribed by the Russell–Merrill

method in Sect. 6.2.1.

4.1.1.6 Simultaneous Fitting

EBs can be very rich data sources. Often several photometric passbands such as B

and V or u, v, b, and y are available. Ideal observation sets include one or two radial

velocity curves, in addition. It is important to stress that all these data are included

in the analysis to yield consistent results. Simultaneous data fitting does not mean
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that all observations must have been made at the same time. If polarization data

or apsidal motion data are included, then these data were taken at different times,

possibly separated by decades. Simultaneous data fitting means that all available

observations are used simultaneously in one least-squares fit. To be sure, combining

all these data from different sources requires careful weighting (see Sect. 4.1.1.5).

But if a consistent least-squares solution in such a situation can be found it deserves

respect! The real binary system has a definite inclination i , mass ratio q, and so on,

so all the data should yield the nonwavelength-dependent properties of the model

identically within the error limits. From the physical point of view, model fits in

separate passbands yielding different values for i or q are difficult to interpret.

At best they indicate a problem with the model or some of the fixed parameters.

From the numerical point of view, the “separate curve” approach involves too many

free parameters. Simultaneous fitting improves the safety at which parameters are

determined. Of course, with more constraints, or fewer free parameters, the fit of

the individual curves may look less attractive. A typical light curve fitting in differ-

ent passbands (say, u, v, b, and y), done separately, might have the following free

parameters:

u curve : i q Ω1 Ω2 T2 Lu
1

v curve : i q Ω1 Ω2 T2 Lv
1

b curve : i q Ω1 Ω2 T2 Lb
1

y curve : i q Ω1 Ω2 T2 L
y

1 .

In the separate curve fitting, each curve has six adjustable parameters. The result

may be 4 nice looking fits produced by a total of 24 parameters. In a simultaneous fit

(representing the correct physics), there would be only 5 + 4 · 1 = 9 free parameters

(five global and four curve-dependent ones). This demonstrates how simultaneous

fitting can drastically reduce the number of free parameters.

A remarkable analysis of an eclipsing X-ray binary is described in Sect. 7.3.1.

The analysis by Wilson & Terrell (1994) includes B and V light curves, an optical

(He I) radial velocity curve, pulse arrival times, and estimations of X-ray eclipse

duration. This analysis is remarkable both for the rich physics and the advantages

of simultaneous fitting that it illustrates.

For a systematic discussion of simultaneous fitting of curves (or multi-experiment

analysis) from a mathematical point of view, the reader is referred to Schlöder &

Bock (1983) and Schlöder (1988). These references also contain efficient algorithms

to solve such problems.

4.2 A Brief Review of Nonlinear Least-Squares Problems

Ab origine (From the beginning)

The inverse problem formulated in Sect. 4.1 is a typical nonlinear least-squares

problem which in turn is an optimization problem with a special structure. More
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details are given in Appendix A. Here we provide a brief overview of nonlinear

unconstrained and constrained least-squares.

4.2.1 Nonlinear Unconstrained Least-Squares Methods

Legendre (1805) first published the method of least-squares, applying it to data from

the 1795 French meridian arc survey as an example. In 1809, Gauß in Theoria

Motus Corporum Coelestium derived the justification for the method in terms of

the normal error law, showed how to obtain the errors of the estimated parameters,

and also how nonlinear problems could be linearized, so that the method could

be applied to the problem of nonlinear parameter estimation. He also claimed he

had been using the method since 1795, 10 years before Legendre’s work was pub-

lished. It appears that Gauß had indeed been using the method as he claimed, but

had not appreciated its wider importance until Legendre’s publication. For a more

detailed discussion of this priority conflict, we refer the reader to Stigler (1986) or

Schneider (1988).

Since the time of Gauß, numerical methods for solving several types of least-

squares problems, e.g., those with probablistic constraints [Eichhorn (1978) and

Eichhorn & Standish (1981)] and those involving differential equations [Bock

(1981), Kallrath et al. (1993) and Kallrath (1999)] have been developed and

improved, and there is still much active research in that area. For a review of the

methods of least-squares as known and used in astronomy, we refer to Jefferys

(1980, 1981) and Eichhorn (1993).

A popular method, sometimes also called “damped least-squares” or DLS for

short, is the Levenberg–Marquardt algorithm proposed independently by Levenberg

(1944) and Marquardt (1963). It modifies the eigenvalues of the normal equation

matrix and tries to reduce the influence of eigenvectors related to small eigenvalues

[cf. Dennis & Schnabel (1983)].

Since its original invention by Levenberg (1944) over half a century ago, there

have been numerous comparisons of DLS with other methods for nonlinear least-

squares, such as simple step-cutting (solving a line-search problem and reducing the

step-size if necessary) and derivative-free methods. Although there was a time when

the Broyden–Fletcher–Goldfarb–Shanno secant method was thought to be superior,

there now seems to be general agreement that DLS is similarly effective, and much

simpler to code. For this reason, it can be found in commercially available soft-

ware packages. DLS handles problems with exponential or logarithmic nonlineari-

ties nicely and works well on problems that have only power-law nonlinearities. To

achieve global convergence (i.e., convergence even for ill-chosen initial points), it

is necessary to choose the damping strategy carefully.

Damped (step-size cutting) Gauß–Newton algorithms that control the damping

by natural level functions [Deuflhard & Apostolescu (1977, 1980) Bock (1987)]

seem to be superior to Levenberg–Marquardt-type schemes and can be more eas-

ily extended to nonlinear constrained least-squares problems. To avoid confusion
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about the use of the word “damping,” we clarify that we use it for both the

damped Levenberg–Marquardt algorithm (which modifies the system matrix) and

step-cutting algorithms.

4.2.2 Nonlinear Constrained Least-Squares Methods

A common basic feature and limitation of least-squares methods used in astronomy,

but seldomly explicitly noted, is that they require some explicit model to be fitted to

the data. Most models are based on physical laws or include geometry properties,

and very often lead to differential equations which may, however, not be solvable

in a closed analytical form. Thus, such models do not lead to explicit functions we

want fit to data. We rather need to fit an implicit model (represented by a system

of differential equations or another implicit model). Therefore, it seems desirable to

develop least-squares algorithms that use the differential equations as constraints or

side conditions to determine the solution implicitly. By a multiple shooting approach

(Bock 1987), such differential equation-based side conditions can be discretized and

represented as equality constraints. The demand for, and the applications of such

techniques, are widespread in science, especially in the rapidly increasing fields of

nonlinear dynamics in physics and astronomy, nonlinear reaction kinetics in chem-

istry (Bock 1981), nonlinear models in material sciences (Kallrath et al. 1999) or

biology (Baake & Schlöder 1992), and nonlinear systems describing ecosystems in

biology or the environmental sciences.

Formally, we want to be able to solve a least-squares problem with nc constraints

as a constrained optimization problem of the type

min
x

{

F1(x)2 | F2(x) = 0 or ≥ 0 ∈ IRnc
}

. (4.2.1)

Using the nomenclature of Appendix A.3 and the definition (4.1.9) of the residual

vector including weights, F1(x) follows as

F1(x) = R(x), R(x) = Y − F(x) =
√

W [o − c(x)] . (4.2.2)

This usually large, constrained, structured nonlinear problem is solved by a damped

generalized Gauß–Newton method; cf. Bock (1987). Here we describe only the

equality constrained case. Starting with an initial guess x0, the variables are iterated

via

xk+1 = xk + αk∆xk (4.2.3)

with a damping constant αk restricted to the range 0 < αmin ≤ αk ≤ 1. In order to

compute the increment ∆xk , we substitute x in (4.2.1) by xk + ∆xk and linearize

the problem around xk . Then ∆xk is the solution of the linear, equality constrained

least-squares problem
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min
∆xk

{

‖J1(xk)∆xk + F1(xk)‖2
2 | J2(xk)∆xk + F2(xk) = 0

}

(4.2.4)

with the Jacobian matrices (see Appendix A.1)

Ji (xk) :=
∂Fi

∂x
(xk). (4.2.5)

Under appropriate assumptions about the regularity of the Jacobians Ji , there exists

a unique solution ∆xk of the linear problem and a unique linear mapping Jk
+ [called

generalized inverse as introduced by Bock (1981)] obeying the relations

∆xk = −Jk
+F1(xk), Jk

+
JkJ

+
k = J

+
k , J

T
k := [J1(xk)T, J2(xk)T]. (4.2.6)

The solution ∆xk of the linear problem follows uniquely from the Kuhn–Tucker

conditions (Kuhn & Tucker 1951)

J
T
1J1∆xk − J

T
2λc + J

T
1 F1 = 0, J2∆xk + F2 = 0, (4.2.7)

where λc ∈ IRnc is a vector of Lagrange multipliers.

For the numerical solution ∆xk of the linear constrained problem (4.2.4), sev-

eral structure-exploiting methods, for example the one by Bock (1981), have been

developed which compute special factorizations of J1 and J2 and thus implicitly, but

not explicitly, the generalized inverse J+. The availability of the Jacobians J1 and

J2 allows rank checks in each iteration and automatic detection of violations of the

regularity assumptions. In this case, automatic regularization and computation of a

relaxed solution is possible (Bock 1981).

The iteration (4.2.3) can be forced to converge globally to a stationary point of

the problem if the damping factors αk are chosen appropriately. In the treatment

of a large number of practical problems, strategies based on natural level functions

have proven to be very successful [cf. Bock (1987), the brief summary in Kallrath

et al. (1993), or Appendix A]. In the region of local convergence of the full step

method, the algorithm converges linearly to a solution that is stable against statis-

tical variations in the observations. An iterate, xk , is accepted as solution x∗ of the

nonlinear constrained problem if a scaled norm of the increments ∆xk is below a

user-specified tolerance. As the Jacobians and their decompositions are available

in each iteration, covariance and correlation matrices are easily computable (Bock

1987) for the full variable vector x∗.

4.3 Least-Squares Techniques Used in Eclipsing Binary

Data Analysis

Inter nos; inter vivos (Between ourselves; between the living)

This section describes the least-squares methods used and implemented in several

light curve programs.
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4.3.1 A Classical Approach: Differential Corrections

Differential corrections can be understood as an undamped Gauß–Newton method,

or in accordance with what has been said above, as an undamped Levenberg–

Marquardt algorithm. Thus, it is a special case of the techniques described in the

previous section. However, as the Differential Correction method is widespread

within the EB community5 and has achieved venerable status – it was first used

to determine the parameters of EBs by Wyse (1939) and Kopal (1943) – it deserves

detailed discussion.

The nonlinear least-squares problem is linearized in the following way: starting

from the necessary condition ▽ f (x) = 0 and an initial solution xk ∈ IRn present

at the beginning of the kth iteration, a correction vector ∆xk is defined such that

xk +∆xk obeys the necessary condition. With the unweighted residual vector d(x) ∈
IRN , the least-squares function (4.1.11) leads to the necessary condition

▽ f (x) = 0 ⇔ 2A(x)Wd(x) = 0, A ∈ M(n, N ), (4.3.1)

where M(n, N ) denotes the sets of matrices with n rows and N columns, and A is

given by

Aiν(x) :=
∂

∂xi

dν(x) = −
∂

∂xi

ocal
ν (x), A ∈ M(n, N ). (4.3.2)

Replacing the unknown solution x by xk + ∆xk yields the necessary condition

A(xk + ∆xk)Wd(xk + ∆xk) = 0, (4.3.3)

or component-wise

N
∑

ν=1

Aiν(xk + ∆xk)wνdν(xk + ∆xk) = 0, i = 1, . . . , n. (4.3.4)

Taylor-series expansion up to first-order derivatives gives

(

A(xk) + ∆xT
k G
)

W
(

d(xk) + A
T(xk) · ∆xk

) .= 0,

or with the Hessian matrix Gν
i j [interpret this as an M(n, n) matrix at each data point

indexed by ν]

5 Many photometric light curve data have been analyzed with the Wilson–Devinney program

(Wilson & Devinney, 1971) who were the first to use the method of Differential Corrections with

a physical light curve model.
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Gν
i j :=

∂

∂xi

(

∂

∂x j

dν(x)

)

, G ∈ M(n, n, N ). (4.3.5)

Multiplication (and neglecting second-order terms in ∆xk ) finally leads to

A(xk) · W · d(xk) +
[

dT(xk) · W · G(xk) + A(xk) · W · A
T(xk)

]

∆xk = 0, (4.3.6)

or component-wise for i = 1, . . . , n [see, for instance, Powell (1964a)]

N
∑

ν=1

{

Aiν(xk)wνdν(xk)

+
∑n

j=1

[

Gν
i j (xk)wνdν(xk) + Aiν(xk)A jν(xk)

]

∆xk

}

= 0. (4.3.7)

Under the “small residual assumption”

∥

∥dT(xk) · W · G(xk)∆xk

∥

∥ ≪
∥

∥A(xk) · W · A
T(xk)∆xk

∥

∥ , (4.3.8)

we get the equations

[A(xk) · W · A
T(xk)] · ∆xk = −A(xk) · Wd(xk), (4.3.9)

which is the normal equation of the linear least-squares problem

min
xk

∥

∥

∥

√
W
(

y − A
Txk

)

∥

∥

∥

2
, y = −d(xk). (4.3.10)

Note the similarity between the method described here and the formal procedure in

Appendix A.3.3 with J = AT. Iterations are continued with

xk+1 = xk + ∆xk (4.3.11)

until one of the stopping criteria described in Sect. 4.4.2 terminates the algorithm.

To compute the correction vector ∆xk in the kth iteration

∆xk = −Ĉ · A(xk) · Wd(xk), Ĉ := C
−1 = (ĉi j ), (4.3.12)

we need the inverse of the matrix

C = (ci j ) := A(xk) · W · A
T(xk). (4.3.13)

The inverse of C is just the covariance matrix Ĉ. Under the assumptions discussed,

for example, by Press et al. (1992, pp. 690–693), the diagonal elements of the covari-

ance matrix Ĉ provide a measure for the probable error δ (see Sect. 4.4.3).

In summary, the method of Differential Corrections belongs to a class of Newton-

type methods without second derivatives. It makes use of the fact that the gradient
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and the Hessian matrix of f (x) have a special structure but is based on the premise

that eventually first-order terms will dominate second-order terms, an assumption

that is not justified when the residuals of the solution are very large because the

second-order term ( 4.3.8) contains the product of second derivatives and residuals.

In practice, in light curve analysis, it turns out that this assumption seems to be

valid, i.e., the residuals at the solutions are small enough. The bounds (4.1.14)

are not taken into account in the method of Differential Corrections. The pro-

cedure can be applied successfully if an initial solution x0 close enough to the

solution x∗ is known and if the correlations between the parameters are not too

large. However, these requirements are not always met. The following disadvan-

tages are sometimes mentioned in the context of Differential Corrections. Note that

some of the following points (1 and 3) apply to any derivative-based least-squares

method:

1. The initial solution x0 might not be well known and not located in the

local convergence region. The result can be divergence or oscillation. It is not

unusual to observe higher standard deviations σ fit after a few iterations.

2. Most of the partial derivatives ∂xi
dν(x) can be derived only numerically for

light curve solutions. This means that to adjust m parameters, m + 1 or 2m + 1

light curves have to be calculated at each iteration, depending on whether asym-

metric [see (4.5.25)] or symmetric [see (4.5.26)] finite differences are used to

compute the partial derivatives. Accuracy depends critically on the choice of

the increments ∆xi and is difficult to control (see Sect. 4.5.5). As is shown

in Sect. 4.5.4, for some parameters, it is possible to calculate derivatives

analytically.

3. Convergence problems, due to both nonlinearity and correlations, have long been

observed in applications of Differential Corrections (Wilson & Biermann 1976).

The linearized normal equations are sometimes ill-conditioned with condition

numbers of the order of 106, i.e., parameters are strongly correlated. In light

curve analysis, the problem is very dominant when the mass ratio is an adjustable

parameter. Wilson & Biermann (1976) cope with these problems and solve alter-

natively and iteratively for subsets of parameters in successive iterations (see

Sect. 4.3.2).

4. The need for precision, hence grid density, for the calculation of the theoretical

light curve by numerical quadrature of the flux over the star’s surface is obvi-

ously much greater than for a direct search method. Computing-time costs and/or

restricted memory have prevented many light curve analyzers from using all

observed data points. Instead, they form normal points and analyze them to esti-

mate the parameters. Although we do not recommend this procedure enthusiasti-

cally, because there are subjective decisions to be made in the binning/averaging

procedure such as the width of the bins in different parts of the light curve, in

practice the results are not significantly different in most cases. See Sect. 4.1.1.5

for further discussion of the intrinsic merits of binning and not binning. Machines

are now becoming so fast and memory so inexpensive that normal points are no

longer needed.
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4.3.2 Multiple Subset Method and Interactive Branching

To overcome some of the limitations of Differential Corrections,Wilson & Biermann

(1976) introduced the method of multiple subsets, by which they could separate the

most correlated parameters during the optimization process (which still proceeds by

Differential Corrections). If P denotes the set of free or adjustable parameters, then

this method solves for parameter subsets Pi ⊂ P in each iteration. P is separated

into two or (rarely) more, not necessarily disjoint subsets Pi , but, of course, we

expect that the union of all, say, N S subsets

N S

⋃

i=1

Pi = P (4.3.14)

coincides with the original set P . The solution proceeds by alternating subset solu-

tions. As the derivatives were already calculated for the full set P , by interactive

branching several combinations of free parameters can be established without much

additional computing time. Associated with these subsets are normal equations

which have smaller dimension and a smaller condition number. The standard errors

of the parameters are derived by a final run on the whole parameter set (ignoring

the corrections). The method requires some interactive intervention of the human

analyzer but nevertheless many authors proved its efficiency (Wilson 1988). The

process of applying the subset with the smallest predicted σ fit has turned out to be

an effective way to arrive at the deepest minimum in most cases. Intuitively, this

method can be understood as a decomposition technique. In the example of two-

dimensional minimization in the x- and y-directions, this decomposition would lead

to a minimization in the x- and y-direction separately, i.e., fixing y and minimizing

with respect to x , fixing x and minimizing with respect to y, and so on.

The multiple subset method addresses the difficulties caused by correlations

between parameters. To overcome problems related to nonlinearity, a damping strat-

egy is required (see Sect. 4.3.3, or Appendix A.1).

4.3.3 Damped Differential Corrections and Levenberg–Marquard

Algorithm

A frequently used method to increase the convergence region of nonlinear least-

squares problems is the Levenberg–Marquardt algorithm (Levenberg 1944,

Marquardt 1963), sometimes also called the Marquardt method. Early users of the

Levenberg–Marquardt algorithm in the context of EB light curves were Hill (1979)

and Djurasevic (1992). Wilson & Terrell (1998) also mentioned the use of this

method in the Wilson–Devinney program.

The damped least-squares algorithm implemented in WD95 (Kallrath et al. 1998),

a version of the Wilson–Devinney program described in Chap. 7, is based on the

normal equation and modification of the system matrix (4.3.13) in Sect. 4.3.1 and
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is identical to the Levenberg–Marquardt strategy for damping. In its simplest form,

the key idea of the Levenberg–Marquardt algorithm is to add a multiple of the iden-

tity matrix 1l, λk1l, to the Hessian in (4.3.9) with a suitable nonnegative damping

factor λk . In place of the normal equation (4.3.9), we get a regular system of linear

equations of the form

[Ck + Dk]∆xk = −A(xk) · Wd(xk), (4.3.15)

where Dk is a diagonal matrix usually chosen as Dk = λk1l. In general, the crucial

point of the method is to choose the damping properly6 as discussed by Moré (1978).

A heuristic procedure to choose λk is given in Kallrath et al. (1998) and looks like

this:

1. for given xk compute f (x) and establish the normal equation, in particular, com-

pute C ;

2. for the initial damping constant λ pick a modest value, for example, λ = 10−4,

and set λ0 = λ;

3. the diagonal elements c j j are replaced by (1 + λk)c j j ;

4. solve the modified normal equation (4.3.15) for ∆xk and set the potential iterated

vector x′ = xk + ∆xk ;

5. compute f (x′);

6. acceptance test: if f (x′) ≤ f (xk) ⇒ xk+1 = x′ and λk+1 = 0.1λk , goto step 2;

7. f (x′) > f (xk) ⇒ goto step 8;

8. if k = 1 set λ1 = 1, then goto step 2; and

9. if k ≥ 2 set λk ← 3λk , goto step 2.

The question remains to define a condition for terminating the procedure. That topic

is discussed in Sect. 4.4.2.

As the Levenberg–Marquardt algorithm is sometimes referred to as a “damped

least-squares method” let us consider this point for a moment. A good property of

the Levenberg–Marquardt method is its numerical stability caused by the fact that

the matrix R′(xk)TR′(xk) + λk1l is positive definite even for rank-deficient Jacobians

R′(xk) (see Appendix A.3.3 for nomenclature). However, often the “solution” is not

the minimum of f (x) but only premature termination. Great care is needed because

the damping effect of adding λ1l to the Hessian hides to some extent the uniqueness

problem associated with rank-deficient Jacobians.

4.3.4 Derivative-Free Methods

Derivative-free optimization is performed with direct search algorithms which were

reviewed by Murray (1972) and Lootsma (1972). Among others, this group of

6 In light curve analysis, the method seems not to depend on the choice of λ strongly if λ is chosen

between 10−4 and 10−8.
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algorithms includes the Fibonacci line search, and the Simplex algorithm7 invented

by Spendley et al. (1962). The Simplex algorithm becomes efficient if there are more

than two or three parameters to be adjusted. In the context of light curve analysis,

this algorithm was first used by Kallrath & Linnell (1987). Since then several authors

have successfully applied this method. Experiences with the Simplex algorithm in

the context of light curve analysis can be found in Kallrath (1993). More recently,

Powell’s Direction Set Method has been implemented by Prša & Zwitter’s (2005) in

the light curve package PHOEBE.

4.3.4.1 The Simplex Algorithm

The Simplex algorithm does not require any derivatives to be computed but com-

pares only the function values fi := f (xi ) at the m + 1 vertices of a simplex in

parameter space, S. In the first versions of the method by Spendley et al. (1962),

the simplex was moved through S by an operation called reflection. The operation

bears a close relationship to the method of steepest descent. A more efficient version

by Nelder & Mead (1965) uses three additional operations: expansion, contraction,

and shrinkage which move the simplex, adapt it to the hypersurface, and iterate it

with decreasing volume to the solution x∗. The basic idea is to eliminate the worst

vertex by one of the four operations and to replace it with a better one. Figure 4.6

demonstrates these geometrical operations. f (x) = σ fit has been minimized w.r.t.

inclination i and mass ratio q. In the initial simplex S(0), the vertex with the highest

value σ fit has been marked with 0. Via reflection, S(0) is mapped onto S(1). S(2) is the

result of contracting S(1) toward the center of the simplex. This is a simulated case,

so the real solution x∗ = (i, q)∗ is known and marked as a circle in the (i −q)-plane.

The construction of S(0), introduced by Kallrath & Linnell (1987) and used in the

light curve packages, deviates from the usual procedure as expressed in (4.3.21)

because that appeared to be advantageous in EB light curve analysis.

Let us consider an arbitrary real-valued continuous function f (x) depending on

a vector x ∈ S ⊂ IRm , and m+1 vertices of a simplex S(0) constructed below and

embedded in IRm . Let V
(k)

i , 1 ≤ k ≤ m + 1, be the vertices of the simplex S(k)

with coordinates x
(k)
i after k iterations. For convenience we represent S(k) as an

(m + 1) × (m + 1)-dimensional matrix S
(k)
i j

S
(k)
i j :=

{

S
(k)
i j ,

fi := f (xi ),

for 1 ≤ j ≤ m,

for j = m + 1.
(4.3.16)

The following definitions hold for each iteration, therefore the superscript k is

neglected. In particular, we define the function value f h with highest value as

f h := max { fi , 1 ≤ i ≤ m + 1} , (4.3.17)

7 Not to be confused with Dantzig’s Simplex algorithm used in Linear Programming. First pub-

lished by Dantzig (1951), this Simplex algorithm was introduced by Dantzig in 1947.
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Fig. 4.6 The geometry of the Simplex algorithm. This figure [Figs. 1 and 2 in Kallrath and Linnell

(1987, p. 349)] shows the change of simplex shape while moving through a (i − q)-parameter

plane. The upper part shows the first seven iterations, the lower part the iteration while moving

toward the local minimum at i = 82.◦43 and q = 0.770
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the second highest value as

f s := max { fi , 1 ≤ i ≤ m + 1, i �= h} , (4.3.18)

and the lowest function value as

f l := min { fi , 1 ≤ i ≤ m + 1} , (4.3.19)

and eventually the center and the geometrical center of the simplex as

xcal :=
1

m

m+1
∑

i=1|i �=h

xi , xg :=
1

m

m+1
∑

i=1

xi . (4.3.20)

Note that for the computation of the center xcal, the vertex xh is omitted.

The initial simplex S(0) depends on the number of parameters m, an initial vector

x
(0)
1 , and a scaling quantity s := (s1, s2, ..., sm) determining the size of S(0). s j is the

size of S(0) projected onto the x j -axis. Spendley et al. (1962) and Yarbro & Deming

(1974), based on statistical considerations, derive the auxiliary quantities

(p, q) :=
1

√
2m

(√
m + 1 + m − 1,

√
m + 1 − 1

)

, (4.3.21)

and eventually construct S(0) = S(0)(m, x
(0)
1 , s) as

x
(0)
i j := x

(0)
1 j + s j







0 , i = 1,

p , j = i − 1.

q , else.

(4.3.22)

According to that definition, we have x
(0)
i j ≥ x

(0)
1 j . The geometrical interpretation is

that the already known simplex is constructed from one of its vertices. However, if

information such as an initial solution x
(0)
1 about the minimum of f (x) is available, it

seems better to construct the simplex S(0) = S(0)(m, x
(0)
1 −qs, s), whose geometrical

center xg approximately coincidences with x0, i.e., xg ≈ x
(0)
1 . In order to cover a

parameter space defined by simple bounds, the simplex S(0) = S(0)(m, x
(0)
1 , s/p) is

appropriate because its vertices lie on the edges of a hypercube.

The iteration process is summarized as a flow chart in Fig. 4.7 using the following

definitions:

xα = xα(x) := (1 + α)xc − αx; 0 < α,

xβ = xβ(x) := (1 − β)xc + βx; 0 < β < 1,

xγ = xγ (x) := (1 + γ )xc + γ x; 0 < γ,

xδ = xδ(x) := xl + δ(x − xl); 0 < δ. (4.3.23)
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Fig. 4.7 Flow chart of the Simplex algorithm. This figure [Fig. 9 in Kallrath and Linnell (1987,

p. 356)] represents the rules embedded in the Simplex algorithm

The four operations α̂ (reflection), β̂ (contraction), γ̂ (expansion), and δ̂ (shrinkage)

are applied according to the following scheme:

if

reflection S(k+1) = α̂
(

S(k)
)

, xh → xα(xh) f s ≥ f α > f l ,
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expansion S(k+1) = γ̂
(

S(k)
)

, xh → xγ (xh) f γ < f α < f l,

contraction S(k+1) = β̂
(

S(k)
)

, xh → xβ(xh)

xβ
(

xα(xh)
)

f h < f α,

f α ≤ f h,

shrinkage S(k+1) = δ̂
(

S(k)
)

, xh → xδ(xi ), i �= l f β ≥ f h .

(4.3.24)

By careful selection of the parameters α, β, γ , and δ, the four operations can be

controlled. The values α = 1.0, β = 0.35, γ = 2.0, and δ = 0.5 are recom-

mended by Parkinson & Hutchinson (1972). For most light curve analyses, this set

of parameters is used, but sometimes β = 0.5 is also substituted.

From the definitions of the operations, it follows that the volume of the simplex

and the function value at that vertex with minimal function value are monotoni-

cally decreasing functions of k unless the operation expansion occurs. The itera-

tions are halted by one of three stopping criteria. The first is the number kmax of

iterations. The second stops iterations when all mean errors, σ j , of the column

average, S̄ j ,

σ 2
j =

1

m

m+1
∑

i=1

(

Si j − S j

)2
, S j =

1

m + 1

m+1
∑

i=1

Si j , (4.3.25)

become smaller than a given tolerance ε j , i.e., σ j ≤ ε j for all j . Third, iterations

may be stopped if f l becomes smaller than a threshold value f t . If f (x) represents

a least-squares function, e.g., the standard deviation of the fit, σ fit, then f l may be

set to the inner noise, σ data, of the data.

As the Simplex algorithm is a direct search method, it cannot give standard errors

for the parameters. It is also difficult to add additional parameters during the course

of iterations.

4.3.4.2 Powell’s Direction Method

Powell’s Direction Set method (Powell 1964a,b) is an efficient method for finding

the unconstrained minimum of a function of n variables without calculating deriva-

tives. The method has a quadratic termination property, i.e., quadratic functions are

minimized in a predetermined number of operations, performing n2 + O(n) line

search steps along conjugate directions in parameter space. In Appendix A.1 we

briefly mentioned variable metric and conjugate direction methods. The method

was first applied to light curve analysis by Prša & Zwitter’s (2005b). A more recent

write-up of Powell’s method by Vassiliadis & Conejeros (2008) provides the com-

putational details (line search, choice of direction), and a discussion about the ter-

mination criterion.
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4.3.4.3 Simulated Annealing

Simulated annealing (SA) dates back to Metropolis et al. (1953) and is a

function-evaluation-based improvement or stochastic search method often used to

solve combinatorial optimization problems; see Pardalos & Mavridou (2008) for a

recent description. It is capable to escape local minima and can, in principle, find the

global optimium, however, without any guarantee. During its iterations, SA accepts

not only better than previous solutions, but also worse quality solutions controlled

probabilistically through a control parameter T . The basis requirements are an initial

starting point, a neighborhood concept and a cooling scheme involving a few tuning

parameters. For continuous optimization problems, the neighborhood concept leads

to parameter variations of the form:

xi → x ′
i = xi + r · vi ,

where xi is a parameter, r is a random number in the range [−1,+1], and vi is the

step length for this parameter. The function to be minimized, f (x), is then computed

for the new values of the parameter, to give the value f ′(x ′). In our program, this

function is the sum of squares of the weighted residuals. If f ′ < f , the function

is said to have moved downhill, and the values x ′ are taken as the new optimum

values. All downhill steps are accepted and the process repeats from this new point.

An uphill step may be accepted, allowing the parameter values to escape from local

minima. Uphill movements (for example, a value f ′ such that f ′ > f ) are accepted

with probability p = e( f − f ′)/T , where f is the previously found minimum value of

the function to be minimized, f ′ is the most recently computed value of the function,

and T is the current value of the “temperature,” the thermodynamic analogue, not

the light curve parameter. If p is larger than a random number between 0 and 1,

the new point is accepted (the “Metropolis criterion”). Both the values of vi and

T are adjusted. The step length is changed such that a fixed percentage – this is

one of the tuning parameters mentioned above – of the new evaluations is accepted.

When more points are accepted, v is increased, and more points may be “out of

bounds,” that is, beyond the parameter limits that are established in a constraints

file. The temperature is decreased after a specified number of iterations, after which

the temperature is changed to T ′ = rT T , where 0 ≤ rT ≤ 1. In the course of

iterations, the step length, rT , decreases and the algorithm terminates ideally close

to the global optimum. The computational cost to reach this state can be high, as

temperature annealing has to be sufficiently slow. A pseudocode of SA and detailed

discussion of the parameters and temperature adjustment are presented by Alizamir

et al. (2008).

SA has been applied to EB research by Milone & Kallrath (2008), in a slightly

modified form named Adapative Simulated Annealing by Prša (2005). SA is also

part of NightFall, a freely available amateur code for modeling eclipsing binary

stars described in Sect. 8.3.
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4.3.5 Other Approaches

In EB light curve analysis, other optimization techniques have been used in addition

to the methods described in the previous subsections. Napier (1981) used a sequen-

tial (creeping random) search technique for fitting the parameters in his tri-axial

ellipsoid–ellipsoid geometry light curve model. Since this light curve model did

not require a large amount of computer time, Napier was able to find a solution

parameter set within minutes. A similar approach, namely a “controlled random

search optimization procedure” based on the Price algorithm (Price 1976) has been

applied to the Wilson–Devinney model by Barone et al. (1988). In this case, the

efficiency was low. Barone et al. (1998) reported solutions which required about

30,000 iterations and 11 days of CPU time on a VAX 8600. Finally, we mention

Metcalfe (1999) who used genetic algorithms to analyze EBs.

Various semi-empirical modifications of Differential Corrections were outlined

by Khaliullina & Khaliullin (1984) and implemented in a computer program capable

of automatic iteration (which, however, is designed to analyze the light curves of

EBs with spherical components only). Hill (1979), in his program LIGHT2, which

is based on Roche geometry, may have been the first to change his light curve

solver from Differential Corrections to the Marquardt (1963) algorithm, which has

much improved convergence properties and has become a standard of nonlinear

least-squares routines.

Recently, the WD program has been enhanced by a damped least-squares solver

based on the idea of Levenberg (1944). Further material on the Levenberg–

Marquardt & Marquardt algorithm can be found in Moré (1978) and provides the

basis for light curve package WD95 by Kallrath et al. (1998) and later versions,

that uses the Simplex algorithm for initial search and global investigation, and

switches to a damped least-squares solver when approaching a local minimum. The

Levenberg–Marquardt procedure efficiently combines a steepest descent method

with a step-size controlled Gauß–Newton algorithm. A similar step in this direc-

tion has already been performed by Plewa (1988) with the program MINW. MINW

combines the Simplex algorithm, a variable metric method [Fletcher (1970), or

Appendix A1], and the computation of the Hessian matrix for statistical purposes

and error estimation.

4.4 A Priori and A Posteriori Steps in Light Curve Analysis

Ex necessitate rei (From the necessity of the case)

4.4.1 Estimating Initial Parameters

The heuristic rules summarized in this section may be useful for estimating some of

the initial parameters and also for checking the consistency of light curve solutions

as well as interpreting their physical meanings. It may happen that the least-squares
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adjustment, for some reason, produces a seriously inadequate solution. A formal

criterion to detect an inadequate solution is to compare the standard deviation of the

fit, σ fit, and the internal noise, σ data, of the data. The solution is acceptable only if

σ fit ≈ σ data. It certainly helps to plot both the light curve and the data together! A

more physical criterion is to check the astrophysical plausibility. If astrophysically

implausible results are derived, it may be due to a deficiency of the light curve model

or due to a local instead of a global minimum.

Hints for estimating parameters are summarized below; as usual, light curves are

assumed to be measured in relative flux units (“light”) and not in magnitude.

1. Estimation of the temperature difference: For circular orbits, the ratio of primary

to secondary eclipse depths is equal to the corresponding ratio of eclipsed mean

star surface brightnesses at the places sampled. It has been argued that surface

brightness is sufficient by itself as a modeling parameter and that the use of tem-

peratures as light curve parameters is both unnecessary and, because of stellar

atmosphere effects that might not follow the blackbody law [see, e.g., Popper

(1993, p. 193)]. Our position on this matter is that the effective temperature is an

important curve-independent physical parameter because, with a correct under-

standing of the stellar atmospheres involved, it constrains the relative fluxes in

different passbands, and thus it reduces the number of free parameters; moreover,

it provides an important handle on the astrophysics of the stellar components. If

the atmospheric physics is not correctly understood, then the temperature will

vary from curve to curve. Assuming that the atmosphere computation is accurate,

the ratio of depths can give the temperature of one component if the temperature

of the other one is known, even though stars are not black-bodies. This procedure

holds for both partial and complete eclipses, but for only circular orbits. Even so,

for small eccentricities they provide an initial guess for one star’s temperature as

a function of the other’s. The temperature of one of the stars needs to be known

from spectra, or from color indices if the interstellar reddening is known. We

may guess that the total light of the system is dominated by the hotter star. This

may be wrong, but we can proceed with the modeling until we confirm it to

be so, or prove the opposite – in which case we continue with new T1 and T2.

Convergence should be reachieved quite quickly.

2. Estimation of the luminosity ratio: For spherical stars, the ratio of the light loss to

light remaining at the bottom of a total eclipse is the monochromatic luminosity

ratio of the smaller to the larger star. The size ratio can be estimated also, as in

the absence of limb darkening we have

k2 =
r2

s

r2
g

=
Ls

Lg

1 − l tr
0

1 − loc
0

, (4.4.1)

where 1 − l tr
0 and 1 − loc

0 are the transit and occultation eclipse depths. Wilson

(1966) makes a slight modification of (4.4.1) to include limb-darkening. For

circular orbits as shown in Fig. 3.10, the two eclipses are of equal duration.

The following idea gives only a lower limit of k (because of uncertainties in i).
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Although we often find similar formulations in textbooks, this approach is only

of limited use because there is no reliable way to know i . The same concerns

hold for the following considerations: The duration of the entire eclipse (first

contact to last contact) is a measure of the sum of the relative radii, r1 + r2. If

k is known (usually it would not be known a priori), then r1 and r2 can also be

found. If the eclipse is total, it may be possible to identify contacts 2 and 3 (onset

and completion of the totality phase). In this case, the timings provide the radii.

If t1, ..., t4 denote times of first through fourth contact as shown in Fig. 4.8, then

k is approximately:

k =
(t4 − t1) − (t3 − t2)

(t4 − t1) + (t3 − t2)
. (4.4.2)

Note that (4.4.2) is strictly true only if the stars move along straight lines, not in

circular orbits. Which is the larger and which is the smaller star? If the smaller

star transits the larger at the time of the primary (deeper) eclipse, the smaller one

is star8 2; if the smaller star is occulted during primary minimum, it is star 1.

Occultation eclipses have a flatter light curve during totality (corresponding to

t3 − t2) than do transits, as a rule. But trial and error may be required to ascertain

which of the two possibilities applies. For eccentric orbits, the eclipse which

(a) (b)

(c)

t1 t2 t3 t4
t

Fig. 4.8 Geometry of contact times. Part (a) shows the relative orbit of the secondary around

the primary for inclination i = 90◦. Part (b) shows a total eclipse for i �= 90◦; note that it is not a

central eclipse. Part (c) shows a partial eclipse for i �= 90◦. Together parts (a), (b), and (c) illustrate

that contact times alone cannot determine relative star dimensions, despite the impression given in

many elementary textbooks, because the inclination ordinarily is not known

8 See Section 2.8 for details on how to select star 1 and star 2.
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occurs nearer to apastron is the longer one. However, it is not so easy to make

firm estimates of sizes, temperatures, or luminosities as it is for circular orbits

because the projected surface area involved in each eclipse is not necessarily the

same. Again, for low eccentricities, the estimate is just a bit rougher than for

e = 0.

3. In eccentric orbit cases, the quantities e cosω and e sinω may be estimated from

the separation and durations (widths) of the eclipses, respectively. The relations

(3.1.25) and (3.1.26) provide approximations for e and ω separately and give us

tanω ≈
Θa −Θp

Θa +Θp

2P

π

(

t II − t I −
P

2

)−1

(4.4.3)

and

e ≈
π

2P cosω

(

t II − t I −
P

2

)

. (4.4.4)

4. Estimation of the inclination i : The higher the inclination i , the wider and deeper

the eclipses. For i ≈ 90◦ there is only a weak dependence of the eclipse structure

on the inclination. However, when i becomes low enough so that eclipses are far

from central, then larger decreases in width occur. Larger decreases in depth will

be seen when the eclipses become partial. We may use an atlas of eclipses like

that of Terrell et al. (1992) or make a series of runs with a light curve program

keeping all parameters except i and observing the effect. Binary Maker, cf.

Bradstreet (1993); Bradstreet & Steelman (2004), provides a convenient and

quick way to make such assessments.

5. Estimation of (mean) volume radii for lobe-filling stars with known spectro-

scopic mass ratio can be found from the relation

r =
0.49q2/3

0.69q2/3 + ln(1 + q1/3)
, 0 < q < ∞, (4.4.5)

derived by Eggleton (1983), which is accurate to about ±1% for all values

of the mass ratio q. To compute r2 = r for the lower mass star, one has to

set q = M2/M1 ≤ 1, whereas for the higher mass star (r2 = r ) one uses

q = M1/M2 ≥ 1 as input to (4.4.5). Except for Algol type binaries, the prob-

lem with (4.4.5) is, however, to know whether a star fills its lobe. More generally,

one can often estimate a reasonable r from astrophysical considerations or from

published solutions. For well-detached binaries, on can expect relative radii with

value of 0.1 or less.

6. Estimating the Roche potential Ω in the circular orbit and synchronous rotation

case: If estimated relative radii are available, one could apply (3.1.65) to derive

estimations of Ω1 and Ω2. If the star is well inside its Roche lobe (detached

systems), the relation Ω ∼ 1/r applies. Then there are look-up tables [see,
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for instance, Limber (1963, p. 1119)] listing the relative radius r versus Ω .

Alternatively, we might use the method described in Appendix E.30 or just use

Binary Maker (see Appendix 8.1).

In any case, we strongly recommend to produce a synthetic light curve with the

initial parameters and to plot calculated against observed light curves. If minima in

the computed light curve are less deep than in the observed light curves, i could be

increased. The idea is to avoid spending inordinate amounts of time on preparation,

yet begin iterations somewhere near the correct minimum.

4.4.2 Criteria for Terminating Iterations

To avoid landing in a relative minimum of parameter hyperspace and for the quan-

titative determination of light curve parameters in general, we recommend the use

of both the Simplex algorithm and (damped) Differential Corrections or another

derivative-based method. The former should be used for any initial search. We have

found it a helpful tool to explore solution uniqueness and to perform experiments

on parameter sets, for example, establishing the directions of convergence of all

the parameters by systematically varying the initial mass ratio. Once a parameter

set is close to a solution, switching to a derivative-based least-squares solver can

increase the rate of convergence and also yield the formal or statistical errors of the

parameters.

Independent of the method, the question arises of when to halt iteration. Let us

first list some intuitive stopping criteria and discuss whether they make sense:

• By number of iterations — in case no convergence is achieved with the initial

parameters (it gives us a chance to monitor the solutions and to interpret the

physics);

• by comparison of the standard deviation σ fit of the fit with the noise σ data in the

data;

• by comparison of the parameter corrections with the parameters themselves;

• by comparison of the parameter corrections with the probable or mean standard

errors;

• by inspection of the damping constant; and

• by confinement of the adjustments to a limited region (say, an ellipsoid) of para-

meter space.

All these criteria might appear arbitrary and it is questionable to set up general

conventions. The number of iterations needed to converge may be different for dif-

ferent problems. Certainly, σ fit cannot become smaller than σ data. If the model suits

the data, we would expect to have σ fit ≃ σ data. Although this certainly guarantees

a nice looking fit, in a flat valley convergence might not have been achieved. On

the other hand, if σ fit > σ data, either the convergence has not been achieved, or the

model is deficient.
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Comparing the parameter corrections ∆x j with the value of the parameter x j and

requiring for all j

∆x j ≤ εP
j x j (4.4.6)

with a reasonable relative error εP
j does not work for parameters which can take the

value 0, and it causes problems for cyclic parameters (angles allowed to any value

between 0◦ and 360◦). Hence, this criterion is not recommended.

So, instead, we might consider defining some absolute limits ∆X j in those cases,

and halt iterations if

∆x j ≤ ∆X j (4.4.7)

becomes valid for all j . This idea is again problematic because it introduces some

arbitrariness into the problem if it is not possible to scale the parameters.

Very often in the literature on light curve analysis, the criterion

∆x j ≤ 0.1ε
p

j (4.4.8)

is used, that is, convergence is stopped when parameter corrections are substan-

tially, say a factor of 100, smaller than the statistical errors ε
p

j . This criterion has the

advantage that it is consistently scaled.

Finally, using a Levenberg–Marquardt scheme, the damping constant λ can be

used to terminate the iteration, if the following holds: For a set of parameters x∗
at least one of the conditions (4.4.6), (4.4.7), or (4.4.8) is satisfied. If, for suffi-

ciently small λ the damping factor increases continuously, then x∗ can be accepted

as the true solution. In well-defined test cases (Kallrath et al. 1998), λ went down to

machine accuracy, i.e., 10−15. Again, this is an empirical rule.

If, for a reasonable number of iterations, the estimated parameter vectors x stay

within a predefined region, then the center of all vectors in that region may define

the solution (Wilson 1996). This criterion certainly can detect some secular trends.

Bock (1987) gave a criterion which checks the statistical stability of the solu-

tion. This criterion is based on some Lipschitz conditions related to the generalized

inverse and considers the quality of the solution, the nonlinearity of the problem,

and the number of degrees of freedom. The formalism involved in this criterion is

beyond the scope of this book and thus the reader is referred to Bock (1987, pp.

59–73).

It is important to accompany any analysis with a plot of the light curve and the

residuals. A careful inspection of the residual plot can reveal any systematic trend.

Unfortunately, in most cases the residuals are not normally distributed about zero.

Long tails dominate the distribution. The problems associated with such distribu-

tions are discussed in the context of robustness and its statistical foundations. For

an overview of robustness and robust estimation , we refer the reader to Chap. 15.7

in Press et al. (1992) and references therein.



204 4 Determination of Eclipsing Binary Parameters

4.4.3 The Interpretation of Errors Derived from Fitting

A solution x∗ derived from a least-squares problem becomes properly meaningful

only if uncertainties are attached. The uncertainty is usually specified by upper and

lower bounds x+
i and x−

i which for each parameter lead to the relation

x−
i ≤ xi ≤ x+

i , x±
i := xi + δx±

i . (4.4.9)

The errors δxi include contributions from at least four sources:

• εm, the error from approximations and other deficiencies in the light curve model;

• εobs, the error due to systematic error within the observational data;

• εn, the error due to the numerical representation;

• εs, the error due to accidental (statistical) error in the observations.

Thus, in combination, if these were random and independent errors, we would get

(δxi )
2 =

(

εm
)2 +

(

εobs
)2 +

(

εn
)2 +

(

εs
)2

; (4.4.10)

in practice, we have to expect an unknown functional relationship

δxi = h
(

εm, εobs, εn, εs
)

. (4.4.11)

Typically, of these sources of error, only the statistical error εs is specified in the

program output, e.g., derived from the covariance matrix, and the parameters to be

determined are given with associated uncertainties in the symmetric form xi ±∆xi .

To be sure, it is very difficult to specify the systematic error εm made by approxi-

mations in the model. Systematic errors εobs in the observations are also assumed to

be zero. Errors εn due to the numerical representation (integration, matrix inversion,

round-off, etc.) are usually not discussed.

Within light curve analysis, and in the Wilson–Devinney model in particular, the

errors ∆xi of dependent parameters can be determined by applying the Gaußian law

of error propagation or by considering total differentials. For instance, in all modes

above 0, this relation holds:

∆L2 =
L2

L1

∆L1. (4.4.12)

If the Differential Correction method is used to determine parameters, then ∆xi

follows from the diagonal elements of the covariance matrix (4.3.12), i.e.,

S = dT · Wd, S′ = (−A · W · d(x0))T ∆x, (4.4.13)
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and for the standard deviations,9 εs , of the estimated parameters:

∆xi := εs =
S − S′

n − m

√

ĉi i . (4.4.14)

S′ can be interpreted as the contribution by which the residuals S corresponding

to x0 are reduced by applying differential corrections to x0. The errors calculated

by (4.4.14) give only the statistical error. Often these statistical errors are much

smaller than the realistic uncertainties. The analysis of V836 Cygni by Breinhorst

et al. (1989), for example, gave an error of the mass ratio, ∆q, ε p ≈ 5 · 10−3 but

inspection of a σfit(q) shows that the true error in ∆q is at least of order 0.1. Most

often this is observed because the correlations among parameters are taken into

account to only first order. The off-diagonal elements of the covariance matrix give

a measure for the pairwise correlations between parameters but not for higher-order

combinations of parameters. Therefore, one should not only specify the errors or

uncertainties of the fitted parameters but also add some comments on existence or

non-existence of correlations.

Derivative-free least-squares solvers do not produce statistical errors εs . There-

fore, they should only be used for producing good initial guesses for a derivative-

based method.

A completely different approach to estimate ∆x∗ is the sensitivity analysis

approach (Appendix B.2). Many simulated observables Osim(x∗) and the corre-

sponding solutions are investigated. This method provides information on how the

model reacts on small changes of a model parameter. If a large parameter change

leads to only a small or negligible change of model response, the parameter is

weakly defined and cannot be determined accurately. For weakly defined param-

eters, the grid approach (Appendix B.3) gives reliable information on the bounds

of such parameters.

4.4.4 Calculating Absolute Stellar Parameters from a Light

Curve Solution

Curiosa felicitas (Painstaking felicity)

Once all the formal aspects of light curve solution have been reviewed, it is time

to discuss the interpretation of the solution. What is the astrophysical significance

of the obtained parameter set? Before interpreting the physical state of the binary,

we need to compute its absolute parameters, i.e., the temperatures, radii, and lumi-

nosities and distance. The radial velocities are necessary to find the semi-major axis

9 The Wilson–Devinney program before 1998 used the probable errors ε p = 0.6745εs instead of

the standard deviation εs used in the 1998 version (Wilson, 1998). Note that the factor 0.6745 is

justified only if the errors are normally distributed.
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and the absolute masses. In some cases, the semi-major axis can be obtained from

astrometry but none of those binaries are known at present to eclipse. From the radii

and masses, the surface accelerations (in solar units) are derived. Specific details

of the computation depend slightly on the particular light curve parameter set, but

there is a general approach to compute stellar parameters from light curve solutions.

In order to discuss this issue and interpret the light curve solution, we distinguish

between two scenarios: Output obtained from complete data and output obtained

from incomplete data.

4.4.4.1 The Complete Data Case

Let us assume that a light curve solution10 provides the inclination i and the length

scale, i.e., the relative orbital semi-major axis, a, in physical units. At first, this

enables us to compute the total mass, M , of the binary system

M = M1 + M2 =
4π2

G

a3

P2
. (4.4.15)

For some favored cases, the light curve solution also provides the mass ratio

q =
M2

M1

. (4.4.16)

Combining (4.4.15) and (4.4.16) yields the masses M1 and M2 for the stars

M1 =
1

1 + q
M, M2 =

q

1 + q
M (4.4.17)

separately. From (3.1.17) and (3.1.18), we derive

a1 =
q

1 + q
a, a2 =

1

1 + q
a. (4.4.18)

Usually, light curve programs return dimensionless values for each star’s surface

area, A, and mean surface brightness; we neglect the index indicating the compo-

nent. The mean radius relative to the semi-major axis can be defined either from the

surface area, A, or from volume, V ,

r =
√

A

4π
, r =

(

3V

4π

)1/3

. (4.4.19)

10 Here, light curve analysis and light curve solution are used in the extended sense, i.e., each

might include photometric data, radial velocities, and other observables.
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The definitions give slightly different values for r but usually the differences are

very small. The WD program also provides specific radii for each axis of the star.

The arithmetic, geometric, or harmonic mean may be used to average them yielding

a mean radius. To the requisite precision, any of these possible estimates of mean

radius is probably acceptable. The uncertainty in the surface area or volume is not

provided, so an indication of uncertainty in the mean radius is computable only from

the individual radii described on page 287. A conservative method is to compute the

weighted mean of these radii and to adopt the largest derived uncertainty.

The absolute mean radius and absolute surface may be computed if the semi-

major axis, a, is known from astrometry, spectroscopy, or the light curve solution:

R = ar , A = a2 A. (4.4.20)

The acceleration, g′, due to gravity at the surface follows as

g′ = G
M

R2
, (4.4.21)

or in dimensionless units as

log g = log
g′

g⊙
=

M/M⊙

(R/R⊙)2
with g⊙ = 2.74 · 102 m · s−2. (4.4.22)

Note that log g for both components is required if stellar atmospheres are to be

incorporated in a light curve model. Note that log g1 and log g2 are related by

log g2

log g1

=
M2/M1

(R2/R1)2
=

q

(r̄2/r̄1)2
. (4.4.23)

If a light curve program provides the polar surface brightness, it may be used to

compute monochromatic luminosities and, by applying a bolometric correction,

eventually the bolometric luminosity. However, from the standpoint of calculating

the uncertainty, we prefer effective temperatures. Thus, for spherical stars, the bolo-

metric luminosity of each component is

L = AσT 4
eff, (4.4.24)

and for the more general case we have

L = σ

∫

S′
T 4

eff(rs)ds ′. (4.4.25)

The absolute bolometric magnitude follows:

Mbol = Mbol
⊙ − 2.5 log10(L/L⊙) (4.4.26)

= Mbol
⊙ − 5 log10(R/R⊙) − 10 log10(T/T⊙),
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from which the absolute V magnitude is derived by subtraction of the bolometric

correction11 B.C., i.e.,

MV = Mbol − B.C. (4.4.27)

Alternatively, with a light curve program available, it might be more consistent to

start with the computation of the monochromatic luminosity

LV = const

∫

S′
I (rs, cos γ ; g, Teff)dσ (4.4.28)

in absolute units. Then, MV is computed according to

MV = MV⊙ − 2.5 log10(LV /L⊙V ), (4.4.29)

a bolometric correction is applied

Mbol = MV + B.C., (4.4.30)

and, finally, the bolometric luminosity follows from

L/L⊙ = 10−0.4(Mbol−Mbol
⊙ )
. (4.4.31)

The color indices of the individual components and of the system may be used to

find the interstellar reddening E , especially if the spectral types are sufficiently well

known. From this the unreddened distance modulus (m − M)0 is derived. In the

Johnson system introduced in Sect. 2.1.1, we have the relations

(mV − MV )0 = 5 log(r/10) (4.4.32)

and

(mV − MV )0 = mV − MV − REB−V , (4.4.33)

where r is the distance in parsecs, and R = AV /EB−V is the ratio of the attenuation,

AV , of the V light by the interstellar medium to the color excess EB−V . (N .B. :

mV = V ) Although exceptions among determined values of R are well documented,

typically, 3.0 ≤ R ≤ 3.4.

If masses have been determined, the evolutionary state of the components may

be explored. Evolutionary tracks through the two components of known mass are

11 We use the definition B.C. = Mbol − MV . Since solar-like stars have their radiation maximum

in the visual region of the spectrum, and due to the definition of the zero point of B.C., most

stars have negative bolometric corrections. Some care is necessary in the use of B.C. from tables

because sometimes the definition B.C. = MV − Mbol is used.
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assumed to be coeval, and theoretical models should predict correctly the sizes and

luminosities of these components in straight-forward situations. Two examples out

of numerous such studies are

• The analysis of the system DS Andromedae (Schiller & Milone 1988) in the open

cluster NGC752 showed that the radius of the hotter component agreed with the

age of the cluster and that the Roche radius has not yet been reached.

• The determination of the masses and luminosities of the double-lined spectro-

scopic and EB HD27130 in the Hyades star cluster by Schiller & Milone (1987)

suggests a mass–luminosity relation for these two stars which differs from that

of the local field of the Sun.

4.4.4.2 The Incomplete Data Case

If only one component with mass M1 has observed radial velocities, the system is

called a single-lined spectroscopic binary. In this case, besides the orbital period P

the radial velocity amplitude,12 K1, is known and a useful quantity known as the

mass function f (M1, M2, i) can still be obtained:

f (M1, M2, i) =
M3

2 sin3 i

(M1 + M2)2
=

M2 sin3 i

(1/q + 1)2
=

4π2

G

(a1 sin i)3

P2

=
P

2πG
K 3

1

(

1 − e2
)3/2

. (4.4.34)

Note that f (M1, M2, i) can be calculated based on quantities which can be derived

from the spectroscopy only: The period,13 P , and the eccentricity, e, of the orbit

[see Aitken (1964) for details]. If the mass ratio q and the inclination i are known

from photometry, then M2 follows as

M2 =
(1/q + 1)2

sin3 i
f (M1, M2, i) (4.4.35)

and M1 as

M1 =
1

q
M2 =

(1 + q)2

q3

1

sin3 i
f (M1, M2, i). (4.4.36)

12 The radial velocity amplitudes, K1 and K2, are only useful quantities if proximity effects are

absent. In that case, the mass ratio is just q = K1/K2. So, if they are used, they should be consid-

ered with great care.
13 The period is often more accurately derived from photometry because eclipses make good

timing ticks. Also the number of photometric observations tends to be much larger than the number

of radial velocity data points. Furthermore, radial velocity observations tend to be taken at the

quadratures also, where they have limited use in defining the phases of conjunction.
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If we have no photometric light curves (so that the inclination i and mass ratio q are

not available), we still can get some information: Combining formulas (4.4.35) and

(4.4.36), the sum of masses is

M1 + M2 =
1

sin3 i
(1 + 1/q)3 f (M1, M2, i). (4.4.37)

For known f , the right-hand side of (4.4.37) takes its minimum value for q = ∞
and i = 90◦. Thus the mass function provides a weak lower bound on the sum of

masses, and because q = ∞ implies M1 = 0, we get

M2 ≥ f (M1, M2, i), (4.4.38)

i.e., the mass of the star without radial velocities.

If we are sure that q ≤ 1, the minimum of M1 + M2 occurs for q = 1 which

leads to the tighter bound

M1 + M2 ≥ 8 f (M1, M2, i). (4.4.39)

4.5 Suggestions for Improving Performance

Et respice finem (Consider the end)

Sirach 7, 40; Gesta Romanorum, c. 103

The determination of light curve parameters from EB light curves may require sub-

stantial14 computing time. However, there are several mathematically well-defined

alternatives with lower computational cost while still controlling accuracy:

1. Symmetries in the light curve model.

2. Local interpolation of total light between phase grid points, as is done in Linnell’s

program (Linnell 1989).

3. Choice of lower grid density on the stellar surfaces. When a direct search method

is used as the optimizing tool, the required precision (and hence the grid density)

does not need to be as high for the calculation of the theoretical light curve by

numerical quadrature of the flux over the stellar surface as for a derivative-based

method.

4. Use of analytical partial derivatives ∂ℓ/∂xi .

5. Accurate finite difference approximations.

14 We might argue that hardware improvements make these considerations less and less impor-

tant as time goes on. That is certainly true for existing programs, but models get more and more

sophisticated and include more and more details. Also, because the points considered in the next

subsections have a sort of general character, it is worthwhile to keep them in mind.
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6. Use of both coarse and fine grids, with the fine grids used only where needed.

Only parameters whose variation changes the geometry need fine grids. The

future might see adaptive grids over the surface.

4.5.1 Utilizing Symmetry Properties

Two symmetries can reduce computational time significantly: Orbital symmetry and

surface symmetry. Orbital symmetry leads to symmetry of the light curve w.r.t.

either minimum. Expressed w.r.t. the secondary minimum we have

lcal(0.5 −∆Φ) = lcal(0.5 +∆Φ). (4.5.1)

For the computation of light values, lcal, this symmetry can be utilized in the form

Φ →
{

lcal(Φ),

lcal(1 −Φ),

0 ≤ Φ ≤ 0.5,

0.5 < Φ ≤ 1.
(4.5.2)

Exploiting the orbital symmetry reduces the computational needs by a factor of 2

in simple cases without complicating structures, e.g., circular orbit models without

spots. Models including spots or eccentric orbits do not have orbital symmetry in

general. Since observations fall wherever they fall, only the solution of the direct

problem benefits from this symmetry. Solution of the inverse problem also benefits

from the symmetry in the use of interpolation techniques described in Sect. 4.5.2.

Symmetry on the stellar surface is present if a given function f (θ, ϕ), such as the

flux emitted from one of the components, is symmetric with respect to the stellar

latitude θ and/or longitude ϕ. Models which are based on spherical stars have the

symmetry property

S0: f (−θ, ϕ) = f (θ, ϕ), θ ∈
[

0,
π

2

]

, ϕ ∈ [0, 2π ], (4.5.3)

and

Sk : f
(

θ,
π

k
+∆ϕ

)

= f
(

θ,
π

k
−∆ϕ

)

, k ∈ {1, 2}, ∆ϕ ∈
[

0,
π

k

]

, (4.5.4)

whereas the Roche model with circular orbits has only the symmetry properties S0

and S2. If the orbital and rotational axes are parallel, the x–y and x–z planes are

symmetry planes for each component.

4.5.2 Interpolation Techniques

An efficient method to reduce computation is to use local interpolating polynomials

p(Φ) for determining light curve parameters with derivative-free procedures. Let
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n + 1 be the number of equidistant grid points

xi = Φi = i∆Φ, yi = f (xi ) = lcal(Φi ), i = 0, ..., n; y = f (x) = lcal(Φ), (4.5.5)

with phase grid size

∆Φ =
1

kn
, k =

{

1, no special orbital symmetry is available,

2, orbital symmetry w.r.t. phase 0.5.
(4.5.6)

The interpolating polynomial may be chosen according to specific needs. Here we

choose cubic polynomials based locally on four grid points and evaluated by the

Bessel method with central differences [see, e.g., Scarborough (1930)]. This method

uses

h := xi+1 − xi =
1

2n
, u :=

x − x0

h
, v := u − 1

2
(4.5.7)

and is based on the scheme

x−1

x0

x1

x2

∣

∣

∣

∣

∣

∣

∣

∣

y−1

y0

y1

y2

∆y−1

∆y0

∆y1

∆y2
−1

∆y2
0

∆y3
−1 , ∆yk+1

i := ∆yk
i+1 −∆yk

i . (4.5.8)

Local interpolation of the function f (x) by a cubic polynomial p3(x) is to be under-

stood in the following sense. For an arbitrary x ∈ [0,
1

k
], from the set of grid points

{x0, x1, x2, ..., xn} a subset of four values x−1, x0, x1, and x2 is chosen to obey

x0 ≤ x < x1. In order to achieve the goal, the original set should be extended as

needed to {x−1, x0, x1, x2, ..., xn+1}. Due to the symmetry of the light curve, we

have x−1 = x1 and xn+1 = xn−1. This system is indexed as

xi = (i − 2)h, 1 ≤ i ≤ n + 3, yi = f (xi ). (4.5.9)

The index i0 of the local x0 follows as

i0 = 2 +
⌊ x

h

⌋

, (4.5.10)

and eventually we obtain Bessel’s interpolating formulas

f (x) = y ≈ p3(x) =
y0 + y1

2
+ v∆y0 +

v2 − 1
4

2
1
2

(

∆2 y−1 +∆2 y0

)

+v
(

v2 − 1
4

)

1
6
∆3 y−1. (4.5.11)
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The implementation of this method of interpolation should provide an option to

compare the exact light curve with the interpolated one by inspecting the stan-

dard deviation and the maximum deviation, thus allowing some control over the

error produced by interpolation. Since the standard error of a single observation of

observed light curves, σ obs, usually (if light is normalized to unity) is not smaller

than 0.005, any error caused by interpolation, say, by a factor of 10 smaller than

σ obs, can be safely neglected. This level of accuracy is usually achieved with n = 50

or n = 100 subintervals. Since well-observed EB light curves cover a few hundred

data points, say 300–400, the reduction in computational time is significant. The

simple interpolation scheme presented above may be replaced by a more sophisti-

cated cubic spline interpolation.

4.5.3 Surface Grid Design

In order to choose appropriate surface grids, we should consider that the time needed

to compute lcal(Φ) is proportional to the number n∗ of integration points on the

stellar surface. When constructing a grid of surface points or elements, we should

have accuracy, symmetry, and the exploitation of symmetry by mirror imaging in

mind. Symmetry properties, as discussed in Sect. 4.5.1, may reduce computation

and memory. Let us assume that the x–y and x–z planes are symmetry planes for

each component. Notice that there is a potential problem in carrying out the actual

mirror imaging, in that equatorial and polar points will be duplicated upon reflection.

Accordingly we can eliminate equatorial and polar points. We can do this by placing

the first and last latitude curves at half-spaces from the pole, and near-equatorial

curves at half-spaces above and below the equator. If we have N of latitude curves,

they are located at polar angles

θi =
i − 0.5

N

π

2
, i = 1, . . . , N . (4.5.12)

A similar argument holds for the distribution of longitude points on the latitude

curves. In addition, it improves accuracy if the density of points is reasonably uni-

form over the entire surface. This goal is obtained, for instance, if the number Ni of

longitude points on a latitude curve is proportional to the sine of the polar angle of

that curve, i.e.,

Ni = ⌊1 + 1.3N sin θi⌋ , (4.5.13)

as used in the Wilson–Devinney program, and the points are distributed uniformly

on this curve. The proportionality factor 1.3 is an artifact of the integration accu-

racy requirements of the WD program. The total number of grid points on the stars

thus depends on the number N of latitude curves on a hemisphere according to the

following formula:
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n∗ = n∗(N ) =
N
∑

i=1

Ni . (4.5.14)

The table below lists this relation for selected values. If Differential Corrections are

used to fit the parameters, we should at least use N ≈ 25 to 30. For derivative-

free least-squares solvers, values between 10 and 15 will suffice. The error in flux

integration caused by the grid density usually can be reduced to values close to 10−4

light units.

N 5 10 15 20 25 30 40 50 100

n∗ 23 88 195 342 530 762 1345 2098 8331

4.5.4 Analytic Partial Derivatives

For some of the parameters, partial derivatives, ∂lcal/∂xi , involved in the least-

squares problem can be calculated analytically, or can be derived from other quan-

tities available when computing a light curve. This is true for the third light (3.4.2),

the parallax as in (3.9.3), and in the Wilson–Devinney program for ∂ℓ j/∂L1.

As has been shown in Chap. 3, the monochromatic flux from component j is

(3.2.48)

ℓ j (Φ) =
∫

S′
χs(Φ)I (rs, cos γ; g, T, λ) cos γdσ, (4.5.15)

where χs is the characteristic function defined in (3.3.2) ensuring that we only inte-

grate over the visible surface. In spherical polar coordinates, (3.2.48) takes the form

(3.2.49)

ℓ j (Φ) =
∫ π

0

∫ 2π

0

χs(Φ)I (rs, cos γ; g, T, λ)
cos γ

cosβ
r2 sin θdϕdθ. (4.5.16)

Adding all contributions of the binary system, the total emitted flux ℓ(Φ) is (3.2.50)

ℓ(Φ) = ℓ1(Φ) + ℓ2(Φ) + ℓ3 (4.5.17)

with constant third light ℓ3. Therefore, we have

∂ℓ

∂l3

(Φ) = 1. (4.5.18)

The photospheric parameters such as polar temperature, bolometric albedo, grav-

ity brightening exponent, or limb-darkening coefficient of the model enter only in

the function I (cos γ; g, T, λ). They do not change the other terms in the integrand

of (4.5.16), and they do not change the range of integration or the characteristic
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function χs(Φ). Therefore the derivatives of ℓ j (Φ) with respect to this set P1 of

parameters can be calculated by taking the derivatives of the integrand, i.e., for all

p ∈ P1 we have

∂ℓ j

∂p
(Φ) =

∫ π

0

∫ 2π

0

χs(Φ)
∂ I (rs, cos γ ; g, T, λ)

∂p

cos γ

cosβ
r2 sin θdϕdθ. (4.5.19)

Analytic formulas for the Linnell model are given by Linnell (1989, Appendix).

The advantage of this procedure is that the derivative is found by a single integra-

tion, rather than by taking the difference of two integrals. This helps to improve

accuracy. As an example we consider the albedo A in the Wilson–Devinney model

and its monochromatic flux integrand I in formula (6.3.5). Only the reflection fac-

tor R depends on the albedo A, and the dependence is described by (3.2.46). The

bolometric albedo is by far the easiest parameter because it leads to an analytical

expression for ∂ℓ j/∂A. Therefore, we get the simple term

∂ℓ j

∂A
(Φ) =

∫ π

0

∫ 2π

0

χs(Φ)
Fs

Ft

cos γ

cosβ
r2 sin θdϕdθ, (4.5.20)

where the ratio of bolometric fluxes Fs/Ft is already available from the computation

of R itself (see Sect. 3.2.5). In the case of other parameters p ∈ P1, the partial

derivative ∂ℓ j/∂p needs to be computed numerically.

The geometric parameters (p ∈ P2) are more difficult to treat. Linnell (1989)

suggests applying Leibniz’s rule. In order to do so, (4.5.16) is rewritten as

ℓ j (Φ) =
∫ θu

θl

f2(θ,p)dθ, f2(θ,p) := sin θ

∫ ϕn (θ)

ϕs (θ)

f3(ϕ,p)dϕ, (4.5.21)

with

f3(ϕ,p) := I (cos γ ; g, T, λ)
cos γ

cosβ
r2. (4.5.22)

The characteristic function has been replaced by appropriate boundaries or inte-

gration limits for longitude ϕ and colatitude θ . ϕs(θ ) is the starting longitude and

ϕn(θ ) is the ending longitude on a given colatitude θ . θl and θu represent the lower

and upper limits for colatitude. The limits depend on phase Φ and the geometrical

parameters. According to Leibniz’s rule, the derivatives are now given by

∂ℓ j

∂p
(Φ) = f2(θu,p)

∂θu

∂p
− f2(θl,p)

∂θl

∂p
+
∫ θu

θl

∂ f2(θ,p)

∂p
dθ, ∀ p ∈ P2, (4.5.23)

and

∂ f2(θ,p)

∂p
= sin θ







f3(ϕn(θ ),p)
∂ϕn(θ )

∂p

− f3(ϕs(θ ),p)
∂ϕs(θ )

∂p
+
∫ θu

θl

∂ f3(ϕ,p)

∂p
dϕ






. (4.5.24)
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Since no analytic expression exists for derivatives of ϕs(θ ), ϕn(θ ), θl , and θu w.r.t. ∀
p ∈ P2, these derivatives need to be computed numerically. Thus, three numerical

derivatives have to be computed instead of one. It is not so obvious whether some

advantage in accuracy is really achieved.

4.5.5 Accurate Finite Difference Approximation

When approximating derivatives f ′(x) of a function f (x) by asymmetric finite dif-

ferences

f ′(x) ∼=
f (x +∆x) − f (x)

∆x
, (4.5.25)

or symmetric finite differences

f ′(x) ∼=
f
(

x + 1
2
∆x
)

− f
(

x − 1
2
∆x
)

∆x
, (4.5.26)

the question arises as how to choose the size of the increment ∆x . As discussed by

Press et al. (1992), the optimal choice depends on the curvature, i.e., on the second

derivative of f (x). As in most practical cases, generally, as well as in light curve

analysis, this information is not available. Instead, for symmetric differences, we

may use the heuristic approach

∆x ≈ 2ε
1/3
f x (4.5.27)

described by Press et al. (1992, p. 180) where ε f is the fractional accuracy with

which f (x) is computed. For simple functions, this may be comparable to the

machine accuracy, ε f ≈ εm , but for complicated calculations, in which the func-

tions eventually yield the EB observables with additional sources of inaccuracy, ε f

is certainly larger. For this reason, it is wise to use those values suggested by the

light curve program developers, who presumably know best the accuracy properties

of their program.

4.6 Selected Bibliography

This section is intended to guide the reader to recommended books or articles on

least-squares techniques and their statistical foundations.

• Statistical and Computational Methods in Data Analysis by Brandt (1976) is a

useful resource on basic statistical concepts, e.g., maximum likelihood estimators

and least-squares problems.

• Eichhorn’s (1993) paper is an excellent review of the methods of least-squares as

known and used in astronomy.
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• Solving Least-Squares Problems by Lawson & Hanson (1974). A classic work

worthwhile reading.

• Scientific Data Analysis by Branham (1990) is an introduction to overdetermined

systems on an elementary level.

• Numerical Recipes – The Art of Scientific Computing by Press et al. (1992) is

already a classic work and a useful source for efficient numerical calculations.
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Chapter 5

Advanced Topics and Techniques

This chapter addresses some of the many improvements and extensions of ideas

and techniques in EB research over the last decade: The direct distance estimation

through the analyses of EBs and the derivation of ephemerides and third-body orbital

parameters from light and radial velocity curves. The Kepler mission [cf. Koch et al.

(2006)] launched on 6th of March 2009, the GAIA mission with a target launch

data in 2012, or the ground based survey LSST in discussion for after 2015 will

add a new challenge to the field: The analysis of a large number of EB light curves

from surveys. Detection of extrasolar planets by transit methods is a field where EB

methods have been used successfully.

5.1 Extended Sets of Observables and Parameters

O θεóς έϕκιασε τoν κ óσµo κι είπε: ’Oπ óχει µυαλó ας πoρεύεται.’

God made the world and said: “He who has a brain will go on.”

(Cephalonian proverb)

In EB analysis, the observables are usually the light curves and radial velocity

curves, whereas the adjustable parameters are typically dimensionless quantities

such as the mass ratio, Roche potential, and inclination, and also a few parameters in

physical units such as the semi-major axis, and mean temperatures. In this section,

we discuss absolute masses, temperatures, and distance as adjustable parameters

and treat, for instance, the mass ratio as an additional observable. An important

consequence and advantage is that the two-step procedure is replaced by one con-

sistent least-squares analysis. We also learn that adjustable parameters can have

observables as direct counterparts.

After outlining a general concept of extended sets of observables and parameters,

especially useful in the context of direct absolute parameters estimation (Sect. 5.1.1),

in Sect. 5.1.2.1 we focus on the following problem: Most light curve models require

the temperature of at least one star as input. One of the main difficulties of modeling

EBs is the accurate determination of the individual temperatures. In Sect. 5.1.2.3

we describe how to evaluate light curves in at least two passbands to determine

J. Kallrath, E.F. Milone, Eclipsing Binary Stars: Modeling and Analysis, Astronomy

and Astrophysics Library, DOI 10.1007/978-1-4419-0699-1 5,
C© Springer Science+Business Media, LLC 2009

221



222 5 Advanced Topics and Techniques

both temperatures and the distance (Sect. 5.1.4). This overcomes some limits of the

traditional two-step approach to estimate distances of EBs.

The section is ended by a discussion of using main sequence constraints to reduce

correlations among adjustable parameters and the incorporation of intrinsic vari-

ables into light curve models.

5.1.1 Inclusion of Absolute Parameters in Light Curve Analysis

In Sect. 4.4.4.1 the absolute parameters and, especially, the distance of a star were

computed a posteriori. Here we outline some ideas of how absolute parameters

can be made part of the least-squares analysis providing their consistent standard

errors, and thus improving on the standard two-step scheme in which the absolute

parameters are computed only after the light curve solution has been performed.

We introduce the absolute masses, M1 and M2, as examples. Later we shall present

recent ideas that derive, for instance, both temperatures and the distance as part of

the overall least-squares algorithm.

To illustrate the addition of adjustable parameters (not only absolute parame-

ters, but any new ones) and relations to an existing model that already includes

adjustable parameters pk , we show how to add M1 and M2 as free parameters to an

existing model, in which the semi-major axis a, and the mass ratio q are already

adjustable (there might be others as well). Based on the relationships (4.4.14, 4.4.15

and 4.4.16), we obtain two equations

M1 =
1

1 + q

4π2

G

a3

P2
, M2 =

q

1 + q

4π2

G

a3

P2
(5.1.1)

for the two new parameters M1 and M2. In the least-squares analysis, we need to

consider the extended equation of condition

oo
ν − oc

ν =
∂oc

ν

∂M1

δM1 +
∂oc

ν

∂M2

δM2 +
K
∑

k=1

∂oc
ν

∂pk

δpk (5.1.2)

and the new partial derivatives ∂oc
ν/∂M1 and ∂oc

ν/∂M2, where oo
ν and oc

ν denote

observed and calculated values of some observable at time tν . As (5.1.1) and

( 4.4.15) are explicit equations, this is rather simple and is given by

∂oc
ν

∂M j

=
∂oc

ν

∂a

∂a

∂M j

+
∂oc

ν

∂q

∂q

∂M j

, j = 1, 2. (5.1.3)

The q-derivatives are given by

∂q

∂M1

= −
1

M2
1

M2 = −
q

M1

,
∂q

∂M2

=
1

M1

. (5.1.4)
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Computing the a-derivatives leads to

4π2

G

1

P2

∂
(

a3
)

∂M j

= 1, j = 1, 2 (5.1.5)

and thus

∂a

∂M j

=
G

4π2

P2

3a2
, j = 1, 2. (5.1.6)

This procedure has the advantage that we do not need to compute any additional

numerical derivatives with respect to M1 or M2, as the derivatives ∂oc
ν/∂a and

∂oc
ν/∂q are known already.

The situation becomes more complicated if the period P is also an adjustable

parameter, as in that case we have no explicit relationship P(M j ). Therefore, we

need to resort to numerical derivatives for ∂oc
ν/∂M j , although the ones for q and

a are available. Thus, to conclude this illustration, we summarize that for adding

additional adjustable parameters one has to check whether full explicit relations

are available (that is, no further numerical derivatives are needed), or whether the

additional relationships do not allow derivation of analytic derivatives.

There are three major advantages of a consistent one-step approach:

1. It is impersonal, driven only by the input data and their standard deviations.

2. The least-squares analysis automatically provides standard errors of the esti-

mated new adjustable parameters.

3. It allows to include estimations and standard deviations of these parameters from

other sources, e.g., from published data.

We conclude this section by stressing the advantage of including parameter estima-

tions from other data sources when they are specified with reliable standard errors.

Distance or mass ratio serves as examples. In such cases, an adjustable parameter p

can be compared to a direct counterpart observable po
m with standard error εm . Index

m, m = 1, . . . , M, refers to several published values, where M is usually a small

number, say, M ≤ 3. To consider the observable po
m in the least-squares analysis,

we rename p into pc and obtain M equations of condition

po
m − pc = δpm, m = 1, . . . , M, (5.1.7)

or the corresponding least-squares term

M
∑

m=1

wm

(

po
m − pc

)2
, (5.1.8)

where the weights wm are functions of εm .
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If the light curve analysis provides p with standard error ε < εm without

considering po
m , the values po

m will have little effect as their weights are small

and they are typically not numerous. In the opposite case, ε ≥ εm , they may have

a strong effect. Part of the reason, in this case with large ε, is that the standard

errors of other light curve parameters could also be large due to correlations. In

this case, use of the external estimations po
m and their standard errors, εm , has a

correlation-reducing influence on the overall light curve solution. As an example

of a parameter-observable relation, we consider the mass ratio, q, in a detached

binary. For detached binaries, q is strongly correlated with the Roche potentials. In

this case, all is fine if the radial velocity curves are made part of a simultaneous

least-squares analysis. However, in many publications, q is just fixed to a value q∗
found in other publications. By contrast, exploitation of the parameter-observable

relation and (5.1.8), the published q∗ value and its standard error εm∗ are consistently

embedded into the analysis.

Another interesting case has not yet been considered in light curve analysis. In

Sect. 5.2.2 we discuss whole-curve fitting as an alternative to traditional times-of-

minima analysis for deriving an EB ephemeris. With introduction of the observable

T o
m and its parameter counterpart T c

m , the observed times of minima, T o
m , could be

made an integral part of the analysis with T c
m being a function of the ephemeris

parameters T0 (time of conjunction), P0 (period at reference epoch), dP/dt (period

time derivative), and in principle the other orbital parameters.

5.1.2 Determining Individual Temperatures

One of the main difficulties of modeling EBs is the accurate determination of the

individual temperatures. Frequent practice in the literature is to assume the temper-

ature of one star, or better to obtain it from spectra or color indices in an a priori

step as described on page 199, after which the other star’s temperature follows by

fitting the light curve model to the data. In this two-step approach, the accuracy

of the estimated temperature depends either on the how well the individual spectra

can be extracted from the composite binary spectrum or the reliability of deriving

that temperature from the composite time- or phase-dependent color index. As it

is difficult to estimate accurately the contribution of only one star in advance, in

Sect. 5.1.2.1 we exploit extra information to derive estimates of the temperatures,

Sect. 5.1.2.2 uses color indices to determine the temperature, while in Sect. 5.1.2.3

we describe how to evaluate light curves in at least two passbands to determine

both temperatures and the distance (Sect. 5.1.4) which overcomes some limits of

the traditional two-step approach to estimate distances of EBs (Sect. 5.1.4).

5.1.2.1 Temperature Estimations

One way to estimate individual temperatures is to exploit extra information about the

system. If the stars under consideration are known members of a stellar ensemble,

for example, and the ensemble has been well studied, the condition is met. By well
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studied, we mean that the color-magnitude (CMD) is well established, the distance

has been found, and there is a well-fitted isochrone available. With these criteria, a

method has been devised by Milone et al. (2004b) which utilizes the properties of

the isochrone to determine the properties of both components of an EB, in the case

that no spectroscopy and only two-passband photometry is available. In the case of

the 47 Tuc survey for extrasolar planets, cf. Gilliland et al. (2000); Milone et al.

(2004b), this proved to be the case. The idea is basically this: From the Russell–

Merrill treatment in Sect. 6.2.1, we obtain a relation for eclipse depths. The depth

of mid-eclipse for primary (p) and secondary (s) minimum can be written as

dp = 1 − ℓp = (L1 + L2) − [L1 + (1 − α0)L1] = α0L1 ds (5.1.9)

= 1 − ℓs = (L1 + L2) − [L1 + (1 − α0)L2k2] = α0k2L2, (5.1.10)

where ℓ refersluminosity of component j , α0 is the fraction of light lost at mid-

eclipse, and k = R2/R1. The passband luminosity is the product of the surface

brightness and the area of the disk, so the ratio of depths in any passband is

dp

ds

=
L1

[L2k2
=
σ1

σ2

, (5.1.11)

where σ j is the surface brightness of component j . Comparing now the ratio of

depth ratios for two different passbands

Q =
(dp/ds)λ1

(dp/ds)λ2

=
(σ1/σ2)λ1

(σ1/σ2)λ2

. (5.1.12)

Rearranging this

Q =
[σ1(λ1)]/[σ1(λ2)]

[σ2(λ1)]/[σ2(λ2)]
. (5.1.13)

But this ratio is directly related to the color index difference between components:

∆C = C1 − C2 = −2.5 log Q. (5.1.14)

What is observed, however, is the net color index of the system, C12, and, if the clus-

ter has been well-enough studied, the well-known cluster ambiguities of interstellar

and cluster reddening and metallicity have been resolved, so that the intrinsic color

indices and the absolute visual magnitude can be assumed known for the system.

This is where the isochrone comes in: In the case of the detached systems, from

which the independent properties of the system may, indeed, represent those of

independently evolved stars, we assume that one of the two components lies on the

isochrone, if the system is a cluster member. If the eclipse is total, the occultation

eclipse provides an individual CI; if partial, one may assume initially that either
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component is on the isochrone. Proximity of the system to either the isochrone or

to the “binary main sequence” indicates that the components are either dominated

by one component or are equally luminous. Thus the difference between the sys-

tem’s MV and that of the isochrone provides vital clues for the modeling of the

light curves. The full procedure for the determination of the full set of parameters

and the preliminary results for the 47 Tuc cluster are further discussed in Milone

et al. (2004b). The bottom line of this method is that the accuracy and precision of

the derived parameters, including the temperatures of the components, are strongly

dependent on the accuracy and precision of the model for the cluster.

5.1.2.2 Color Indices as Individual Temperature Indicators

Prša & Zwitter (2005b) explicitly discuss an approach that is often taken by light

curve modeling astronomers, to determine the individual effective temperatures,

T1 and T2, from standard photometry observations without perhaps fewer a priori

assumptions than other approaches. This approach involves the system’s binary

effective temperature, TB. Observationally, an unresolved binary may be regarded

as a point-source with a time- or phase-dependent effective temperature TB = TB(t)

that could be compared to an observed color index curve. Both components con-

tribute to TB(t) according to their sizes and individual temperatures, T1 and T2,

and inclination. If a model is to accurately reproduce observations, the composed

contributions of both components must match this behavior.

An initial value of TB(t) may be obtained from a color-temperature calibration.

For the Johnson B − V color, Prša & Zwitter (2005b) in their program PHOEBE

compute the empirical color-based effective temperature, Teff(B − V ), by a polyno-

mial of degree 7

Teff(B − V ) =
7
∑

i=0

Ci(B − V )i (5.1.15)

with the coefficients from updated Flower (1996) tables

Coefficient: V, IV, III, II I

C0 3.979145 4.012560

C1 −0.654992 −1.055043

C2 1.740690 2.133395

C3 −4.608815 −2.459770

C4 6.792600 1.349424

C5 −5.396910 −0.283943

C6 2.192970 –

C7 −0.359496 –

where the second column applies to main sequence stars (V), sub-giants (IV), giants

(III), and bright giants (II), the third one (I) to supergiants. To make use of this

scheme, CIs from other passbands, e.g., Johnson V and Cousins I , need to be trans-
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formed into B − V in order to use Flower (1996), e.g., by exploiting Caldwell

et al. (1993) who provide different color index dependencies on B − V . As these

calibrations only serve to obtain an initial value of TB(t), there is no need to worry

about accuracy. As we see below the individual temperatures reproducing the color

index are derived in an iterative scheme exploiting the synthetic energy distribution

of the binary.

The Wilson–Devinney (WD) model used in the following discussion computes

the observable flux scaled to an arbitrary level. The model adapts to this level by

determining for each passband i the corresponding WD passband luminosity, L1i , not

considering any color information that might have been present in the data. Because

TB is observationally revealed by its B−V (or any other suitable) color index,1 some

of the relevant temperature information is lost. One solution to this problem is to

couple the passband luminosity by exploiting the observed color index (the method

proposed by Prša & Zwitter 2005b), another solution is to resort to Wilson’s (2007a,

b, 2008) temperature–distance theorem matching discussed in Sect. 5.1.2.3. Both

approaches depend on reliable photometric calibrations [cf. Landolt (1992) covering

celestial equator regions, Henden & Honeycutt (1997) and Bryja & Sandtorf (1999)

covering fields around cataclysmic variables, Henden & Munari (2000) covering

fields around symbiotic binaries].

In Prša & Zwitter’s (2005b) light curve program PHOEBE, described in Sect. 8.2,

the parameters L1i are initially regarded as simple level-setting quantities – physical

context comes in only after the color index relationship is exploited. For the sake of

simplicity, consider that input observational data are supplied in magnitudes rather

than fluxes, without any arbitrary scaling of the data: Colors must be preserved and

the photometry must be absolute, i.e., not relative, and fully transformed to a stan-

dard system, for which the zero magnitude flux is known accurately. PHOEBE, built

on WD, inherently works with flux using a single, passband-independent parameter

m0 to transform all light curves from magnitudes to fluxes. The value of m0 is chosen

so that the fluxes of the dimmest light curve are of the order of unity. It is a single

quantity for all passbands, which immediately implies that the magnitude difference,

now the flux ratio, is preserved; hence, the color index is preserved. If the distance

to the binary is also known (e.g., from astrometry), m0 immediately yields observed

luminosities in physical units; intrinsic luminosities in physical units are obtained

if the color excess E(B − V ) is also known. This is where physics comes in: From

such a set of observations, the calculated L1i are indeed passband luminosities, the

ratios of which are the constraints we need. Passband luminosities of light curves

are now connected by the corresponding color indices. Note that the temperatures

can be derived without the distances.

Once the color index relationship is set, only a single passband luminosity L1i

is adjusted, while the remaining L1i are computed from the color index constraints.

This way color indices are preserved and effective temperatures of the binary may

1 Useful relations among color indices are given in Caldwell et al. (1993). Although color indices

depend also on log g/g0, metallicity, and rotational velocity, their effect is much smaller than the

temperature.
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be obtained. For a given model solution, a synthetic spectrum of the binary may

be computed from the current values of Teff, log(g), vrot, and metallicity, [M/H].

As the stars are not spherical, this spectrum is constructed by integrating over local

emergent intensities computed for each surface element. That spectrum is then “cor-

rected” for interstellar extinction (by multiplying it with a wavelength-dependent

interstellar extinction curve), Rayleigh scattering due to Earth’s atmosphere, and any

other intrinsic wavelength-dependent corrections (circumbinary attenuation, clouds,

etc.) that are included in the model (Prša 2009). The yielded spectral energy distri-

bution is then multiplied by the CCD, optics and filter response functions (this com-

bination is usually referred to as the passband transmission function). By this one

obtains the theoretical spectrum as it would be detected. To obtain the theoretical

flux for the given passband, we need to integrate this spectrum over wavelength. By

repeating the same process for different passbands, we can obtain theoretical fluxes

for all passbands at all phases, the ratios of which – as one might have guessed from

the discussion in the preceding section – are the color indices and these need to be

constrained by observations.

A historical definition of color indices, dating back to the time of photometers

and differential photometry, requires that their values are set to 0.0 for Vega (spectral

type A0V). Stellar energy distribution functions are not as accommodating as to

provide us with that a priori, so one needs to offset the theoretical color indices. This

is achieved easily by computing passband fluxes for Vega (by the same procedure

sketched above), deriving color indices and setting them to 0. This provides color

index offsets that are then applied to binary star color indices.

Applying (5.1.15) yields TB(t) at some observational time t or phase. For binaries

with well-determined Roche surface potentials, T1 and T2 follow from the least-

squares analysis. For wide detached binaries, this is somewhat hindered by the fact

that the Roche potentials and temperatures are fully correlated via the surface bright-

ness ratio (the eclipse depth ratio is directly proportional to the surface brightness

ratio, which is in turn a function of [(T1, R1), (T2, R2)]). This renders individual

T1 and T2 uncertain to the extent of the degeneracy between surface brightness

parameters. Regardless, color constraining projects out only those combinations

of parameters that preserve TB(t) and hence the color index. Because the relation

between effective temperatures of individual components is, in cases where param-

eter correlations are weaker, fully determined by the light curve shape (predomi-

nantly by the primary-to-secondary eclipse depth ratio) and because the sum of both

components’ contributions must match the effective temperature of the binary, the

color-constrained least-squares method yields effective temperatures of individual

components.

5.1.2.3 Both Temperatures from Absolute Light Curves

The essential requirement for direct distance estimation described in Sect. 5.1.4 and

temperature determination follows from Wilson’s (2007a, b, 2008) EB temperature–

distance theorem: Eclipsing binary light curves can yield temperatures of both

stars and distance if and only if the data are standardized, the absolute geometry
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is determined, and two or more substantially different photometric passbands are

fitted. Here temperature means effective mean surface temperature excluding the

reflection effect.

In this context, the “standardization” requirement can be fulfilled by calibration

from standard2 magnitudes to physical units as described by Wilson (2007a, b) and

discussion in Wilson (2008, Sect. 5). Absolute flux calibrations for the Strömgren

uvby photometric system have been derived by Fabregat & Reig (1996) and Gray

(1998). Two calibrations suitable for converting standard magnitudes in the John-

son system to standard physical units are Johnson (1965, 1966) and Bessell (1979),

designated by subscripts J and B, respectively, below. They have been converted by

Wilson (2007a, b) and lead to the following table:

Band λeff(u) fJ fB fJ/ fB

U 360 4.35·10−1 4.19·10−1 1.038

B 440 6.87·10−1 6.60·10−1 1.041

V 550 3.78·10−1 3.61·10−1 1.047

K 2200 3.92·10−3 4.02·10−3 0.975

This table, for various passbands u with effective wavelength λeff(u) measured in

nm gives the absolute flux values for zero apparent magnitude, e.g., fJ(V ) = 0.378

erg/cm3/s is the Johnson V flux for mV = 0. The conversion from arbitrary apparent

magnitude mV to absolute flux f (mV) is then given by

f (mV)/ fJ = 10−0.4mV . (5.1.16)

Scaling using both calibrations differs by only 4% which seems to be sufficiently

accurate given that the error in the distance varies with the square root, e.g., for

Johnson V with
√

1.04 ≈ 1.02, or
√

0.975 ≈ 0.98, respectively. In addition to the

Johnson or Bessell calibration one needs to know the interstellar extinction A in

magnitudes.

A nonstandard or non-calibrated light curve essentially contains information

about the components’ surface brightness via the ratio of eclipse depths yielding

a relation

T2 = f (T1). (5.1.17)

As this provides no further temperature information, we have one relation for two

unknown temperatures. Therefore, it has been common practice to adopt one tem-

perature, usually T1, from spectra or color indices and solve for the other one. Fol-

lowing Wilson (2007a, b) one can also understand why additional light curves in

other passbands do not help to determine both temperatures. In an ideal situation

2 Standardized means U, B, V, etc. – not only on a standard system but with magnitudes as opposed

to magnitude differences. In astronomical photometry, this is referred to as “absolute photometry.”
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where all system parameters are known and the radiative emission is described fully

and correctly, the photometry and spectroscopy are reproduced correctly – only the

pair (T1, T2) is not yet resolved. Theory then will correctly predict T2 for given T1,

for every passband from the primary to secondary depth ratios, and because all the

computed T2s are correct, they will be band independent and the resulting relations

T2 = f (T1) will just repeat that found from any one curve.

With standard light curves convertible to absolute units, the situation changes.

Only one of the infinite pairs (T1, T2) satisfying (5.1.17) will also reproduce the

absolute system flux for a given distance D. As we do not know D, we add the two

constraints

Fcal
1 (T1, T2, D) = Fobs

1 (5.1.18)

Fcal
2 (T1, T2, D) = Fobs

2 (5.1.19)

and two passbands. The three equations (5.1.17, 5.1.18 and 5.1.19) are needed and

sufficient to determine all three unknown quantities T1, T2, and D as stated above

in the temperature–distance theorem. As a consequence, one standard light curve

suffices to find (T1, T2) if D is independently known.

One has to keep in mind that this is the ideal situation. If the absolute flux cali-

bration is not accurate enough or the observed data are too noisy, the temperatures

and distance can appear larger or smaller than they really are, leading to an error in

the temperature perhaps by several hundred degrees. Thus, it may well continue to

be the case that light curves in more passbands improve precision and that spectro-

scopic temperature determinations prove to be more accurate.

5.1.3 Traditional Distance Estimation

Traditional distance estimation is an a posteriori step that follows the light curves

analyses in Sect. 4.4.4.1. Here we summarize the underlying idea. As pointed out

in Chap. 1 (page 22) the distance D or parallax π of a binary can (in favorable

cases) be derived if both light and radial velocity curves are available. Although

the orbit size, relative dimensions, and temperature difference are the results of a

simultaneous least-squares analysis, it is useful to remember that these quantities

strongly relate to the data sources as listed by Wilson (2008):

1. The orbit size, i.e., the semi-major axis a, and thus the linear scale of the system

follow from the radial velocity curves.

2. The star dimensions relative to a (i.e., their mean radii) follow from the form

of the light curve that establishes a one-dimensional family of mean surface

temperatures [T1, T2] through the two eclipse depths.

3. If one mean temperature is obtained from spectra or color indices (as is usu-

ally the case), the other temperature follows implicitly from the [T1, T2] family

through the least-squares analysis. Together with the surface gravity distribution,

irradiation from the other star, and possibly spots, a temperature distribution
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can be computed. If this distribution is entered into an atmosphere model, or

a simplified model involving a blackbody law with limb darkening, we obtain

the emission per unit surface area on both stars.

4. The above information determines the absolute passband luminosities, as well

time-dependent observable flux for any assumed distance.

The traditional way to compute the distance from the four data types above in most

“distance deriving” publications prior to 2007 is described in Sect. 4.4.4.1 and finds

D from the unreddened distance modulus, for instance in the Johnson system intro-

duced in Sect. 2.1.1

(mV − MV )0 = 5 log(D/10) (5.1.20)

with

(mV − MV )0 = mV − MV − REB−V ,

where D is the distance in parsecs, and R = AV /EB−V is the ratio of the passband

extinction, AV , of the V light by the interstellar medium to the color excess EB−V .

Note that the apparent magnitude of the binary needs to be known in a standard

system, e.g., Johnston UBV or Str ömgren uvby. Differential photometry alone is

not sufficient. If distance were derived at all, we further note the following.

1. The distance derivation using the separate follow-up step is strictly valid only for

spherical stars as otherwise the local physics is not treated properly.

2. Formal standard errors of the derived distance are not provided, although other

kinds of error estimates may be given.

Therefore, below we argue in favor of Wilson’s (2008) self-consistent approach that

exploits photometric light curves in standard physical units.

5.1.4 Direct Distance Estimation

Direct distance estimation means that the distance, D, is derived in a least-squares

analysis without the a posteriori step discussed in Section 5.1.3. If D is determined

in this way, it is consistent with all local physical surface quantities, including

proximity effects and any other phenomena supported by the model, avoiding the

need to resort to mean radii. The only model requirement is the ability to compute

distance-dependent flux, F
ph
d , in standard physical units, e.g., cgs units. In the anal-

ysis, these fluxes are then compared to the observed fluxes, Fobs, by exploiting the

relation

Dpc = apc

√

F
ph
d

Fobs
. (5.1.21)
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Thus, observed light needs to be available also in these standard units, or should

be properly converted from standard magnitudes or relative flux to these units. As

discussed already in Sect. 5.1.2.3 for the Johnson UBV system, Fobs has been cali-

brated to standard physical units.

In the case of the WD program, there has always been an explicit absolute cou-

pling between 4π sr passband luminosity, L , and calculated flux, F . Use of the

normal emergent intensity, Ipole, at a reference point (usually, a pole) as a scaling

factor, made it easy and required only minor changes to compute light curves in

any standard system of physical units by introducing a second scaling step from

user-defined flux units to physical units by the relation

Lph =

(

I
ph

pole

I mod
pole

)

Lmod, (5.1.22)

where superscript “mod” refers to WD intrinsic model quantities. Thus, absolute

I
ph

pole yields absolute Lph and F
ph
d , given that the geometry is correctly followed.

The distance-dependent flux, F
ph
d , in physical standard units, in the WD program, is

computed as

F
ph
d = 10−0.4A

( a

D

)2

[

Fmod
a1

(

I
ph

1

I mod
1

)

+ Fmod
a2

(

I
ph

2

I mod
2

)]

, (5.1.23)

where superscript “mod” refers to WD intrinsic model quantities, a is the orbital

semi-major axis, and A is interstellar passband extinction in magnitudes, with sub-

scripts 1 and 2 for the binary components. The polar normal intensities I
ph

1 and I
ph

2

are computed by an interpolation routine approximating the radiation by a stellar

atmosphere.

Utilization of a stellar atmosphere, or an approximation to it, requires a good

temperature estimate for one star from spectra or color indices, or derivation of

both temperatures from two light curves as described in Sect. 5.1.2.3. As stated in

Wilson’s EB temperature–distance theorem, calibrated light curves in two passbands

are needed and are, in principle, sufficient to determine both temperatures and the

distance. Note that the light curve model involves and reproduces mean surface

temperature, temperature at a definite reference point (usually, the pole), at any local

surface point, and observed (aspect-dependent) temperature.

Distances derived from EBs can be very accurate and can be determined for

nearby galaxies [cf. Wilson (2004)]. However, we should keep in mind that they

depend on extinction, A, and they could also be contaminated by third light. The

light, ℓ3, of a third star or planet makes a system appear brighter and thus appar-

ently nearer, and also influences EB solutions in other ways. It dilutes all variations

(eclipses, tides, reflection, etc.) and thus reduces light curve amplitudes.

Interstellar extinction dims light curves so as to increase distance estimates,

whereas its associated reddening decreases temperature estimates. Reduced
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theoretical temperatures reduce predicted absolute fluxes and thus decrease dis-

tance estimates. Thus, in regard to distance determined from this light curve anal-

ysis approach, extinction and reddening partly offset one another and, accordingly,

the overall effect of extinction on distance determination is less than one might

suppose (Wilson 2008, Sect. 7). Wilson (2008) also investigated the possibility of

determining A through the least-squares analysis. Although this is indeed possible

given absolutely scaled light curves in three passbands, it is not very practical as

the sensitivity with respect to the calibration of the light curves is typically strong.

Small deviations in the calibration lead to significantly different A values.

In addition to these interstellar extinction or third light problems specific to the

analysis and observation of a particular binary, Wilson (2008, Section 5) carefully

discusses the radiative model, photometric response functions, absolute photometric

calibration, and photometric transformations as sources of systematic errors of the

overall procedure.

5.1.5 Main-Sequence Constraints

The EB parameter estimation problem often suffers from a lack of uniqueness.

Reducing parameter space may help but needs to be justified and carried out care-

fully. Some degrees of freedom can be eliminated by making an assumption about

the morphological type of a binary star, e.g., that it is semi-detached or a contact

binary. With more EB software becoming available, the set of special assumptions

is increasing. Prša & Zwitter (2005b) introduced main sequence constraints (MSC)

assuming that either or both components are main sequence stars. Because a sig-

nificant percentage of all stars are on the main sequence, there is a fair chance that

this assumption is correct. In principle, applying MSCs to one component or both

components of the modeled binary means imposing relations among mass, lumi-

nosity, temperature, and radii of main sequence stars (see, e.g., Malkov 2003 for

such relations specific to EBs) which in turn relates to the computation of absolute

dimensions. Consequentially, given a single parameter (e.g., a component’s effective

temperature), all other parameters (its mass, luminosity, and radius) are calculable.

This in turn implies that in the case of circular and nearly circular orbits, the effective

potential of the constrained component is fully determined.

However, the situation is not as ideal as described above. The main sequence is

not a line in the Hertzsprung–Russell diagram (luminosity or absolute magnitude

versus spectral type, stellar temperature or color index: Basically brightness plotted

against color) but rather a strip with a non-zero width. Depending on the position

selected, rather different values for the derived absolute quantities could follow. Prša

& Zwitter (2005b) account for the width of the main sequence by treating the main

sequence relations not as strict constraints but rather as a user-defined penalty cost

terms.

Although MSCs break the degeneracy, at best they could be used for testing

whether either or both stars can plausibly be main sequence stars: Depending on
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the behavior of the standard deviation of the fit, such a hypothesis can be accepted

or rejected. MSCs are of a different nature than morphological constraints and may

lead to a circular argument: EBs provide absolute parameters for stars, which can

then be used to establish various calibrations. MSCs, on the other hand, use cali-

brations. Thus, main sequence constrained solutions must never be used to establish

calibrations of any kind.

5.1.6 Intrinsic Variability of Eclipsing Binaries’ Components

In Chap. 1 we introduced extrinsic and intrinsic variables stars; in the latter group,

we find pulsating stars. As more than 50% of all stars are members of binary or

multiple systems, we should expect to find pulsating stars, or more generally, intrin-

sic variables in binary and multiple systems, and also in EBs. As pulsation indicates

instability, we might be concerned with stellar evolution effects if such pulsating

stars happen to be a binary member. However, at least for well-detached EBs we

should expect that each star evolves independently. Pigulski (2006) presented a brief

overview of the present knowledge of intrinsic variability in binary and multiple

systems and discusses various examples of EBs in the literature. Adding intrinsic

variability to a component of an EB, the stellar parameters of a binary component

become further constrained.

Pigulski & Michalska (2007) reported detection of pulsating components in 11

EBs in the ∼11,000 stars from the public ASAS-3 database. Among them are three

classical Algols, MX Pav, IZ Tel, and VY Mic, with δ Scuti-type primary compo-

nents. In six other EBs, the short-period variability can also be interpreted in terms of

δ Scuti-type pulsations, where both components are probably main sequence stars.

The pulsation mode in HD 99612 shows significant amplitude decrease during the

observed interval. In addition, one component of the eclipsing and double-lined

spectroscopic O-type binary ALS 1135 shows β Cep-type pulsation. Finally, Y Cir

is a good candidate for a slowly pulsating B-star in an EB.

Given that the physical processes that cause pulsations lead to time-dependent

temperatures and radii, it is not surprising that no light curve program yet exists that

can determine both the normal EB parameters and the parameters describing the

intrinsic variability. However, Wilson (2009) has already started the first numerical

experiments on the subject. Overall, as discussed by Lampens (2006), the field has

many open questions – among them whether binarity can influence pulsations or

whether binarity can explain the exotic behavior of some pulsating stars.

5.2 Multiple Star Systems and their Dynamics

´Oταν κάνεις óτ ι µπoρείς , κάνεις óτ ι πρέπει.

(When you do what you can, you do what you must.)
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5.2.1 Third-Body Effects on Light and Radial Velocity Curves

EBs are sometimes members of multiple star system [cf. Mayer (2005) and ref-

erences therein]. Among 728 multiple systems with 3–7 components contained in

an extended 6/1999 edition of the Tokovinin (1997) catalogue of physical multiple

stars, there are 83 eclipsing binaries. In the simplest case a third body orbits with the

binary around the system barycenter. Observational evidence of third bodies comes

from spectroscopy (disturbances of the radial velocity curve), or from analysis of

times of minima. A linear relation between Observed–Computed times of minima

and time indicates constant period3; a parabola implies a constant rate of period

change; and a sinusoid implies apsidal motion4 or variation in arrival time (light-

time effect) due to orbital motion of theclose binary around the system barycen-

ter (binary plus third body). EB programs ideally should consider three short-term

effects imposed by the third body: Third light as described in Sect. 3.4.1, the light-

time effect to all observable phenomena, and radial velocities.

Although they are not short-term effects, here we want to summarize a few results

on the dynamics and the effects of the third body on the binary, referring the reader

to Eggleton (2006) for a more detailed discussion.

Apsidal motion can be due to gravitational perturbations by other bodies, finite

nonspherical mass distributions of the stars, and generalrelativistic effects [cf.

Quataert et al. (1996)]. If due to a third body, apsidal motion may be accompanied

by precession. Both, apsidal motion and precession, result from the rotation of the

binary’s orbital frame around the barycenter. If the third body orbit is the outer orbit,

both effects are on a timescale (Eggleton 2006, p.203)

τ3b =
h

a2C3

≈
M1 + M2

M3

P2
3

2π P

√

(1 − e3)3, (5.2.1)

where P and P3 are the period of the inner and outer orbit, e3 is the eccentricity of

the outer orbit, h is the angular momentum of the third body, and

C3 =
G M3

2a3
3

√

(1 − e3)3
. (5.2.2)

Neither precession nor apsidal motion is expected to have a significant effect on

the long-term orbital evolution of a binary. Given that P and a are purely functions

of the orbital energy but not of angular momentum, they remain constant in the

lowest approximation of the Keplerian orbit perturbation. The dynamic cause is that

the third body’s force is derivable from a potential and thus does no work around

3 The period is constant but incorrect if the slope of the line is different from zero.
4 The term apsidal motion refers to the rotation of lines of apsides of an eccentric binary orbit, or

the rotation of the periastron. Apsidal motion is caused by perturbations to the 1/r gravitational

potential and indicates deviations from Keplerian elliptic motion.
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a closed curve. It thus has no net effect on the binary’s orbital energy during a

complete cycle. As the binary eccentricity and angular momentum can fluctuate,

a third body can, nevertheless, strongly influence a binary’s orbital evolution. One

would not intuitively expect this behavior, particularly if the third body moves in

a wide orbit with a period of the order of 104 years or has only very low mass.

If the inclination between the outer and inner orbit is larger than about 39◦, large

cyclic variations in e become possible at high inclinations (Kozai 1962). These

cycles are known as Kozai cycles and are related to Kozai’s (1962, Sect. 4.8) anal-

ysis of the interaction between Jupiter and solar system asteroids with high incli-

nation. The cyclic eccentricity variations, coupled with the approximate constancy

of a, means that tidal friction can become important at periastron during part of

the cycle, even if it is unimportant during the small eccentricity part of the cycle.

Due to this friction, over many Kozai cycles the inner orbit will shrink as well as

become circularized, the final period being roughly the period when the stars are

close enough for apsidal motion due to their distortion to dominate over apsidal

motion due to the third body. As other perturbations of the third body can reduce

the effect of Kozai cycles, there is a maximum outer orbit size that can generate

Kozai cycles, but this may still be several thousand times larger than the inner orbit

with periods up to 103–104 years. Eggleton & Kiseleva-Eggleton (2001) applied

this theory to SS Lac, a binary, now lacking eclipses due to a rotating orbital

plane.

Having discussed the dynamic consequences of a third body qualitatively, we

present a few quantitative relations from Van Hamme & Wilson (2005, 2007) involv-

ing six third-body parameters that can be also derived from light and radial velocity

curve fitting. These parameters are semi-major axis, a′, of the outer relative orbit;

eccentricity, e3; the argument of periastron, ω′, of the close orbit’s center of mass;

period, P ′; inclination, i ′ (angle between the plane of sky and the third-body orbit),

and superior conjunction, T ′
c , of the EB center-of-mass with the barycenter. Note

that T ′
c is well defined, whereas the EB periastron passage, T ′

peri , is undefined for

circular orbits and weakly defined for small eccentricities.

As the binary star components orbit the barycenter, the periodically varying

light-travel time leads to the light-time effect, i.e., the difference, ∆t = tobs − tsys ,

between the barycentric time, tobs , and the EB center-of-mass time, tsys , which sets

the orbital phase in the third-body orbit. The light-time effect time difference effects

all observables and is given by

∆t = A∆t

1 − e2
3

1 + e3 cos υ
sin(υ + ω′), (5.2.3)

with the true anomaly, υ, and the light-time semi-amplitude for circular third-body

orbits

A∆t =
a′ sin i ′

c
A, (5.2.4)
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and

A = 1 −
( a

a′

)3
(

P

P ′

)2

, (5.2.5)

where a′ = a12 + a3 is the semi-major axis of the outer relative orbit, and c is the

vacuum speed of light. Thetrue anomaly υ and the eccentric anomaly E are related

by (3.1.27), which here gives

tan
υ

2
= B tan

E

2
, B :=

√

1 + e3

1 − e3

. (5.2.6)

The mean anomaly

M =
2

P ′

(

tsys − T ′
peri

)

(5.2.7)

is related to the eccentric anomaly E through Kepler’s equation (3.1.28)

E − e3 sin E = M. (5.2.8)

Alternatively, the mean anomaly can be expressed as

M = Mc +
2π

P ′

(

t − T ′
c

)

, (5.2.9)

with the mean anomaly Mc at the time of superior conjunction, T ′
c , obtained from

Kepler’s equation with E = Ec. The latter can be obtained from the true anomaly

at conjunction

υc =
π

2
− ω′, (5.2.10)

with

tan
Ec

2
=

1

B
tan

υc

2
. (5.2.11)

Third bodies lead also to a change of the radial velocities due to the eclipsing

pair’s systemic velocity. As the EB orbits the barycenter, its velocity varies and is

given by

Vγ = Vγ 0 +
Aγ

√

1 − e2
3

[

e3 cosω′ + cos(υc + ω′)
]

(5.2.12)
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with the semi-amplitude

Aγ =
2π

P ′ a′ sin i ′ A (5.2.13)

of the Vγ reflex motion for circular third bodies.

The least-squares approach to estimate the third-body parameters a′, e3, ω′, P ′,

i ′, and T ′
c , requires the calculation of the derivatives d(∆t)/dp, where p denotes one

of the third-body parameters. Van Hamme & Wilson (2007) give analytic relations

for these derivatives.

5.2.2 Ephemerides Derived from Whole Light Curves and Radial

Velocity Curves

In most publications on EBs, we find that ephemerides (epoch, period, and period

changes) are derived from the times of minima. This usually requires a long-time

coverage of the binary, which is a useful basis to establish the period and period

changes. However, if the EB has just been discovered, the times of minima are

only a fraction of the data available when complete light curves and radial velocity

curves have been observed. An alternative method has been proposed by Wilson

(2005) and by Van Hamme & Wilson (2007). It does not depend on traditional

timing diagrams but derives an ephemeris from whole light and radial velocity

curves. The time coverage is improved as there may be epochs with only light

curves and other epochs with only radial velocity curves. Wilson, in Elias et al.

(1997), had used this technique already in an analysis of AX Monocerotis, a (K

giant, Be giant) binary that lacks eclipses, with radial velocities from two epochs

being the only reliable means to an ephemeris. Because “time markers” such as

light curve eclipses are absent in radial velocity curves, an algorithm was needed

for treating whole curves, and the idea for AX Mon was to work within a full binary

star observables program (in this case, WD), rigorously compute phases from time,

and let WD take care of all sophistications of the synthesized velocity curves. The

analysis involves the orbit ephemeris parameters T0 (reference epoch), P0 (period

at reference epoch), Ṗ = dP/dt (period time derivative), and dω/dt (orbit rotation,

i.e., apsidal motion). For Ṗ = 0 and thus constant P0 = P , phase and time are

connected by

∆φ =
∆t

P
, (5.2.14)

where ∆φ denotes the length ∆φ = φ − φ0 of a phase interval [φ0, φ], and

∆t the corresponding time interval. Thus we can compute phase as a function of

time by

φ(t) = φ0 +
t − T0

P
. (5.2.15)
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For constant, but nonzero Ṗ �= 0 we need to derive5 a relation between between

phase, φ(t), and time for nonconstant period. We start with

dφ =
dt

P
(5.2.16)

and integrate this

∆φ =
∫ t

T0

dτ

P
=
∫ t

T0

dτ

P0 + (τ − T0)Ṗ
. (5.2.17)

Using the integral relation

∫

dt

a + bt
=

1

b
ln(a + bt) + const (5.2.18)

with a = P0 + T0 Ṗ and b = Ṗ we obtain

∆φ =
1

Ṗ

{

ln
[

P0 + (t − T0)Ṗ
]

− ln [P0]
}

(5.2.19)

=
1

Ṗ
ln

P0 + (t − T0)Ṗ

P0

=
1

Ṗ
ln

(

1 +
(t − T0)dP/dt

P0

)

(5.2.20)

or, eventually,

φ(t) = φ0 +
ln
[

1 + (t−T0)dP/dt

P0

]

dP/dt
. (5.2.21)

To evaluate (5.2.21) numerically for small values of dP/dt or in the limit dP/dt →
0, we provide the Taylor series expansion (5.2.22)

∆φ =
(t − T0)

P0

∞
∑

k=0

(−1)k

k + 1

(

(t − T0)

P0

dP

dt

)k

, (5.2.22)

for small dP/dt , which in the limit dP/dt → 0 yields the phase–time relation

φ(t) = φ0 +
(t − T0)

P0

(5.2.23)

for constant P . Except for the new formulae (5.2.21) and (5.2.22) to compute phase,

radial velocities and light curve flux may be computed in the usual way from an

5 This derivation is reproduced from R. E. Wilson’s personal notes of Dec. 1995 and Feb 1997.
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EB model. Terms in T0, P0, dP/dt , and dω/dt were added to the DC equation of

condition in the WD model so, with f the general symbol for an observable quantity

(here radial velocities or flux), the equation becomes

fo − fc =
∂ fc

∂T0

δT0 +
∂ fc

∂P0

δP0 +
∂ fc

∂(dP/dt)
δ(dP/dt) +

∂ fc

∂(dω/dt)
δ(dω/dt)

+
K
∑

k=1

∂ fc

∂pk

δpk . (5.2.24)

Subscripts o and c are for “observed” and “computed,” and the δpk values are cor-

rections to input parameters pk in the iterative scheme. The partial derivatives in

T0, P0, dP/dt , and dω/dt can each be expressed as the product of a numerical

derivative and an analytic derivative. For instance, ∂ fc/∂T0 is given by how the basic

observables depend on phase, ∂ fc/∂φ, and an analytic derivative that quantifies how

phase depends on a given parameter (e.g., ∂φ/∂T0 ). Accordingly, each of the four

derivatives

∂ fc

∂T0
= ∂ fc

∂φ

∂φ

∂T0

∂ fc

∂P0
= ∂ fc

∂φ

∂φ

∂P0
∂ fc

∂(dP/dt)
= ∂ fc

∂φ

∂φ

∂(dP/dt)

∂ fc

∂(dω/dt)
= ∂ fc

∂φ

∂φ

∂(dω/dt)

(5.2.25)

includes a numerical factor, ∂ fc/∂φ, that needs to be computed only once (not four

times) per data point, and also an analytic factor. The analytic factors require neg-

ligible computing time and the numerical factor is the same for all four parameters,

so four derivatives can be generated for the computational price of one. To compute,

for instance, ∂φ/∂T0, we provide the inverse relation to (5.2.21)

t − T0 = e(∆φdP/dt−1) P0

dP/dt
(5.2.26)

and its Taylor series expansion

t − T0 = P0∆φ

∞
∑

k=0

1

(k + 1)!

(

∆φ
dP

dt

)k

. (5.2.27)

Exploiting the analytic derivatives eliminates the need to specify appropriate incre-

ments for T0, P0, dP/dt , or dω/dt in computing the four derivatives ∂ fc/∂T0, etc.;

we only need to think about one increment in φ.

Traditional timing plots and the ephemeris solutions described here are comple-

mentary in that timing diagrams are naturally visual and intuitive, while “multiple

whole-curve” solutions potentially access a larger body of information. Ideally, one

should include the times of minima as another set of observables into the light curve

analysis exploiting the ideas outlined in Sect. 5.1.1.
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5.3 Analyzing Large Numbers of Light Curves

Ultra posse nemo obligatur. (Nobody is obliged to do the impossible.)

Thousands of EBs have already been identified in the light curve database of the

MACHO projects [cf. Faccioli et al. (2007)]. The discovery rates, for example, of

variable stars (including eclipsing binaries), are increasing rapidly as more power-

ful ground-based telescopes and new satellites come on line, and we could expect

discoveries in the millions. To extract astrophysical information from even a small

fraction of these, humans cannot be in the data-reduction loop and new techniques

are needed to eliminate this requirement. Here we discuss some ideas on analyzing

large number of EB light curves from surveys.6

It should be understood that modeling eclipsing binaries and solving inverse

problems in such a context is a major research effort and requires expertise to use the

software effectively. Wherever possible, great effort has been invested to make the

software as stable as possible, but in some places careful user interaction is needed.

For the analysis of large numbers of EB light curves obtained from surveys,

detailed investigations need to be replaced by a highly automated procedure. There

is a price to be paid for doing this in terms of accuracy. Nevertheless, such an

approach should produce good approximate results and may indicate interesting EB

stars for detailed analysis.

At the time of this writing, a few attempts have already been made, but there

is a significant amount of work needed to support efficiently the analysis of, for

instance, the data expected from survey missions such as OGLE, MACHO, TrES,

HAT, or Kepler, as well as from the Large Synoptic Survey Telescope (LSST).

5.3.1 Techniques for Analyzing Large Numbers of Light Curves

The critical issues are speed and stability. Speed is obviously necessary to analyze

large numbers of data. Stability is required to automate the procedure. Automation is

required if the user is to analyze large sets of data produced by surveys. Approaches

to automating light curve solutions have taken various forms to date.

1. Matching approach [Wyithe & Wilson 2002a,b and Wilson & Wyithe (2003)]:

Match one or several light curves to a large test set of pre-computed light curves.

This set is used in the first step to analyze observed light curves.

2. Rule-based approaches: These follow an a priori rule-based procedure to extract

relevant light curve information to produce a good initial parameter set for further

light curve fitting. They are helpful to non-experts and can be combined with the

matching approach.

3. Simplified physical models: Devor (2005) developed an automated pipeline for

a simple spherical star model without tidal or reflection physics, whose starting

6 Methods on how eclipsing binary stars are detected in surveys and distinguished from other

variable stars are found, for instance, in Eyer & Blake (2005) and references therein.
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values are guessed and then refined with a downhill simplex method followed

by simulated annealing. This approach identifies detached binaries which can

be described sufficiently accurate by spherical models. Tamuz et al. (2006)

employed the EBOP ellipsoidal model (Popper & Etzel 1981). Using this engine,

they arrived at initial solutions after a combination of grid search, gradient

descent, and geometrical light curve analysis.

4. Artificial neural network (Prša et al. (2008)): The neural network approach

can be understood as a formal mathematical approximation technique in which

amplifiers between input and output signals are adjusted.

The first two approaches have in common that they can exploit the correct binary

star physics that gives rise to the light curves. The neural network approach as a

formal approximation techniques may lack this facet without extra information.

If spherical or ellipsoidal stars are used to approximate semi-detached or over-

contact binaries, it is not clear if the initial information obtained from such sim-

plifications will be useful. All of these treatments have the advantage that they

allow non-experts to produce reasonable initial parameter sets for further detailed

study.

A prerequisite for the first two approaches is to know the ephemerides. In princi-

ple, the period may be extracted by a power series analysis. Surveys may not have a

long-enough duration to derive period changes. However, period changes might be

an issue for non-expert users when analyzing EB light curves obtained at different

epochs.

5.3.2 The Matching Approach

In their work to establish the best distance indicators among detached and semi-

detached binaries in the Small Magellanic Cloud, Wyithe & Wilson (2002a,b) and

Wilson & Wyithe (2003) obtained starting parameters for the rigorous WD model

by comparing each light curve with a set of archived model light curves, and then

sending the best match to an automated version of the WD differential corrector

program DC.

In ongoing work, Kallrath & Wilson (2057) are extending this approach by an

inner linear regression loop, incorporating a priori information, adding interpola-

tion techniques, and increasing storage and numerical efficiency. This approach now

supports all WD parameters.

For a given binary system, let ℓo
ic be any observed value for observable c, c =

1 . . .C , at phase θi . Correspondingly, ℓo
ick denotes the computed value at the same

phase θi for the archive7 curve k, k = 1 . . . K . Note that K might easily be a large

number such as 1010. The matching approach returns the number of the best fitting

archive light curve, a scaling parameter, a , and a shift parameter, b, by solving the

7 Synonomously, we use the terms stored, library, or template light curves.
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following nested minimization problem:

min
k

{

min
a,b

I
∑

i=1

wi

[

ℓo
ic −

(

aℓc
ick + b

)]2

}

(5.3.1)

Note that the inner minimization problem only requires solution of a linear regres-

sion problem. Thus, for each k, there exists an analytic solution for the unknown

parameters a and b. Note that the ℓc
icn values are obtained by interpolation. The

archive light curves are generated in such a way that they are well covered in the

eclipses, while a few points will do in those phases that show only small variation.

Thus, there is a non-equidistant distribution of grid points that is well interpolated

by cubic polynomials.

5.3.2.1 Solving Linear Regression Problems

Although solving linear regression problems is not difficult as such, one should

exploit a priori knowledge of light curve parameters when looping over k. If a priori

knowledge is available, for instance, on the mass ratio, q, or the temperatures T1

and T2, then certain k values can be excluded. The analysis of C observables (radial

velocity curves and light curves) requires to solve C linear regression problems. If

the observable is a radial velocity curve, the additive constant b gives the systemic

velocity γ . For light curves, a returns the WD scaling quantity L1 and b is third

light, ℓ3

5.3.2.2 Generation and Storage of the Archive Curves

Archive generation requires appropriate looping and proper interfacing to subrou-

tine LC of the WD program. Special attention should be paid to the way the stored

sets can be accessed. If a priori knowledge is available in connection with the Roche

potentials Ω1 and Ω2, for instance, on the mass ratio, q, we should exclude unphys-

ical configurations and ensure that certain values of k can be excluded.

An additional aspect is the storage of the computed archive light curves. For

each light curve and observable (wavelength), we need rk = 4 × C × Ik bytes,

where we consider 4 bytes, Ik phases and C bands. Note that we may have different

numbers of phases depending on the shape and amplitude of the light curve (used

in our interpolation scheme). The total memory requirement is then R :=
∑K

k=1 rk .

Note that R may easily reach the order of 4C · 108 light curves if all reasonable

combinations of the photometric parameters e, ω, i, q,Ω1,Ω1, T1, T2, and log g are

considered.

The choice of unadjusted parameters A1, A2, g1, and g2 depends on T1 and T2.

L1 can be set arbitrarily to L1 = 1 because the matching problem involves the

scaling parameter anyway. L2 follows as a function of L1. ℓ3 is covered by the

linear regression in the matching problem. Limb-darkening parameters also can be

chosen, from, for instance, Van Hamme’s (1993) limb-darkening coefficients. As the

computation of limb-darkening coefficients depends on log g, we have added this as
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a parameter. Great care is necessary when involving the eccentric orbit parameters.

Both eccentricity, e, and length of the perihel, ω, need a very fine grid.

In addition to the sets generated automatically, we add all the light curve param-

eters sets for those EBs for which a light curve solution is available. This way, when

we find a match to an observed light curve, we are able to provide not only some

reasonable light curve parameters but, in addition, also a candidate similar to the

current EB.

One might think to store the library light curves in a type of database. However,

database techniques become very poor when talking about 1010 light curves. There-

fore, a flat storage scheme is used. In the simplest case, for each k we store the

physical and geometric parameters, then those parameters describing observable c,

and then the values of the observable.

5.3.3 The Expert Rule Approach

Among other topics this approach depends on pattern recognition in graphs. The

expert rule approach requires that we are able to derive morphological features of the

light curves from data. Although humans can easily identify straight-line segments

in graphs, pattern recognition in graphs is complicated. Light curve minima can

easily be identified qualitatively on a plot. In that way, Algol type light curves are

detected immediately. If the minima are not arranged symmetrically, this readily

indicates an eccentric binary orbit.

5.3.4 Simplified Physical Models

Devor (2005) developed an automated pipeline for a simple spherical star model

without tidal or reflection physics, and the starting values of which are first guessed

and then refined with a downhill simplex method followed by simulated anneal-

ing. This approach identifies detached binaries which can be described with suf-

ficient accuracy by spherical models. Devor & Charbonneau (2006a, b) extend

this approach by utilizing theoretical models of stellar properties to estimate the

orbital parameters as well as the masses, radii, and absolute magnitudes of the stars.

This approach requires only a light curve and an estimate of the binary’s combined

color.

5.3.5 Artificial Neural Networks

The concept of neural networks (cf. Hertz et al. 1990) has it roots in brain research

but has a counterpart in artificial intelligence, where it also involves elements of

approximation theory and mathematical optimization. During the training phase, the

artificial neural network is adjusted to a set of observations by a learning algorithm.
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In approximation theory, this corresponds to the computations of a set of weight-

ing coefficients associated with some basis functions. After this phase, the tuned

network computes output based on further input.

Neural networks have been used by Sarro et al. (2006) to separate pulsating stars

from EBs and to classify EBs into four categories according to their characteristics

such as eclipse depth and widths. The classification is performed by a Bayesian

ensemble of neural networks trained with HIPPARCOS data of seven different cat-

egories including eccentric binary systems and two types of pulsating light curve

morphologies. In a follow-up step, these four categories are related to the configu-

rations detached, semi-detached and over-contact binaries.

Whereas Sarro et al. (2006) use artificial neural networks for automatic classi-

fication, Devinney et al. (2006) used it in their project Eclipsing Binary Artificial

Intelligence (EBAI) for deriving starting parameters. They employed a neural net-

work to “map” observational data to approximate model elements. Observational

data for an EB are presented to the network’s input nodes, and its output nodes

yield starting model elements. The network is first “trained” on many observational

data-model element pairs.

Prša et al. (2008) constructed a three-layer back-propagation neural network

that solves nonlinear regression problems. They describe the basic concepts and

procedures for applying artificial neural networks to detached EBs. Their neural

network was trained with 33,235 WD-generated light curves and applied to a set

of 10,000 synthetic detached EBs, to 50 detached binaries from the Catalog and

AtLas of Eclipsing Binaries (CALEB1) and to the set of 2,580 OGLE LMC binaries

(Wyrzykowski et al. 2003) classified as detached.

5.4 Extrasolar Planets

Adde parvum parvo magnus acervus erit.

(Add little to little and there will be a big pile. Ovid)

Extrasolar planet research has similarities with EB studies in the sense that

similar data and analyzing methods are used because a star–planet (or other low-

luminosity object) system, with transits and radial velocities for the star only, is

in many respects analogous to a single-lined spectroscopic and detached EB. As

the number of detected transiting planets increases (on July 1, 2009, the Extrasolar

Planet Encyclopedia8 contained 59 transiting planets), we have included this section

on extrasolar planets and analyzing methods. For the EB community, we provide

some introduction into the field of extrasolar planets.

There has been a long history of claims of detection of extrasolar planets, but only

in recent decades have such claims been verifiable and, indeed, verified. Campbell

8 URL http://exoplanet.eu/catalog.php (or, http://exoplanet.eu/catalog-transit.php).
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et al. (1988) tentatively reported the detection of a planet in orbit around the star γ

Cephei, but this was not confirmed conclusively until 15 years later (Hatzes et al.

2003). The first confirmed detection of extrasolar planets was by Wolszczan & Frail

(1992) around the pulsar PSR 1257+12. In 1995, Mayor & Queloz (1995) made the

first unambiguous discovery of a planet around a main sequence star: 51 Pegasi. The

planet turned out to be more massive than Jupiter, and in close proximity to the star,

a characteristic that earned it and subsequently discovered similarly placed objects

the nickname “hot Jupiters.” Thus far, this and most of the extrasolar planets dis-

covered to date have been identified through radial velocity variations of the orbited

stars. The discovery of planets through this technique required critical increases

of precision to 10 m/s and better. The technical improvements have been in spec-

trograph stability, spectral comparison techniques, and in analysis methods. As a

result, at present writing, uncertainties have been reduced to ∼3 m/s. In addition,

long-term averaging of data is yielding longer-period, lower-amplitude effects in

the radial velocity variations of the stars – the effects of planets several AU or

more from the star. Still further improvement to ∼1 m/s or less appeared to be

unproductive initially, because at this level the noise arising from chromospheric

network motions in solar analogue stars is likely to mask any periodic effects due

to planets. The noise arises from localized velocity variations, modulated by stel-

lar rotation and activity cycles. Such modulation would produce periodicities in

the noise level that could be misinterpreted as due to planets. However, over long

periods of time (say years or tens of years), the strict orbital periodicity may be

recoverable in the noise, because the latter is essentially stochastic and will be super-

imposed on the rotation (which is measurable for the star through high-resolution

spectroscopy) and on a merely cyclic phenomenon – the star’s activity or star spot

cycle.

Another method for finding extrasolar planets is based on photometry, and an

increasing number of planets are being detected through transit eclipses and through

gravitational lensing spikes in the lensing signatures of their parent stars. Because

the analysis of planetary transits has a lot in common with EB modeling, we dis-

cuss this method and successful applications of it in this chapter. Extrasolar planets

that transit their stars provide tight constraints on the orbital inclination and, when

coupled with radial velocity data, allow the determination of planetary masses and

sizes. Parameters of the parent star still need to be determined independently. The

temperature can be estimated from the star’s spectral characteristics, whereas the

mass and size can be derived from stellar evolutionary models (Cody & Sasselov

2002; Sasselov 2003).

Astrometry is also beginning to yield planetary detections, even though such

methods are strictly distance limited in two ways: Extrasolar “hot Jupiter” systems

must be close to the Sun to be observed in this way, but planets may be seen in

systems that are more distant from the Sun if those planets are at greater distances

from their parent stars, and yet are luminous enough to be visible. The latter is

a nontrivial requirement; to be seen, the substellar object must be glowing in the

infrared from its own internal heat sources, if it is too far from its parent to receive

and reflect sufficient visible light.
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5.4.1 General Comments About Substellar Objects

One of the best-studied extrasolar planets is that about the star HD 209458. HD

209458b, as the planet is designated, was discovered through radial velocity mea-

surements of its parent, HD 209458a, but light curves were obtained and the eclipses

were observed (Charbonneau et al. 2000) permitting the radius, the inclination, and

therefore, the mass and absolute dimensions of the planet and orbit to be deter-

mined. Table 16.2 in Milone & Wilson (2008) provides a list of known extrasolar

planets.

Some fraction of the objects designated planets may be brown dwarfs, which are

typically larger, more massive, and have larger internally generated radiative flux

than planets. This may be expected of substellar objects detected through the radial

velocity variation of their more massive parent stars, because the single-lined curve

yields only projected masses. Nevertheless, not all of them can be brown dwarfs,

because the distribution of projected masses with semi-major axis shows few of the

yet higher mass objects that would be expected if most of those detected were brown

dwarfs (Mayor et al. 1998).

Brown dwarfs have been shown to be absent in binary combinations with nor-

mal stars, the so-called brown dwarf desert . However, near-infrared surveys such

as 2MASS, DENIS, and Sloan show them to be present both individually and in

binaries with other low-mass, low-luminosity objects. If the “desert” is not due to

a selection effect, the survey results imply that the dearth in binary systems is, at

least, as Basri (2000) called it, a brown-dwarf “desert island.”As the number of

survey results continue to accumulate, however, the dearth looks more and more

like a bonafide desert.

5.4.2 Methods to Find “Small”-Mass Companions

Several of the search methods for extrasolar planets are similar to those employed to

search for eclipsing and other periodic variable stars, but need to be more exacting

because of the low amplitudes involved. At present there are five direct and a few

indirect methods available in the search for extrasolar planets:

• astrometric variations;

• (direct) imaging/spectroscopy of planets;

• gravitational lensing;

• radial velocity variations;

• transits; and

• indirect effects of planets on (O–C) diagrams of EBs, and on stellar disks such as

warps, gaps, and clumps.

5.4.2.1 Astrometry Variations

Periodic and nonlinear proper motions indicate binarity. Astrometric binaries involve

low-mass companions detected through proper motion variation. Their usefulness



248 5 Advanced Topics and Techniques

in determining the properties of unseen companions has already been discussed on

page 11. The process for extracting the mass, Minv, and barycentric distance of the

non-visible, low-mass object is described in Milone & Wilson (2008). If the astro-

metric precision is high enough, the method can work for brown dwarfs (defined

roughly as having masses between 13 and 75 Jupiter masses (MJ) if they have solar

composition and up to 90 if extremely metal-poor, or even for planets (objects with

Minv ≤ 13 MJ).

On the basis of astrometry, Gatewood (1996; 2000) suggested the presence of

planets in the systems Lalande 21185 and ε Eri, but the former, at least, still requires

confirmation. Benedict et al. (2002) have made astrometric measurements of a

planet previously detected from radial velocities of stellar reflective motions, Gliese

876b, planet of an M4 dwarf, also known as Ross 780. The measurements were

made using the Fine Guidance Sensor on the HST. With radial velocity data, the

mass is not in doubt. Together, the data yield an unprojected mass of 1.89 ± 0.34MJ

for the planet.

Advanced astrometry space missions may be capable of finding variations due

to precise and frequent astrometric measurements. These missions include NASA’s

SIM (Space Interferometry Mission) and ESA’s GAIA, both of which are expected

to achieve several micro-arc-seconds of positional precision. SIM is a pointed mis-

sion, while GAIA will be a survey instrument. GAIA will be equipped with a radial

velocity spectrometer (resolution ∼11,200) and from which photometric fluxes may

be integrated across any number of photometric passbands. The spectrometer res-

olution may be insufficient to detect variations due to planets, but the astrometric

resolution will be and transits may be detected in the integrated flux.

5.4.2.2 Direct Imaging and Spectroscopy

In both optical and infrared spectral regions, one can look for faint companions to

nearby stars, but true planets are rarely likely to be luminous enough to be seen

directly, if they are as close to their parent stars as are the “hot Jupiter,” typified by

51 Peg b or HD 209458b. It is even more difficult to obtain high spectral resolu-

tion to discern identifying features in the spectrum of any such candidate objects.

The difficulty is that the overwhelming light of the parent star makes it difficult to

separate the flux of the planet from its star. Coronagraphic (Lyot & Marshall 1933)

and diffraction techniques are beginning to yield results as new generation instru-

ments come into play, as have high-resolution techniques on existing telescopes.

Such techniques include median averaging of rotating fields to produce clean flats

for background subtraction. IR surveys are turning up very red and faint objects,

and a number of these have been confirmed to be brown dwarfs through subsequent

spectroscopy. Some very red objects in clusters are also turning out to be substellar

objects (see Basri 2000 for a still useful summary).

In 2004, an apparent companion to the brown-dwarf 2MASS J12073346-3932539

(or “2M1207”, for short) was observed in the infrared on the Very Large Telescope

(VLT) in Chile. If it is at the same distance as the primary, the companion is 55

AU from the star (Chauvin et al. 2004). Observations made 4 months later with
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the Near Infrared Spectrometer Camera and Multi-Object Spectrometer (NICMOS)

on the HST showed no relative proper motion, and from color indices confirmed

its temperature at 1250K. The brown-dwarf candidate is in the TW Hydrae cluster,

thought to be only 8 million years old. If it is indeed gravitationally associated with

the brown-dwarf, the fainter and cooler object is modeled to have a mass equal to

5MJ. In 2005, a faint companion to the variable star GQ Lupi was observed in visible

light; the objects display common proper motion, but is very far from the parent star,

and its mass is uncertain within a factor of 10 (Neuhäuser et al. 2005), so it could,

in fact, be a brown-dwarf star. Most recently, Kalas et al. (2008) has demonstrated

orbital motion in HST images of Fomalhaut (α Piscis Austrini). Finally, a system of

substellar objects has been imaged by Marois et al. (2008) with the VLT around HR

8799; the estimated masses of these objects are between 7 and 10 MJ, and so may

prove to be brown dwarfs. In any case, this is an interesting system.

5.4.2.3 Radial Velocity Variations of the Visible Component

Periodic variations in the Doppler shift of the star as seen in its spectrum are a dead

giveaway for something pulling the star around. Because masses of planets are much

smaller than those of stars, the orbital motion of the star around the common centre

of mass is small also. Therefore high accuracy and precision are required: tens of

meters per second or better.

Detection of planets through stellar radial velocity variations has been the major

method of detection thus far. The method is illustrated in Fig. 16.3 in Milone &

Wilson (2008). Technical improvements in spectrograph stability, in spectral com-

parison techniques, and in analysis methods have now reduced the uncertainties to

∼3 m/s. In addition to detection improvement, long-term averaging of data is begin-

ning to yield long-period, low-amplitude effects in the radial velocity signatures of

the parent stars — the effects of planets several AU or more away from the star, in

other words, the searches have begun to probe the region occupied by giant planets

in our own solar system.

Further improvements to ∼1 m/s means investigators must enter a realm domi-

nated by noise effects in the atmospheres of solar analogue stars. Solar-like activity

may generate localized velocity variations that will be modulated by both stellar

rotation and magnetic activity cycle intervals. The separation of these effects from

the effects of multiple low-amplitude planetary periodicities will become a major

problem.

5.4.2.4 Gravitational Lensing

The gravitational field of a star causes light from more distant objects lying in nearly

the same direction to be bent. Thus the star acts as a lens. The passage of a single

star (lens) in front of a more distant one causes varying brightness resulting in two

peaks. If the stars are in syzygy with the observer, so that there is an exact match

in direction on the sky, an “Einstein ring” is seen instead. From the first detection

in 1993, hundreds of events have been seen. Usually there is no consensus of the
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distance of the star that is acting as the lens, but when the lens turns out to be a

binary star, the additional lensing action of the second star and an assumption about

the motion of the lensing system in the plane of the sky permit a distance estimate

to be made. See Fig. 16.5 in Milone & Wilson (2008), where the crossing by the

“caustic” (a surface of maximum brightness created by spherical aberration in a

spherical lens/mirror) lasted 8 1/2 h; for comparison, a corresponding event in the

galactic halo, 15 Kpc away, would have taken only ∼1/2 h. If there is a planet in the

system, a sharp spike will be seen, in addition to the star’s effects.

The ground-based OGLE (for Optical Gravitational Lensing Experiment) sur-

vey of the galactic bulge region of the galaxies has now detected some of these.

The OGLE program also has detected apparent planetary transits, as we note

below.

5.4.2.5 Transit Eclipses

The presence of a planet can be established through an eclipse of the star’s light by

a planetary transit of the star’s disk. This is now a proven technique, but it requires

highly precise photometry, relatively small stars and/or large planets, or very long

monitoring intervals; selection effects favor planets close to their parent stars with

occultations on timescales of hours.

In 2000, radial velocity variation detected with the 1.5-m telescope at the Har-

vard College Observatory revealed a planetary candidate around the field star HD

209458. D. Charbonneau monitored the star for photometric evidence and, with

the help of other observers at Texas and Hawaii, succeeded in observing it (Char-

bonneau et al. 2000, Henry et al. 2000). It has subsequently been observed with the

HST and limitations on perturbations due to moons, and rings have been established

(none have been seen). Subsequent investigation shows the detection of such transits

in Hipparcos satellite data. Finally, through a careful analysis of the HST data set,

the spectral signature of sodium has been detected from the absorption of the star’s

light as it passed through the planet’s atmosphere (Charbonneau et al. 2002). This

is the first such identification!

The OGLE lensing survey has revealed tens of potential transit-like events of

very low depth, many of these are repeating, suggesting planetary transits. Several

of these have been followed-up with radial velocities studies on large telescopes.

Three cases that have proven to be planetary transits are TR-56b, TR-113b, and

TR-132b (Konacki et al. 2004). The planets in these systems are even closer to their

parent stars than the previously found “hot Jupiters.”

More recently, large-field surveys of brighter stars have been revealing transits.

The first such detection, of TrES-1, was announced by Alonso et al. (2004). It

has an orbit similar to that of HD 209458b, and similar mass, but smaller radius

(∼ 1.08RJ).

5.4.2.6 Indirect Effects: O–C Variation

A team headed by E. F. Guinan (Villanova Univ.) claimed detection of one or more

planets in the CM Draconis system, an eclipsing M-dwarf binary. The Villanova
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group claims only one photometric event (which another group disputes) but it has

studied the timing of the mutual eclipses and has compiled an O–C (for Observed–

Computed instants of mid-eclipse) curve of the eclipsing system, which, Guinan

feels, furnishes evidence of the gravitational effect on the orbits of the two stars. At

present, a planet in this system remains unconfirmed.

5.4.2.7 Effects on Disks

Protoplanetary disks have been seen around several stars, including β Pictoris and

Vega, and remnants of disks have been seen around older stars. Gaps and warping

have been attributed to the presence of planets or protoplanets in some of these

systems. Gorkavyi et al. (2004) summarize the case for a 10ME planet orbiting β

Pictoris, the first star discovered to have a disk around it. Subsequent direct imaging

at two epochs has revealed the existence of a planet orbiting in a gap in the disk (see

the discussion under Direct Imaging, above).

5.4.3 Star–Planet Systems and Eclipsing Binary Models

In EB models or programs we need to characterize planets by those parameters

usually used to describe stars. The fundamental parameters are mass, radius, and

temperature. A star–planet (or other low-luminosity object) system, with transits

and radial velocities for the star only, is analog to a single-lined spectroscopic and

detached EB. The orbital period, P , can be obtained from either radial velocities or

light curves of the system and is usually the most precisely determined quantity. The

radial velocity curve provides the eccentricity, e, and the radial velocity amplitude,

K∗, of the parent star. From the transit light curves one can derive the inclination,

i , and relative radii r∗ and rp of star and planet with respect to the semi-major

axis, a.

5.4.3.1 Comparing Stars, Brown Dwarfs, and Planets

To estimate reasonable initial values of the planet’s parameters we start by compar-

ing stars, brown dwarfs, and planets. Deuterium burning begins at a mass ∼ 13MJ,

making this a convenient dividing line for planets and low-mass stellar objects

(Saumon et al. 1996). Objects of mass greater than this are assumed to be brown

dwarfs or stars; objects with masses greater than ∼ 75MJ (or 0.072 M⊙), with

solar composition, stars. For stars with no metals, this limit increases to 90MJ. One

may distinguish among these three types of objects, namely a planet from a brown

dwarf, or a brown dwarf from a star, at least partly through spectral characteristics.

One criterion to distinguish between a brown dwarf and a star is the presence of

lithium (Li), which is easily destroyed in stars through large-scale convection. Basri

(2000, p. 494) argues that any object with spectral class later than M7, in which Li is

detected, must be substellar. Chabrier & Baraffe (2000) summarize the characteristic

spectral features with temperature for the cool end of the sequence as follows (the

temperature limits are approximate only).
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• ≤4000 K: M dwarfs. Most of the hydrogen is in the form of H2; and most of

the carbon in CO. O is bound mainly in TiO, VO, and H2O, some in OH and

in monoatomic O, and metal oxides. Metal hydrides (e.g., CaH, FeH, MgH) are

also present. In optical spectra, TiO and VO dominate; in the IR, H2O and CO

features are seen.

• ≤2800 K: O-rich compounds condense in the atmosphere; possibly perovskite

(CaTiO3) may be present.

• ≤2000 K: L dwarfs. [Example: GD 165B]. Some TiO remains, but metal oxides

and hydrides disappear from the spectra. Alkali metals are present in atomic form.

Some methane may be seen.

• ≤1800 K: Refractory elements (e.g., Al, Ca, Ti, Fe, V) condense into grains.

Corundum (Al2O3), perovskite condense. Depending on the pressure, rock-

forming elements such as Mg, Si, Fe may condense as metallic iron, forsterite

(Mg2SiO4), or enstatite (MgSiO4).

• ∼1700 K (to ∼1000 K): Cross-over to methane or T dwarfs. [Example: Gliese

229B]. Methane absorption strong in H (1.7:m), K (2.4 µm), and L (3.3 µm),

giving rise to steep spectrum at shorter wavelengths, with J − K ≤ 0, but with

I − J ≥ 5.

It appears that objects with temperatures below about 1300 K or so may qualify as

planets, but such limits are not without controversy.

Consequently it is more prudent to use the mass range rather than spectral clas-

sification to distinguish planets from brown dwarfs.

We can conclude that we could model a star–planet pair in an EB program by

a cool secondary putting its temperature T2 to, say, 500–1,000 K, a small mass

ratio, say, 0.01 ≤ q ≤ 0.1, and a small ratio, r2/r1, of radii. For optical light

curves of a transit, the planetary color is effectively black relative to the star,

so the planetary temperature is not critical. This is not true, however, if thermal

infrared light curves are available. Indeed, occultations (eclipse of the planet by the

star) have now been observed in the thermal infrared, thanks to the Spitzer Space

Telescope.

5.4.3.2 Transit Geometry and Modeling Approaches

The transit geometry is identical to that of a small star transiting a large one. The

plan and elevation views of the geometry can be seen in Figs. 5.1 and 5.2 taken

from Williams (2001). The orbital radius is a, the planetary and stellar radii are,

respectively, r and R, and the angles subtended by the planet and by the star are α1

and α2, respectively. The star’s distance from the Sun is d. From Fig. 5.2, it is seen

that the quantity α = α1 + α2 is related to the planet’s longitude at first contact, θ ,

by the expression

a

sinα
∼=

d − a

sin θ
. (5.4.1)

As d ≫ a we get for sufficiently small angles θ ≤ 10◦
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Fig. 5.1 The top part of the figure, Fig. 1.14 in Williams (2001), shows the path of the planet as it

transits the disk of the star. The bottom part of the figure is the corresponding light curve for the

transit. Courtesy Mike D. Williams, University of Calgary, Calgary, AB, Canada
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Fig. 5.2 The star has radius R. The planet’s orbit has radius a and period P . The observer is located

at distance d away, and the star has an angular radius α2. Courtesy Mike D. Williams, University

of Calgary, Calgary, AB, Canada

θ ≈
R + r

a
. (5.4.2)

Based on the transit geometry with its accompanying requirement of sphericity, one

could get approximate solutions by exploiting the analytic formulae, as outlined, for

instance, by Seager & Mallén-Ornelas (2003) or Kipping (2008). Although, analytic

transit models cannot cover more complicated physics such as distortion of the star
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due to its rotation, or distortion of the planet if it is close to the star, nonlinear limb

darkening, or stellar atmospheres to name a few, their solutions can provide initial

parameter estimations to light curve programs.

The next step could be to use a simple light curve program such as EBOP, which

simulates the components of an EB using biaxial ellipsoids. As EBOP can also be

restricted to spherical objects, so systematic effects arising from the assumption of

a physical shape can be easily quantified. The EBOP model has been shown to work

well for transiting extrasolar planetary systems by a number of authors, including

Giménez (2006), Wilson et al. (2006), Shporer et al. (2007), and Southworth et al.

(2007b). Southworth (2008) provided homogeneous studies of 14 well-observed

transiting extrasolar planets, among them also HD 209458, based on a modified

version of EBOP. His study focused on the effect of limb darkening on the accuracy

and error limits of the solution. To include more detailed physics of the star, the WD

program is an appropriate candidate. As it uses Roche geometry, it very accurately

reproduces distorted surfaces if the Roche surface grid are carefully generated. In

addition it can model the star’s radiation properly.

5.4.3.3 Representing Planets in the WD Model

In this section we review a few literature cases in which a star–planet system has

been modeled with EB models and the WD program, see also Milone et al. (2004a).

The first problem to be resolved in modeling planetary transits using EB models is to

find an appropriate discretization or resolution of time, or equivalently, phase. The

relative sizes of the transiting and transited object determine the scale. For the transit

of a Jupiter-sized object across the disk of the Sun, 0.1 is a good approximation to

rp. Adequate phase sampling in such a case requires longitudinal grid elements of

order 30. This is quite similar to that usually used in stellar eclipse modeling, and

holds for both occultation and transit eclipses. One may model the transit of a white

dwarf, with characteristic radius of the Earth, across the disk of a red dwarf (i.e., a

red main sequence star), with characteristic radius of, say, 0.5R⊙, appropriate for an

M2V star. But in this case, one would need a resolution of 0.006 or about 165 grid

elements to be able to sample ingress and egress adequately. The occultation eclipse

is not observable in the visible (we will discuss the infrared situation in the next

section), so the transit eclipse alone must determine the period and the geometry

sufficiently well to yield the planet’s parameters.

The second problem arises from the relative surface brightnesses. In visible light

the contrast between the stellar surface brightness of the two objects determines the

relative eclipse depths. In the case of a white dwarf transiting a red dwarf, visible

light curves may not even register a dip, because the eclipsed surface brightness

of the red star may be too low. In such a case, infrared photometry is necessary to

observe a sufficient depth for analysis. In the case of a cataclysmic variable (CV),

the red star has filled its inner lobe so the infrared light curve may reveal sufficient

curvature in the light curve to demonstrate the shape of the cool secondary. But in

this case, the occultation eclipse will be very deep in the visible. For the transit of

a much cooler star across a solar-type star, however, the cooler star’s contribution
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to system light may yield a negligible dip at primary minimum. This is the case for

planetary transits, and for most purposes, at least for optical light curves, we may

assume zero surface brightness of the planet during the transit.

5.4.3.4 HD 209458b: Transit Analysis of an ExtraSolar Planet

This planet was the first extrasolar planet to have its radius determined from transit

analysis and the first to have had a constituent of its atmosphere detected. The HST

observations were so precise that both extensive rings and satellites of this object can

be ruled out (Brown et al. 2004). The HST and previous light curves were analyzed

with new light curve analysis programs in use at the University of Calgary. Williams

(2001) assumed the values M/M⊙ = 1.09±0.01 and R/R⊙ = 1.145±0.003 for the

star HD 209458a, and a = 10.06R⊙. From a simultaneous analysis of transit light

curve (Fig. 5.3) and radial velocity curve (Fig. 5.4) he derived the following best-fit

parameters: Mp/MJ = 0.69 ± 0.01, Rp/RJ = 1.37 ± 0.01, P/days = 3.52478 ±
0.00005, E0 = 2451254.587 ± 0.002, e = 0.0000 ± 0.0001, and i = 86.54 ± 0.02.

These results were more precise than previous published results.

The radius of this planet is larger than expected for a planet less massive than

Jupiter because of its proximity to the star, which increases its equilibrium temper-

ature and therefore the pressure scale height of the atmosphere:

H =
kt

µmu g
, (5.4.3)
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Fig. 5.3 This figure, Fig. 4.3 in Williams (2001), shows the HST transit light curve and best-fit

model obtained by Williams. Courtesy Mike D. Williams, University of Calgary, Calgary, AB,

Canada
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Fig. 5.4 This figure, Fig. 4.1 in Williams (2001), shows the radial velocity curve of HD 209458 and

best-fit model obtained by Williams. Courtesy Mike D. Williams, University of Calgary, Calgary,

AB, Canada

where H is the pressure scale height, k is the Boltzmann constant, µ is the mean

molecular weight, mu is the atomic mass unit, basically the mass of the proton, and

g is the acceleration of gravity.

The mean density of HD 209458b from Williams’s work is found to be 330 ± 10

kg/m3, less than half that of Saturn. The atmosphere is clearly distended and a rea-

sonable explanation has been advanced to explain it. Observations (Vidal-Madjar

et al. 2004) suggest the existence of a trailing cloud of hydrogen, carbon, and oxy-

gen, indicating hydrodynamic loss of atmosphere from this planet. If the observa-

tions are fully confirmed, nothing could better illustrate the dynamic character of

such a planet. These authors suggest that planets older and closer to their parent

stars than HD 209458b may have been deprived of their atmospheric envelopes

and become a new class of planets (chthonian). The confirmed OGLE planets do

constitute a closer and therefore hotter class of hot Jupiters, but their sizes appear

to be smaller than that of HD 209458b. The system TrES-1 similarly appears to be

smaller. Recent planetary modeling also suggests that HD 209458b is anomalously

large, but it is not alone. It is being joined by a growing number of low-density

extrasolar planets. HAT P-1b and WASP-1b, from two of the many surveys now

being undertaken, are two examples.

5.4.3.5 The OGLE-TR-56 Star Planet System

Vaccaro & Van Hamme (2005) simultaneously fitted light and velocity data for the

star–planet system OGLE-TR-56 with the WD program. They solved for orbital and
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planet parameters, along with the ephemeris using all currently available observa-

tional data: one photometric light curve and the star’s radial velocity curve. The

mass, Ms , and temperature, T1, for the star (OGLE-TR-56a) were kept fixed at

values derived from spectral characteristics and stellar evolutionary tracks (Cody &

Sasselov, 2002; Sasselov, 2003), namely Ms = 1.04M⊙ and T1 = 5900 K. A log-

arithmic limb-darkening law was adopted with coefficients x , y from Van Hamme

(1993). The star’s rotation rate F1 was set to 0.06 corresponding to a rotational

period of 20 days (Sasselov, 2003).

In the WD program, adjustable radial velocity-related parameters are the semi-

major axis, a, systemic velocity, Vγ , and mass ratio, q. As in a single-lined binary,

the mass ratio q cannot be determined from the velocity curve, they proceeded

as follows: From an initially assumed planetary mass, Mp, they adopted q =
Mp/Ms . An initial value of the semi-major axis, a, follows from known period,

P , and Kepler’s third law

P2 =
4π2a3

GMs(1 + q)
(5.4.4)

follow q and the planet’s mass Mp = qMs .

Time instead of phase was the independent variable, and ephemeris parameters

(reference epoch T0, period P , and possibly rate of period change dP/dt) were fit-

ted together with the other parameters (inclination i , a and systemic velocity, Vγ ,

Roche potentials, Ω1 and Ω2). Note that q was kept fixed. The result of this fit were

values for a, i , and other adjustable parameters consistent with the fixed mass ratio.

However, a, P , and q in Kepler’s law (5.4.4) could lead to a different stellar mass,

Ms . Therefore, for given Ms from (5.4.4) a new mass ratio is computed from

q =
4π2a3

GMs

1

P2
− 1. (5.4.5)

The data fitting procedure was repeated until the triple (a, P, q,Ms) converged to

values yielding a stellar mass from (5.4.4) consistent with the pregiven value of Ms .

Their results are in good agreement with parameters obtained by other authors

but have significantly smaller errors for i and Vγ , slightly smaller errors for period,

and larger errors for Ms and Mp. Especially, the value and error of the stellar

radius, found by fitting the light curve data, agree very well with the value found by

other authors who fit evolutionary tracks. The authors found no significant change

in orbital period that may be due to orbital decay.

5.5 Selected Bibliography

Utilia et delectabilia ( useful and delightful)

This section is intended to guide the reader to recommended books or articles related

to the advanced modeling topics covered in this chapter.



258 5 Advanced Topics and Techniques

• Semi-detached Binaries as Probes of the Local Group by Wilson (2004) – a

review article on the role of EBs in distance estimation.

• The proceedings of IAU Symposium No. 240 (2006) under the title Binary Stars

as Critical Tools & Tests in Contemporary Astrophysics edited by Hartkopf et al.

(2007) provide an excellent overview on state-of-the and ongoing activities in

close binary research. They review major advances in instrumentations and tech-

niques, and new observing techniques and reduction methods including surveys.

• Seager & Mallén-Ornelas (2003) and Kipping (2008) solved a set of nonlinear

equations to obtain the parameter of star–planet systems with spherical stars and

planets. These papers could serve as a starting point to become familiar with the

geometry of the problem.
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Chapter 6

Light Curve Models and Software

This chapter describes the characteristics and details of implementation for the

major light curve models and programs. The purpose is to provide an overview

of existing capabilities.

6.1 Distinction Between Models and Programs

Utile dulci (The useful with the agreeable)

Horaz (65–8 B.C.), ars poetica, 343

In the context of light curve analysis, a model (see footnote on page 77 also) is a set

of mathematical and physical relations which enables the mapping of a set of EB

parameters x to a light curve Lcal for a given set of phase values. A light curve code

or program is the software implementation of such a model. The output is typically

in digital form suitable for graphic visualization of both light curves and a represen-

tation of the binary model itself. While a model is abstract and generic and relates a

stellar system’s physical attributes (gravitational potential, eclipse conditions, etc.),

the program requires a choice of coordinates, integration or summation procedures,

and matrix inversion routines. A light curve program’s most important ingredient is

the physical model. The degree of realism of the model fundamentally determines

the reliability of the predicted light curve. However, the program itself constrains

the accuracy of the result as well as the efficiency with which the result is reached.

Therefore, it seems reasonable that those who develop light curve models maintain

close contact with those who write and upgrade the program. In the past, model and

program developer often have been one and the same person. This may change in

the future, as we note in Sect. 7.3. The “models versus programs” topic is discussed

more extensively in Wilson (1994).

A desirable feature of a light curve program is an ability to incorporate addi-

tional astrophysics. There is a continuing need to improve the model physics, as we

become more aware of the observational properties of stars. This is also very impor-

tant when we use the light curve program as a diagnostic tool and thereby derive

astrophysical properties of both system and component stars from the modeling

process itself. This requires the light curve software to be structurally well defined

but especially expandable, as we describe in Chap. 7.

J. Kallrath, E.F. Milone, Eclipsing Binary Stars: Modeling and Analysis, Astronomy

and Astrophysics Library, DOI 10.1007/978-1-4419-0699-1 6,
C© Springer Science+Business Media, LLC 2009
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Some (EBOP, LIGHT2, PGA-E,WD) of the most frequently used light curve

modeling programs are reviewed by their authors in Milone (1993). Others, such as

the Russell–Merrill procedure and Kopal’s frequency domain method, are dealt with

extensively in the literature. Thus, we only give a brief overview here. In McNally

(1991, p. 485) and in Milone (1993), tables are given which list the percentage use

of different light curve models. We make the distinction between basic geometric

models in which orbit determination is the primary goal, and more elaborate models

in which the radiative properties of the stars are explored also.

We begin with the mature treatment by Russell & Merrill (1952), an evolved

version of the model that Russell began developing at the beginning of the twentieth

century. We may call this work the Genesis of light curve modeling – an appropriate

phrase since Russell was the first to travel the “royal road” of eclipses. It is also

the model with the simplest geometry and is certainly not “state of the art.” But

we cover it in this chapter for historical reasons because many light curve solutions

were determined with this method and because, even now, it is useful in providing

basic views of the geometric properties of many binary star systems. Additional

details of the method and the procedures used to find solutions and compute light

curves are given in Appendix D.1.

6.2 Synthetic Light Curve Models

Reculer pur mieux sauter (To go back in order to take a better leap)

6.2.1 The Russell–Merrill Model and Technique

In limine (On the threshold; at the beginning)

The basic assumption in this model is that stars are spherical or, in successor ver-

sions, ellipsoidal in shape. The original exposition and the notation for the Russell–

Merrill model are given in a series of papers by Russell (1912a, b) and by Russell

& Shapley (1912a, b). The technique is best described in Russell & Merrill (1952).

Light curves of stars which show evidence of tidal distortion and reflection are trans-

formed by the rectification process into those of spherical stars. The geometrical

model for distorted stars is a tri-axial ellipsoid. The physics is limited to Planck-

ian radiation, linear limb-darkening law (3.2.23), gravity brightening, and a simple

treatment of the reflection effect. In principle, only systems that conform to the

“rectifiable model” are to be treated. In practice, it is not always obvious whether a

given binary conforms, except, of course, that some systems may not yield solutions.

The basic Russell model was implemented not by a computer program but by

manual techniques, augmented in the 1950s and 1960s by computation of “inter-

mediate” or final orbit least-squares techniques [see, e.g., Irwin (1962)]. Manual

methods continued to be used until recently (although at a declining rate since

the 1970s) because of simplicity, and where computing power was unavailable,
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for convenience. The value of the basic technique is that we can obtain and test

a solution, with a relatively straightforward procedure, and with the help of either

a set of tables or nomograms. In the precomputer era, this method was the most

elaborated and powerful technique available to EB astronomers. Nowadays, the use

of tables and nomograms is decreasing. Another disadvantage of the Russell–Merrill

technique is that it allows for only limited augmentation of its astrophysical content.

Why do we describe it so extensively, then, here, and in Appendix D.1? Even though

the basic method is less and less favored by light curve modelers, it still may be

in use, and it was the method of choice for most of the twentieth century. In the

early 1970s, there were computerized versions [Jurkevich (1970), Proctor & Linnell

(1972)] of the Russell–Merrill approach available but they are no longer maintained.

Although the programs EBOP and WINK cannot be considered as successor codes

of the Russell–Merrill approach, the early versions of these codes benefited from

ideas in the Russell–Merrill model. In order to be able to evaluate the results of light

curve analyses carried out with this and similar methods, it may help modelers to be

familiar with both its concepts and practices, even if most of those solutions have

been redone, or at least retried.

The Russell–Merrill method uses the geometric phase introduced in Sect. 3.1.2.

One of its basic ingredients is the function α = α(δ, k, x1, x2), defining the light

lost at any phase compared to that lost at internal tangency (i.e., at second or third

contact). As shown in Fig. 6.1, the quantity α depends on the quantities introduced

in Sect. 3.1.3: The projected separation of centers δ, the ratio of radii k = rs/rg ,

and the assumed limb-darkening coefficients xg and xs .1 The light curve is assumed

to be in units of normalized flux, such that2 ℓ = Lg + Ls = 1 at maximum light,

which is assumed to be flat. For total eclipses, it is possible to derive the ratio of the

components’ luminosities from the light levels during total phases. For given Lg the

light loss of an eclipsed star is then found in a table containing a set of empirical α

values for observations of a given minimum. Equation (3.1.10) would then provide,

for different values during eclipse, a set of equations of conditions for the radius

of the eclipsed star and the inclination. The following discussion is an abbreviated

version of Russell & Merrill’s (1952) description of the procedure.

In general, the light observed at any phase may be written as

ℓoc = 1 − Lsτ
ocαoc = 1 − Lsα

oc (6.2.1)

during an occultation eclipse, and

ℓtr = 1 − Lgτα
tr (6.2.2)

1 Russell and Merrill refer to the components as “greater” and “smaller” stars, abbreviated g and

s, respectively.
2 Note that this Russell notation equates light and luminosity and is thus an inconsistency in

theory. This problem did not cause trouble in the old models because ℓ is proportional to L for

spherical stars.
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δ

rg
rs

p

αφ1 φ2

Fig. 6.1 The relation among δ/rg , k = rs/rg , and α. The geometrical depth p = (δ − rg)/rs

represents the degree of overlap of the disks. The hatched area α is the same independent of

the particular star covered; adapted from figure 134 in Binnendijk (1960, p. 266). Note that the

meaning of α here is slightly different from the α used in the Russell–Merrill model, where it is

defined as a ratio of light lost at any phase to that lost at internal tangency. Thus the hatched area

is τα, if expressed as a unitless fraction of the eclipsed star’s disk area

during a transit eclipse. Here, τ is the ratio of the light lost at internal tangency to

that of the entire eclipsed star:

α =
1 − ℓ

1 − ℓint

, τ =
1 − ℓint

Lg

. (6.2.3)

For an occultation, τ oc =
1 − ℓint

Ls

= 1, whence the right-hand side of (6.2.1):

ℓoc = 1 − Lsα
oc. (6.2.4)

To study complete eclipses, Russell and Merrill defined a conveniently normalized

photometric measure of projected separation, ψ , a function of k, α, and the limb-

darkening coefficient, x :

ψ(x, k, α) :=
sin2 θ − sin2 θ1

sin2 θ1 − sin2 θ2

=
δ2

1 − δ2

δ2
2 − δ2

1

, (6.2.5)

where θ1 corresponds to one fixed α on a branch of the minimum and θ2 to another;

Russell & Merrill’s (1952) prescription was to look up θ1 at α1 = 0.6, and θ2 at α2 =
0.9, with hand-drawn curves through the data of the minimum for interpolation.

Defining and computing quantities A = sin2 θ1, B = sin2 θ1 − sin2 θ2, (6.2.5) may

be written as
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sin2 θ = A + Bψ, ψ =
sin2 θ − A

B
. (6.2.6)

For a range of values of α, θ is read from the plot, and ψ is computed. For each

value of α, a value of ψ is found, so that a table can be constructed. The ratio of

radii, k, can be found by interpolation in tables for ψoc and for ψ tr, appropriate

for occultation and transit eclipses, respectively. It may not be known in advance

whether a given eclipse is an occultation or a transit, and both sets of tables can

be consulted. If total, the occultation eclipse is flat-bottomed and in the case of EA

light curves tend to be the deeper eclipse, whereas the bottom of the transit eclipse

is usually gently curved because of the limb darkening of the larger star.

If the external contact (first or fourth contact) phase can be identified, then from

(3.1.10),

sin2 θext = A + Bψ(x, k, α = 0) =
r2

g

sin2 i
(1 + k)2 − cot2 i (6.2.7)

and, from the phase of internal contact,

sin2 θint = A + Bψ(x, k, α = 1) =
r2

g

sin2 i
(1 − k)2 − cot2 i, (6.2.8)

and from these two equations, both rg and i can be found. The equations are inde-

pendent of whether the eclipse is a transit or an occultation, but we must consult

different tables for the two cases.

In the partial eclipse case, both the shape and depth must be evaluated; for com-

plete eclipses information from either the shapes or depths is sufficient in principle

(of course, in this case also it is safer to use both kinds of information). A new

variable n is defined in terms of the relative light lost in the minimum, α, and that at

mid-eclipse, α0, so that

n =
α

α0

=
1 − ℓ

1 − ℓ0

. (6.2.9)

This is the measured relative light loss fraction. The predicted fraction will be dif-

ferent for occultations and transits; both hypotheses must be tried in any solution

unless good spectral information is available. Often one or the other can easily be

excluded. A function χ is defined such that

χ (x, k, α0, n) =
sin2 θ (n)

sin2 θ (n = 1
2
)
. (6.2.10)

The procedure is that n is calculated for a range of values of ℓ on both descending

and ascending branches (often folded by reflection about an axis through the mid-

minimum point). Initially, neither α0 nor α is known. The corresponding phase,
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θ , is then read from the light curve, and χ is computed. For a given χ , a tabular

relationship between k and α0 can be produced from χ tables. Several such curves,

generated by selecting a new n, computing the corresponding χ , and returning to

the tables to find the new set of values of (k, α0), will intersect in a region defining

the “best” values of k and α0. The tables for both χ tr and χoc must be tested because

the relationships will be different for the occultation and transit cases. These provide

the “shape relations” for partial eclipses.

The “depth relations” provide indispensable information about the solution in

partial eclipse cases. To discuss these, Russell introduced the q function

q := τ
αtr

αoc
=

1 − ℓtr

Lg

1 − ℓoc

Ls

=
ταtr + ℓtr − 1

1 − ℓoc
, (6.2.11)

where the last equivalence results from the condition that Lg + Ls = 1, the equiva-

lence that

αoc = 1 − ℓoc +
1 − ℓtr

q
, (6.2.12)

and substitution of equations (6.2.1) and (6.2.2). The evaluation of q thus depends

on the availability of data from both eclipses. Again, both hypotheses about the

eclipses must be tested: First, one of the eclipses is assumed to be an occultation;

the computation is done, the same eclipse is then assumed to be a transit, and the

computation redone. Russell and Merrill recommended as a first assumption that the

occultation is the deeper eclipse. After q is computed, α0 is computed from equation

(6.2.12), and the table of k(xg, xs, α
oc, q) is used to establish a table of relations

between k and α0. The elements are then computed, and from these a theoretical

light curve is constructed and plotted against the observations. At this point, if the

observations were good enough, improvements could be made.

The analysis depends on the assumption that the stars are well represented by

the spherical model. Therefore, in order to use the Russell–Merrill method, the

light curve first must be transformed into what it would be if the stars were spher-

ical. This process is called rectification, and in principle can be applied only to

“rectifiable cases.” These rectifiable stars are similar prolate ellipsoids with limb-

and gravity-darkening, and “gray-body” radiators (i.e., not perfectly efficient black-

bodies). The contributions due to “ellipticity” (called elsewhere the “oblateness

effect”), gravity and limb-darkening, and “reflection” are computed theoretically

and applied semi-empirically, since they will depend on the surface brightnesses,

sizes, and separations of the components. The rotation of a prolate ellipsoid could

cause a sinusoidal variation of the surface area, and thus of the brightness. If stars

were true ellipsoids, such a correction would be exact (with additional corrections

for expected limb darkening and gravity darkening). However, stars are not ellip-

soids. Russell and Merrill recognized that the ellipsoidal assumption was only an
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approximation to the true shape of a binary star component. It was a question of the

adequacy of the approximation weighed against the tedium of exact calculation – a

formidable and daunting task in the early 1950s, and a difficult one, in any case, until

the 1970s.

Rectification begins with a Fourier analysis of the light curve outside of eclipse.

The representation is of the following kind:

ℓ(θ ) =
n
∑

m=0

[Am cos mθ + Bm sin mθ ], (6.2.13)

where n was usually taken as 2 although some practitioners used as many signif-

icant terms as necessary to fit the data satisfactorily. Any term other than A0, A1,

and A2 was considered “unexplained” (if the minima are centered on phases 0

;and 0.5 – otherwise such terms are generated even if there are no asymmetries

in the light curve) and had to be dealt with in an arbitrary way. The A1-term,

which peaks at θ = 0◦ and reaches minimum at 180◦, and the A2-term, which

peaks at 0◦ and 180◦ and reaches minimum at 90◦ and 270◦, are the contributors

to the reflection effect. The cos 2θ term may be at least partially due to what has

been called the “oblateness effect,” the effect of tidal distortion on the light curves.

The presence of a B1-term indicates a difference between the maxima of the light

curve – the O’Connell effect [see page 6, footnote 37 on page 135, and Davidge &

Milone (1984)], – and higher-order B-terms indicate other light curve perturbations.

Russell and Merrill recognized that it was “against human nature” to defer light

curve analysis data solely because of unexplained asymmetries, and so, to permit

analysis, they provided a general prescription for full rectification (Russell & Merrill

1952, p. 53).

Further details of the Russell–Merrill method can be found in Appendix D.1.

Here we merely cite one example of the utility of the method applied to an appar-

ently intractable – but rectifiable – problem.

As an example of the Russell–Merrill approach, we illustrate the method with

the plot of the depth and shape relations for the secondary (occultation) eclipse

of the system RT Lacertae (see Fig. 6.2). Although this is not an ideal system for

application of the Russell–Merrill technique (in fact its many complications make

it a truly difficult challenge for any light curve analysis program), nonetheless this

technique at least permits a solution, and so RT Lac provides a suitable example

of the usefulness, even today, of the Russell–Merrill technique. Precisely because

of the complications in this binary, the Russell–Merrill method succeeds at least as

well as other methods, and thereby demonstrates the continued usefulness of the

method. The binary is a 5.d07-period system, with a sinusoidal wave of period ∼ 10

years. The primary minimum is more negative (suggesting higher temperature for

the eclipsing star) in both (B-V) and (U-B) color indices. Hα, Ca II H and K, and

far-ultraviolet spectroscopy reveal signatures of gas streams associated with Algol

systems and thus mass exchange [cf. Huenemoerder (1985); Huenemoerder & Bar-

den (1986a, b)]. Infrared photometry indicates the presence of a phase-dependent
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Fig. 6.2 Geometry of the secondary eclipse of RT Lacertae. This figure [taken from Fig. 3 in

Milone (1977, p. 1003)], shows the shape and depth relations of the secondary eclipse, i.e., the

interception of the χ functions and the depth line for the fully rectified minimum

infrared excess. RT Lac seems to be both an RS CVn-type variable and also what

Plavec (1980) called a “W Serpentis” type3 variable, where a hot spot on the accre-

tion disk of one of the stars excites far-ultraviolet emission. Huenemoerder (1988)

discovered just such variable ultraviolet emission in RT Lac. If sufficiently thick,

an accretion disk can resemble a shroud enveloping the hotter component, thereby

dimming its light but not necessarily altering its color significantly. In the Russell–

Merrill analysis by Milone (1976, 1977), both eclipses are shown to be occulta-

tion eclipses, because the envelope around the hotter star occults light but does not

radiate it. This kind of model cannot be explored with most of the modern light

curve programs – at present. Yet, because the Russell model permits the primary

and secondary eclipses to be treated independently, the apparent paradoxes of the

system can be resolved, at least to a degree.

The fitted optical and infrared light curves are shown in Fig. 6.3 . The Milone

(1976, 1977) solution is not unique, however. Eaton & Hall (1979) analyzed the

system under the assumption that the light curve and color index anomalies can be

explained by fortuitous combinations of large numbers of small spot regions. Such

a model agrees with the results of a study by Crawford (1992), who found that a

3 According to Wilson (1989), these stars can be described as a group of long-period Algol-

like mass-transferring binaries characterized by very substantial disks around the more massive

components, strange and poorly repeating light curves, prominent optical emission lines, and large

secular period changes.
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particular spectroscopic feature is better matched with a spot model, at a particular

epoch of observations. However, the analysis still fails to account for all the light

curve features, despite the increase in the number of parameter-fitting elements.

Fig. 6.3 The infrared light and color curves of RT Lacertae. This figure [taken from Milone (1976,

p. 101, Fig. 3)] shows the differential J , H , and K light curves of RT Lacertae relative to the star

BD +43◦ 4108

In summary, it is quite likely that the components of RT Lac are spotted, but

the presence of a transient stream and a thick disk in the system is also likely. It is

probable that these various features may alternate in importance with epoch.

For those readers who are interested in the nature of such a curious system, a

description of the investigation history and the properties of RT Lac can be found

in Milone (2002). Lanza et al. (2002) carried out spot modeling on a long series of

synoptic observations by Turkish observers. Popper (1991, 1992) identified it as a

cool Algol (an Algol system in which both components are relatively cool and thus

are evolving on similar timescales; physically, the M −Teff relation for these objects

is opposite that of normal Algols). Finally, its evolutionary state has been discussed

and compared to those of other such systems by Eggleton & Kiseleva-Eggleton

(2002).

6.2.2 The “Eclipsing Binary Orbit Program” EBOP

Etzel’s (1981) Fortran program EBOP is based on the Nelson & Davis (1972)

spheroidal model called the NDE model. It is an efficient software for the analysis
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of detached binary systems with minimal shape distortion due to proximity effects.
4 It is not appropriate for modeling significantly deformed components. The NDE

model and its assumptions are close to those in the rectification model by Russell &

Merrill (1952). However, as EBOP computes light curves directly, it is much more

flexible and it provides options to implement more physics. It is not necessary to

rectify for proximity effects. Nevertheless, the model is purposely tied to light curve

defined geometrical parameters rather than “astrophysical” (Etzel 1993).

EBOP makes use of spheroidal stars moving in circular or eccentric orbits; here

we explain only the circular case. It uses the linear limb-darkening law (3.2.23). The

eclipsed area, a, and the light loss during an eclipse is integrated semi-analytically

using some basic formulas for circular disks, rings, and sectors. The stellar disk

of the covered star is partitioned into concentric rings of radius r sinϑ and width

∆γ = r cosϑdϑ , where ϑ is the angular distance to the disk center. Integration over

the entire disk

π

∫

I (ϑ)ds ′
∫

ds ′ =
1

r2

∫ π/2

0

I (ϑ)2πr sinϑr cosϑdϑ =
∫ π/2

0

I (ϑ) cosϑdϑ = F

(6.2.14)

yields the averaged flux F . The accuracy of this “eclipse function” depends on the

width, ∆γ, of the rings and the accuracy of the computations involved. Choosing

∆γ = 5◦ yields a relative error of 10−4 which is usually sufficient. The advantage of

this semi-analytic integration procedure is its efficiency. It is faster and more accu-

rate than the standard procedure based on elliptic integrals or purely numerical pro-

cedures (two-dimensional Gauß quadrature or direct summation over a stellar grid).

The major parameters to compute light curves of spherical stars with EBOP are

• relative surface brightness at the disk center of the secondary component, Js ;

• relative radius rp of the primary component;

• ratio k = rs/rp of the radii rs and rp of the secondary and primary compo-

nents, respectively (note that these radius definitions differ from those of Russell–

Merrill);

• inclination i ; and

• limb-darkening coefficients x p, xs ;

and the associated parameters:

• Eccentric orbit characterization (e cosΩ , e sinΩ);

• third light L3 = l − L p − Ls ;

• ephemeris phase correction ∆φ;

• normalization of the light curve mq ; and

• size of the integration rings ∆γ.

4 Here we discuss only the program’s application to spherical stars. For the extensions including

slightly deformed components modeled as ellipsoids, the reader is referred to Etzel (1981); the

implementation is based on the evaluation of oblateness as described in Binnendijk (1974) and

requires also the mass ratio.
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It should be stressed that in EBOP the central surface brightness, Js, is used and not

the stellar temperature. This is inherited from the Russell–Merrill method. Note that

Js is the relative surface brightness at the disk center of star 2 because the value of

Jp is defined as unity. In the NDE spheroidal star model, Js is directly connected to

the ratio of depths of minima, whereas temperature has only an indirect influence

on the light curve – one that is related to the physical model. The advantage of Js

over effective temperatures or the ratio of bolometric luminosities is that, to a large

degree, it can be determined empirically from the light curve whereas stellar tem-

peratures are related less directly to the light curve, through the many assumptions

of the radiative model. Therefore, for checking as well as comparative purposes,

computation of this quantity in other light curve models is desirable.

Based on the linear limb-darkening law (3.2.23) in EBOP, the unnormalized

luminosities5 of each spherical component follow as

ls = π Jsr
2
s

[

1 −
xs

3

]

, lp = π Jpr2
p

[

1 −
x p

3

]

, (6.2.15)

according to (E.29.16). The luminosity ratio

ls

lp

= k2 Js

1 − xs/3

1 − x p/3
(6.2.16)

depends only on the ratio of radii, ratio of surface brightness, and a correction term

for the limb darkening. The relative luminosities

Ls =
ls

ls + lp

, L p =
lp

ls + lp

(6.2.17)

in normalized units are used in the absence of third light. If third light has to be

considered, EBOP uses a modified definition for the luminosities and imposes the

normalization

Ls + L p + L3 = 1. (6.2.18)

EBOP does not support direct modeling of the proximity effects caused by distortion

of the components and the reflection effect. However, terms for some perturbations,

such as oblateness, are considered (Etzel, 1981, pp. 114–115); they are basically

derived from Binnendijk (1960).

The perturbation terms describing the reflection effect are based on the assump-

tion of a point source (the illuminating star) that illuminates the facing stellar hemi-

sphere of the other star. Quantitatively, this is described by the simple bolometric

phase law found in Russell & Merrill (1952, p. 44) and Binnendijk (1960, p. 119):

5 NB: in the EBOP notation, ℓ and L mean something different than in the general EB literature.
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f (φ) = 0.2 + 0.4 cosφ + 0.2 cos2 φ, sx = cosφ = sin i cos θ, (6.2.19)

where cosφ is the direction cosine of the line-of-sight w.r.t. the line joining both

stars, and θ is the true phase angle calculated according to (3.1.19) or (3.1.37). The

light of the primary component varies according to

L ′
p = L p + ∆L p, ∆L p = Sp f (φ), Sp = 0.4Ap Lsr

2
p, (6.2.20)

where Sp is the contribution of the illuminated hemisphere of the primary and Ap is

the bolometric albedo introduced in Sect. 3.2.5. A similar expression holds for the

secondary component. Due to the phase shift of π , a negative cosine term occurs.

The total brightness variation caused by reflection is obtained by adding the con-

tributions of the stars. Because the contribution of the star in front is very small,

and only increases when the eclipsed area, a, becomes small, the observer sees the

brightness variation

R = ∆Ls + ∆L p − a∆Le (6.2.21)

∼= (1 − a) (∆Ls + ∆L p)

= (1 − a)
[

1
2

(

Ss + Sp

)

−
(

Ss − Sp

)

cosφ + 1
2

(

Ss + Sp

)

cos2 φ
]

,

where ∆Le is the light reflected from the eclipsed star. Obviously, the reflection

effect produces a brightness variation outside eclipse. The Fourier series representa-

tion of light variation outside eclipse generally contains the terms cosφ and cos2 φ.

According to (6.2.21), the term cosφ vanishes if the surface brightnesses Ss and Sp

are equal. In the case Ss > Sp, the effect of the cosφ term is that the brightness of

the binary system increases when approaching the secondary minimum.

In order to reproduce the brightness at quadrature (θ = 90◦), a free normalization

parameter mq is added to the least-squares problem. In a system with no significant

reflection effect, mq is identical with the luminosity corresponding to the brightness

at quadrature.

In practice, EBOP seems to be sufficiently accurate for relatively uncomplicated

detached systems with an average oblateness, ε̄ ≤ 0.04. This program was attractive

in the 1970s and 1980s because of its high integration accuracy, and a computational

time which saves a factor of 15–40 when compared with the more sophisticated

Wood (1972) WINK program. Therefore it is possible to use it for sensitivity analysis

(see Appendix B.2) of small parameter changes.

EBOP is still popular and frequently used [cf. Devor (2005), Devor & Charbon-

neau (2006a), Tamuz et al. (2006) for analyzing large number of light curves, or

Southworth (2008) studying transiting extrasolar planets]. It has been enhanced by

individual users [cf. Southworth et al. (2004a, b, c), and Southworth et al. (2007a, b)

who have incorporated the Levenberg–Marquardt algorithm (MRQMIN; Press et al.

1992, p. 678), an improved treatment of limb darkening, and extensive error analysis

techniques].
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6.2.3 The Wood Model and the WINK program

The Wood (1972) WINK program is based on the Wood (1971) model; the program is

no longer maintained, so its use is decreasing. The model assumes the components

of the binary system to be tri-axial ellipsoids. It is well suited for systems with

moderate oblateness and reflection effect. WINK computes the total flux of both

components received by the observer on Earth by integration over the visible parts

of the stars without considering eclipses at first for each phase Φ. The integrals

ℓ j (Φ) =
∫

I j cos γdσ, j = 1, 2 (6.2.22)

represent the emitted flux from component j ; I j is the local intensity according

to the limb and gravity darkening law and modified by reflection. WINK uses the

Russell–Merrill expressions (D.1.3 ) and (D.1.4) leading to

ℓ j (Φ) =
∫

I0 j

[

1 − y + y

(

g

g0

)]

(1 − x + x cos γ)
cos γ

cosβ
r sin θdθdφ. (6.2.23)

For the primary, the mid-disk intensity I01 is normalized to I01 = 1 which leads to

I02 = J2/J1 for the secondary component, where J1 and J2 are the (central) surface

brightnesses of the stars. The numerical integration uses the Gauß quadrature. In

most cases, a 16 by 16 point integration is sufficient and leads to an accuracy of

0.0003 light units for spherical stars.

The total light ℓ of the system is computed by adding the light of the components

and subtracting the light lost during eclipse

ℓ(Φ) = ℓ1(Φ) + ℓ2(Φ) − ℓE (Φ). (6.2.24)

Light is normalized to quarter phase, i.e., ℓ(Φ = 0.25) = 1.

6.3 Physical Models: Roche Geometry Based Programs

Per angusta ad augusta (Through trials and tribulations

to honor and glory)

In the early 1970s, the Roche model became the foundation for most of the light

curve models and programs used thereafter. In this section we will describe, in

alphabetical order, only a selection of the most frequently used models. There are

others, e.g., that of Yamasaki (1981, 1982), which are not treated in this book but

are mentioned in a review by Wilson (1994).
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6.3.1 Binnendijk’s Model

Binnendijk’s model was coded by Nagy (1975) and lead to a synthetic light curve

program for contact binaries, based on the Roche model with cylindrical coordi-

nates. A full discussion is found in Binnendijk (1977), which contains also a good

exposition of the physical principles behind the models and a fine summary of the

synthetic light curve programs to the end of 1975. So, for example, the differences

between the forms of the potential, which were (and still are) widely used, are well

described.

Nagy and Binnendijk used step sizes of 0.04 along the axis joining the compo-

nents, in units of the separation of centers, and a 5◦ angle about this axis. Surface

brightness was computed by a method based on Mochnacki & Doughty (1972a).

Binnendijk stressed the importance of surface brightness, rather than effective tem-

perature as a radiation parameter, an appropriate emphasis at a time when stellar

atmospheres were just beginning to be well characterized. Binnendijk emphasized

the importance of radial velocity, line profile, and spectrophotometric data, and

therefore foresaw many of the modern advances that have been made since.

6.3.2 Hadrava’s Program FOTEL

FOTEL (Hadrava 1997, 2004) is a code developed at the Ondřejov observatory by

Hadrava for the simultaneous solution of light curves and radial-velocity curves

of EBs. It uses (in its version from 1995) a very simplified model of the physics6

and geometry for the flux calculations, but it has some options rarely available in

more physically sophisticated codes. It is designed to handle a large number of

original observational data (typically up to several thousand points) from up to 30

data sets of radial velocities and different passband magnitudes and is designed to

run efficiently on a PC. The zero point for each data set is determined by fitting, i.e.,

the program corrects for systematic instrumental shifts or for different comparison

stars. The mean quadratic error for each data set is calculated and the weight of

the set can be chosen according to its estimated reliability. The code can take into

account a third body or component including observations of its radial velocities

and the corresponding light-time effect. Secular changes of several parameters (e.g.

, the periastron advance, change of period, or amplitude of radial velocities) can be

fitted. An option is also included to look for a change of radius (and volume) due to

the variations of tidal force in an eccentric orbit. The code uses a Simplex method

(for up to 10 parameters in one run) combined with a direct least-squares solution of

multiplicative parameters (i.e., K-velocity and zero points of data sets). Errors and

cross-correlations of all these fitted parameters are also calculated.

6 The most recent version, FOTEL 3, allows the user to choose between the approximation of stellar

shapes by triaxial ellipsoids (which is faster and usually satisfactory) and by Roche equipotentials

(which is more accurate).
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6.3.3 Hill’s Model

The program LIGHT2 [Hill (1979), Hill & Rucinski (1993)] is the result of mat-

ing Hill’s previous modeling program called LIGHT, which combined the Roche

model with Wood’s (1971, 1972) Gauß–Legendre quadrature scheme, and Rucin-

ski’s WUMA3 (see Sect. 6.3.5) model which was derived from Lucy (1968). It

achieves an accurate representation of the system brightness while dealing with

horizons and eclipses. The LIGHT2 program has the following characteristics:

• Roche model;

• blackbody/semi-empirical hybrid of calculated blackbody, color-index based,

and theoretical atmosphere fluxes;

• irradiation computed in sectors and rings [as per Hutchings (1968)];

• differential corrections via CURFIT (Bevington 1969) based on the Marquardt

method;

• multiple (≤ 10), elliptical spot structures; location and ∆T may be unknowns;

• line profiles are calculated.

The program itself uses a command system of keywords with defaults and is avail-

able to potential users. The integration scheme for LIGHT is based on the Gauß–

Legendre method and that of WUMA3 on Gauß–Legendre–Chebyshev quadrature.

Improvements by Wade & Rucinski (1985) have involved limb darkening based on

Kurucz (1979) stellar atmosphere models , reference to a line profile database for

early-type stars, and use of the Simplex algorithm for uniqueness tests.

The line-profile analysis tool is very powerful and has provided much more

precise determinations of masses than has hitherto been possible. See Holmgren

(1988) for several examples, and Hill et al. (1990) for an excellent demonstration

of how the program can uncover the source of system variations (e.g., movement of

spots caused by differential rotation or asynchronous rotation) through line profile

analysis.

Among unique features is the option to model elliptical spot regions. Although

this may well be an improvement over conventional circular spots of all other

light curve modeling codes, elliptical spots require more free parameters and thus,

according to Sect. 3.4.2, may lead to overparameterization. Semi-empirical stel-

lar atmospheres are used to simulate stellar fluxes. For a more complete review of

LIGHT2 and its current capabilities see Hill & Rucinski (1993) .

6.3.4 Linnell’s Model

Linnell’s model as described in Linnell (1984, 1993) is also based on Roche geom-

etry. The initial 1984 version assumed circular orbits, but in the current version, this

has been generalized to include eccentric orbits. The 1984 version required the input

data specifying the photospheric potentials to be in physical units. The purpose was

to permit some model other than the Roche model (such as a polytropic model) to

be used; this was effected by an input switch to program PGA that computes the
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shapes and surfaces of the stars. A built-in alternative assumes a spherical model

and permits testing of integration accuracy.

To begin the computations, the program CALPT accepts dimensionless Roche

potentials and calculates the corresponding physical potentials. A component’s

rotation may be nonsynchronous. The software package consists of a series of

programs. PGA defines the geometric properties of the photospheres, including

direction cosines and values of photospheric grid radii, gravity values, and related

quantities. PGB accepts an orbital inclination and either a single orbital longitude or

an array of them. It projects the components onto the plane of the sky and fits an

array of overlapping parabolas to the horizon points of each component. These quan-

tities are used in turn to calculate shadow boundaries on a given component during

an eclipse. PGB determines direction cosines for the line-of-sight to the observer and

calculates the zenith distance and its cosine, for that line-of-sight, at all photospheric

grid points. PGC determines the radiation characteristics of each component. The

program interfaces with an external data file for evaluation of limb-darkening coef-

ficients. PGC calculates linear or quadratic limb-darkening coefficients appropriate

to each grid point by fast interpolation in an external file tabulated in (λ, g, T ). The

data file reference is passed to PGC by name, permitting easy change to an updated

table of limb-darkening coefficients. The external file of limb-darkening coefficients

is based on Kurucz model atmospheres.

The effective temperature Teff is distinguished from the boundary temperature T0.

According to Chandrasekhar (1950, Chap. XI, Eq. (31)), Teff and T0 are related by

T 4
0 =

√
3

4
T 4

eff ⇔ T0 = 0.8112Teff. (6.3.1)

The temperatures stored for the grid points follow the specification of (3.2.16), but

the equation for grid point intensities uses T0. The reflection effect is modeled with

high geometric accuracy which increases not only the reliability of the results but

also the computing time.

PGC provides several alternatives for calculating continuum intensities. The least

accurate, but fastest, alternative uses the Planck law. A model atmospheres option

interfaces to external files of continuum fluxes tabulated by (λ, g, Teff), and interpo-

lates, as with limb darkening. In the midst 1990s, Linnell & Hubeny (1994) devel-

oped a much more accurate self-consistent procedure that interfaces directly to a

spectrum synthesis program. In this procedure, an accurate spectrum synthesis is

carried out. It encompasses distorted, irradiated binary star components and permits

the computation of intensities at all local grid points at the effective wavelengths

of the observational data. This information, in turn, permits determination of limb-

darkening coefficients for the same data set that represents the component spectrum.

In common with other light synthesis procedures, this approach calculates

monochromatic light curves. As noted earlier, photometric observations involve an

integration over the passband of the product of the composite stellar spectrum, the

transmission function of the Earth’s atmosphere, and the response function of the

optics and detector. Monochromatic light curves represent only an approximation
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to the photometric quantities actually obtained observationally. Buser (1978) has

studied this problem from the standpoint of single stars and has introduced the term

synthetic photometry to describe his representation of single star colors. Linnell

et al. (1998) have extended the use of synthetic spectra for binary stars to include

synthetic photometry.

PGD integrates over the components to calculate surface areas, total emergent

flux, and flux toward the observer. The program also integrates between shadow

boundaries to determine light lost by eclipse. The integration uses Simpson’s rule

rather than summations of light contributions from discrete surface elements.

SPT, originally called PGE, calculates theoretical light values at the times of

observation. It does this in the following way. Starting with PGB the program uses an

array of fiducial orbital longitudes. The output of PGD is an array of theoretical light

values at the same orbital longitudes. SPT uses an accurate nonlinear interpolation

algorithm, with the output of PGD, to calculate theoretical light values at the times

of observation. The array of fiducial longitudes is chosen so that no interpolation

is required across phases where the light derivative is discontinuous. The reason

for this arrangement is that it is possible to calculate theoretical light values for

comparison with an indefinitely large data set while preserving the basic accuracy of

the light synthesis calculation. This in turn means that it is unnecessary to combine

observations into normal points (NB: This is true for all light curve programs now

that computers have gotten so fast). The reason for the change in name, from PGE to

SPT, is that SPT permits placement of dark (or bright) spots on the component pho-

tospheres (Linnell, 1991). The accurate light curve computations consider a variety

of horizon and eclipse problems, including over-contact “self-eclipses.”

Linnell’s differential correction program DIFCORR (Linnell 1989) produces cor-

rections for the parameters i,Ω1,Ω2, q, A1, A2, g1, g2, T1, T2 (polar temperatures),

S1, S2 (limb-darkening scaling coefficients), and U , a light level normalizing factor

to fit the observed light curve to the calculated light curve. The program can handle

multicolor light curves and so, in principle, can determine both T1 and T2. For the

sake of self-consistency, the values of L1 and L2 are defined as derived quantities,

calculated in PGD. The program makes no provision to decouple L1 and L2 from

T1 and T2, as the Wilson–Devinney model does. A separate differential correction

program determines star spot parameters to fit residual light curve effects. It is also

possible to adjust the entire primary minimum by a shift-parameter tp. This param-

eter should not be confused with a shift due to possible orbital eccentricity.

A major difference exists between the calculation of light derivatives in Linnell’s

program and other light synthesis programs. In Linnell’s program, there is a central

reference set of parameters which determine a central reference light curve at each

observed wavelength. For each parameter, a displacement for that parameter from

the central reference value is chosen and two outlying parameter sets are established,

symmetric with the central reference set, and displaced by the chosen value. Care

must be exercised to avoid physically impossible parameters. The three light curves

for each parameter determine two first differences and one second difference, and

these remain fixed for successive iterations. Only the coefficient of the second differ-

ence changes in the calculation of new first derivatives. See Linnell (1989, Eq. (30)).
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At the cost of substantial initial calculations, the computing time for successive

iterations is greatly reduced. In addition, the accuracy of the first derivatives is

quite high.

A justification for the separate, multiple program approach (rather than subrou-

tines in a single program) is flexibility. A diagnostic run with a modified T2, say, is

possible without recomputing the geometry. The running of PGB is the most time

consuming part of the calculation. A call to a batch Fortran program, that oversees

the whole process, runs all the separate programs in sequence. Implementation of

the synthetic photometry program (Linnell et al. 1998) would have been impractical

without the division of the entire project into separate programs.

6.3.5 Rucinski’s Model

Rucinski’s WUMA3 uses sky-grid integration and hence has low integration effi-

ciency, requiring at least 10,000 integration points. The intention was to have a

program which would be totally free of systematic errors related to uneven distribu-

tion of integration points. Other properties are

• Roche model (only for equipotentials between the inner and outer critical com-

mon envelopes);

• interpolation between semi-empirical, color-index-based fluxes;

• differential corrections via Rucinski’s least-squares program;

• no spots are modeled but provision to change temperature or surface brightness

along (or on one side of) the common equipotential;

• line profiles calculated in WUMA3’s descendants (WUMA5 and WUMA6);

• input through a separate parameter file;

• Fortran code; and

• extreme simplicity and modular structure permit easy modification.

This code is not supported generally and has restricted distribution. According to

Rucinski, there is no intention at present to continue development of the WUMAn

codes.

6.3.6 Wilson–Devinney Models

6.3.6.1 The 1998 Wilson–Devinney Model

The original Wilson–Devinney model and program has been extended in many pub-

lications and software releases [Wilson & Devinney (1971), Wilson (1979, 1990,

1993)]. All versions released after 1982 treat elliptic orbits with eccentricity, e,

and semi-major axis, a. The constant distance between the stars is replaced by the

phase-dependent distance d = d(Φ). Nonsynchronous rotation of components is

described by a parameter F which is the ratio of rotational angular velocity to mean
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orbital angular velocity. The surfaces of the components are derived from the Roche

equipotentials, defined as

Ω(r; q, F, d) =
1

r
+ q

[

1
√

d2 − 2dλr + r2
−
λr

d2

]

+
q + 1

2
F2r2(1 − ν2). (6.3.2)

The structure of the software is as follows. At first, based on (6.3.2 ), a dis-

crete representation of the stellar surface is computed. For both stars, for a given

distribution of grid points (θi , ϕ j ), the corresponding radial vectors ri j = ri j (θi , ϕ j ; q,

F,Ω, d) are determined, and a system of surface points rs is established. Note that

both Ω1 and Ω2 are measured in the coordinate system of component 1. To generate

the surface of component 2, it is necessary to transform to the coordinate system of

component 2.

Ω ′
2 = q ′Ω2 + 1

2

(

1 − q ′) , q ′ =
1

q
. (6.3.3)

The inverse transformation to (6.3.3) is

Ω2 = qΩ ′
2 + 1

2
(1 − q). (6.3.4)

The Wilson–Devinney program uses the following geometrical conventions: The

normal vectors point into the interior of the stars, and the line-of-sight vector origi-

nates at the binary and points to the observer. This implies that only points satisfying

the condition cos γ < 0 contribute to the flux seen by the observer.

In the WD program, the local flux function contribution dℓl (cos γ; gl, Tl , λ) in the

integrand of (3.2.49) is computed for each component j according to

dℓl (rs, cos γ; gl, Tl , λ) = G j D j R j I j cos γdσ, (6.3.5)

where the dimensionless ratios G j = G j (rs), D j = D j (rs), and R j = R j (rs)

account for gravity darkening, limb darkening, and reflection effect, and I j is a

reference intensity. The computation of these factors is performed according to the

formulas (6.3.8), (3.2.23) or one of the other limb-darkening laws in Sect. 3.2.4,

(3.2.46), and (6.3.7). Some further details are discussed below.

Because an analysis of photometric data allows the derivation of only relative

dimensions of the components (such as the ratio of radii, masses, or luminosities),

many quantities and parameters in the model are dimensionless. This has the fol-

lowing consequences for intensities and luminosities. Since the flux at the poles is

unknown, a scaling factor I j , j = 1, 2, is introduced. I j is the normal surface inten-

sity at the pole of component j , which is computed to reproduce the luminosity L j :

D j

∫

S′
j

I j G j (rs)dσ = L j , D j = π
(

1 −
x j

3

)

, j = 1, 2 (6.3.6)
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and7

I j :=
L j

D j

∫

S′
j

G j (rs)dσ, j = 1, 2, (6.3.7)

where G j (rs) gives the ratio of normal local to polar intensity due to gravity

brightening:

G j (rs) :=
αλ(Tl)

αλ(T j )

℘(λ, Tl)

℘(λ, T j )
, (6.3.8)

where T j and Tl denote the polar and local effective temperatures. The function

αλ(T ) allowed the introduction of a model atmosphere into the Wilson–Devinney

model. To elaborate, FCG
ν (T ) represents the monochromatic flux according to the

Carbon–Gingerich model atmosphere (see Appendix E.1) tabulated in units of

erg/cm2/s/ster/Hz in Carbon & Gingerich (1969). The implementation followed

according to the definition

αλ(T ) := FCG
ν (T )/Bν(λ)(T ). (6.3.9)

WD95, as a spin-off of the more recent version WD93K93 (see page 305), also

includes the Kurucz stellar atmospheres models.

The WDmodel considers a simple reflection effect in a form close to that described

in Sect. 3.2.5 and Appendix E.25, and, alternatively, a more detailed one which even

considers multiple reflection developed by Wilson (1990), as described in Appendix

E.25.

The present version of the WD program approximates the integral ( 3.2.49) by a

simple sum but with fractional area corrections for eclipses, i.e., using (6.3.5) we

get

ℓ(Φ) =
∫ π

0

∫ 2π

0

χs(Φ)I (cos γ; g, T, λ)
cos γ

cosβ
r2 sin θdϕdθ

= I
∑

ϕ

∑

θ

{

G DR
cos γ

cosβ
r2 sin θ∆ϕ∆θ

}

, (6.3.10)

where the sums are evaluated for angles ϕ and θ associated with visible points,

denoting the grid size in ϕ and θ . In the Wilson–Devinney program, the discretiza-

tion is chosen as

7 In the Wilson–Devinney program (1993 and later versions), there is a flag LD which gives

a choice among linear, logarithmic, and square-root limb-darkening laws. The effective limb-

darkening factor D j then changes and needs to be recomputed as outlined in Sect. 3.2.4. In all

versions of the program, only x is an adjustable parameter, not y (Wilson 1998).
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θi :=
π

2

i − 0.5

N
∆θ, ∆θ :=

π/2

N
, i = 1, . . . , N , (6.3.11)

where N denotes the number of latitude circles on each hemisphere, and

ϕk := π
k − 0.5

M(θi )
∆ϕ, ∆ϕ :=

π

M(θi )
, k = 1, . . . , M(θi ), (6.3.12)

with [compare term on page 213]

M(θi ) :=
⌊

1 + 1.3N sin

(

π

2

i − 0.5

N

)⌋

. (6.3.13)

Note that I , the normal emergent intensity at the pole, does not depend on ϕ and θ ,

and thus is extracted from the sum in (6.3.10). Due to (6.3.7) we note, in addition,

the relation

∂ℓ

∂L j

(Φ) =
ℓ j (Φ)

L j

, j = 1, 2. (6.3.14)

As already mentioned in Sect. 4.1.1.4, the WD model provides several modes to

specify the geometry of the binary system or to add constraints or relations between

parameters. The WD operations are summarized in the following table (the vector pG

contains the geometrical parameters):

−1 satisfy X-ray eclipse duration Θe = Θe(i,Ω, q, e,Ω, F)

0 approximate the R–M model L1, L2, T1, and T2 uncoupled

1 over-contact binary with T2 = f (T1,pG) Ω2 = Ω1 > Ωc, T2 = f (T1)

2 L2 is a function of (L1, T1, T2) L2 = L2(L1, T1, T2)

3 over-contact binary (circular case only) Ω2 = Ω1, x2 = x1, g2 = g1

4 primary star fills its limiting lobe Ω1 = Ωc

5 secondary star fills its limiting lobe Ω2 = Ωc

6 double-contact binaries Ω1 = Ωc1 , Ω2 = Ωc2

The function f (applied in mode 1 but not in mode 3)

T2 = f (T1) = T1

(

g2p

g1p

)β

(6.3.15)

relates the mean polar effective temperatures T1 and T2 such that the local effective

temperatures of the stars are equal at their interface on the neck region (Wilson &

Devinney, 1973, p. 542). g1p and g2p are the surface gravity accelerations at the

poles, and β is the exponent defined in (3.2.16); for over-contact binaries we have

β = β1 = β2.
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The model described so far is called mode 0, in which the luminosities L1 and

L2, as well as the temperatures T1 and T2, are mutually independent. This is sim-

ilar to the assumptions by Russell & Merrill (1952) in the Russell–Merrill model.

In all other modes, except mode −1, L2 is a function of L1 and the temperatures

T1 and T2:

L2 =
αλ(T2)

αλ(T1)

℘(λ, T2)

℘(λ, T1)

3 − x2

3 − x1

∫

S2
G2dσ

∫

S1
G1dσ

L1. (6.3.16)

From (6.3.16), it follows that the luminosity ratio L2/L1 is a constant depending

explicitly on T1, T2, L1, x1, and x2, and implicitly on geometric parameters. Due to

(6.3.16) the total flux scales with L1 and thus we can compute the partial deriva-

tive as

∂ℓ

∂L1

(Φ) =
ℓ1(Φ) + ℓ2(Φ)

L1

. (6.3.17)

According to (6.3.16), the luminosity L2 is no longer a free parameter. The condition

expressed by (6.3.17) allows the interpretation that the free parameter L1 acts as a

scaling factor to couple the calculated light curve with the observed data. Although

many modelers publish only the monochromatic luminosity ratio,8 L2/L1, the indi-

vidual luminosities are coupled self-consistently to the output fluxes. This point is

made obvious by the units of L1,2 and ℓ(Φ). For example, the user may understand

an input L1 to be in the unit 1033 erg/s/µm. Thus an entered L1 of 6.0000 would

mean 6 · 1033 erg/s/µm. Corresponding units for ℓ(Φ) would then be 1033 erg/s/µm/

d2/cm2, where d is the distance of the binary in centimeters. In the program, d is

assumed to be equal to the semi-major axis a which in turn is measured in solar

radii. Naturally, when dealing with arbitrarily scaled data, we need not worry about

these absolute meanings.

The extension of mode 0 by the relation (6.3.16) is realized in all modes above

0. Additional constraints are added in mode 1 and mode 3,9 appropriate for over-

contact systems, where Ω1,2 ≥ Ω(rc; q, F),

Ω2 = Ω1, g2 = g1, A2 = A1, x2 = x1, (6.3.18)

and rc is the coordinate vector of the equilibrium point L
p

1. In Cartesian coordinates,

rc = (xL
p
1
, 0, 0)T, i.e., xL

p
1

follows from the condition

8 Note that L2/L1 is the monochromatic luminosity ratio and not the bolometric luminosity ratio

Lbol
2 /Lbol

1 needed in the computation of the reflection effect. Appendix E.5 shows how to compute

Lbol
2 /Lbol

1 as a function of L2/L1.
9 Note that from the 2003 version on the WD program, the equalities g2 = g1, A2 = A1, and

x2 = x1 are not enforced any longer in mode 3.
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0 =
∂Ω

∂x
(x = xL

p
1
, y = z = 0; q, F). (6.3.19)

Appendix E.12 shows in detail how to compute xL
p
1
. In the coordinate system of the

secondary star, the equilibrium point L
p

1 has the coordinate

x ′
L

p
1
= 1 − xL

p
1
. (6.3.20)

In contrast to mode 3, mode 1 requires, in addition to (6.3.18), the condition that

T2 = f (T1,pG) which allows the modeling of an over-contact system in thermal

contact. pG denotes the geometrical parameters. Note that there are different tem-

peratures on the two stars, but the local temperatures are equal where their surfaces

meet on the neck of the binary (for idealized thermal contact).

Explicit modeling of semi-detached systems is forced by mode 4 and mode 5

which apply the constraints Ω1 = Ωc or Ω2 = Ωc, respectively. In mode 4 the

primary and in mode 5 the secondary fill its limiting lobe – that is, the Roche lobe

– assuming circular orbits and synchronous rotation.

Let r
pole
j , r

point
j , r side

j , and rback
j denote, respectively, the local radii of component

j , at its pole, in the direction of the other component: In the direction perpendicular

to that direction and in the plane of the orbit; and in the direction opposite to the

other component. A useful mean radius r̄ j can be defined by means of the volume:

r̄V
j =

[

3

4π
V j

]1/3

, V j = 4

∫ π

0

∫ π/2

0

(∫ r (θ,ϕ)

0

r2dr

)

sin θdθdϕ. (6.3.21)

In (6.3.21) the symmetry of the Roche geometry is reflected by the factor 4. For

detached and semi-detached systems, the function r (θ, ϕ) is well defined for all θ

and ϕ. The volumes computed according to (6.3.21) are dimensionless. Multiplica-

tion by R3 yields the physical volume. For particular cases other means, such as

harmonic, may be used also. As described in Appendix E.30, relation (6.3.21) also

can be used to compute the associated Roche potential Ω j for an estimated radius

r∗
j by solving the equation

r̄V
j (Ω j ) = r∗

j . (6.3.22)

The WD program consists of two main programs named LC and DC, and approxi-

mately two dozen subroutines further discussed in Appendix D.1.

6.3.6.2 New Features in the 1999–2007 Models

The 2003 version of the WD program followed the first edition of this book. It pro-

vided stellar atmosphere approximation functions by Van Hamme & Wilson (2003).

The functions are based on model stellar atmospheres by Kurucz (1993). The radia-

tive atmosphere implementation is in terms of photometric bands, with 25 bands

now accommodated.
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Input for the radiative treatment includes log g (to allow for the handling giants,

sub-giants, etc., in addition to main sequence stars) and 19 chemical compositions in

addition to effective temperature, Teff. Influences of Teff and log g on radiative output

are applied locally on all surface elements (not merely with one correction for the

entire star as in some programs). See Van Hamme & Wilson (2003) for information

about smooth transitions from atmosphere to blackbody treatment at the limits of the

atmosphere tables and for other specifics of the radiative atmosphere application.

In versions of 1998 and earlier using the old stellar atmosphere routine, one could

enter any period, P , or orbit size, a, without affecting light curves, as the scaling

of observable light (output) from luminosities (input) involved only temperature

but not log g or chemical composition. In the newer versions, this is different as

log g is derived from G M/R2 (strictly speaking, from local conditions, including

effects of rotation and the other star’s gravity) with M and R dependent on period

and absolute size. Thus, realistic guesses for P , a, and [M/H]s should be used with

the new radiative treatment (pure blackbody computations remain unaffected by

absolute masses and dimensions). In a non-simultaneous light-velocity solution, the

final semi-major axis a from the velocities should be the same as used for the light

curves. That condition will be satisfied automatically in a simultaneous solution.

The programs LC and DC are made to be mutually consistent but will have different

L2s and light if absolute dimensions and masses differ between the two programs.

Naturally the foregoing warnings do not apply for blackbody computations, where

the programs’ light curves are unaffected by absolute masses and dimensions.

Another significant change from earlier versions concerns MODE=3 operations.

The parameters A2, g2, x2, and y2 are free parameters, not set equal to A1, g1, x1,

and y1. The reason for this relaxation is that T2 may differ considerably from T1; TU

Muscae is a good example of a hot over-contact binary with different temperatures

[cf. Andersen & Grønbech (1975)]. As A2, g2, x2, and y2 depend on temperature,

it would be hard to argue why these parameters should be set equal to A1, g1, x1,

and y1.

The WD model in its most recent version (2007, at this writing) includes two

major new features (Van Hamme & Wilson 2007):

• an alternative method to derive the ephemeris by considering whole light and

radial velocity curves yields the time of conjunction, period, rate of period

change, and orbital rotation (apsidal motion)

• light-time and velocity shifts due to a third body (or several of them) lead to

six additional adjustable third-body parameters (heliocentric reference time or

epoch T0,3b (time of conjunction) and period P0,3b, eccentricity e3b, argument of

periastron Ω3b, orbital semi-major axis a3b, and inclination i3 of the third-body

orbit relative to plane of sky)

• LC and DC now can interpolate (locally) in [Teff, log g] for x and y limb-

darkening coefficients from the Van Hamme (1993) tables for any of 19

compositions ([M/H]). Negative values of the control integers LD1 and LD2 acti-

vate interpolation while positive values enforce the use of fixed limb-darkening

coefficients.
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Each of the features is a major step in completing the picture of EB analysis. The

essential basis of the third-body procedure [ cf. Wilson (2007, Sect. 3.1) and Van

Hamme & Wilson (2007, )] is to fit multiple curves in time rather than phase. The

most problematic part of the analysis is the determination of the orbit period of the

third body.

Direct distance estimation as described in Sect. 5.1.4 and Wilson (2008)

will be available in the 2009 version of the WD program. This is based on abso-

lute, calibrated light curves which allow us to determine the temperatures of both

components and to compare absolute, computed distance-dependent flux with the

observed flux.

6.4 Cherepashchuk’s Model

Et ex oriente lux (And from the East, Light)

Cherepashchuk’s approach is widely used in Russia, and we might even apply

the term “Russian school” to those who use the light curve modeling procedures

described by Cherepashchuk. Since the work by Cherepashchuk (1966), there is a

strong focus on EBs with extended atmospheres10 such as the Wolf–Rayet binary

V444 Cygni [Cherepashchuk (1975), Cherepashchuk & Khaliullin (1976)] and X-

ray binaries. The light curve models are mostly spherical models with enhanced

features for atmospheric eclipses, which are interpreted to include disks. The least-

squares problem is solved with great attention to the ill-posed character of the gen-

eral light curve analysis problem (Cherepashchuk et al. 1967). The methods are

based on regularization algorithms by Tikhonov (1963a, b). They are more recently

described in Tikhonov & Arsenin (1979). An English translation outlining the

method is given in Tsesevich (1973, pp. 237–244). There is a strong mathematical

background in the Russian school on ill-posed problems in the sense of Hadamard,

and the reader should not be surprised to find Fredholm integral equations of the

first kind involved in the light curve analysis as, for example, in Cherepashchuk

et al. (1975).

The models describe semi-transparent emitting disks surrounded by nonemis-

sive atmospheres. In the simplest case, the stars are uniform, circular disks without

reflection effect enhancements. In the case of extended atmospheres, a distinction

is made between the radii of the luminous disks and those of the larger absorbing

disks. In Cherepashchuk’s notation, in which components 1 and 2 are identified

with the notation for the distances ξ and ρ, respectively, from the disk centers, the

luminosity of the system is

L = Lξ + Lρ = 2π

∫ rξc

0

Ic(ξ )ξdξ + 2π

∫ rρc

0

Ic(ρ)ρdρ = 1, (6.4.1)

10 Readers interested in extended atmospheres may also consult Wehrse (1987) and Wolf (1987).
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P

2∆

ρ
ψξ

ϕ1

S(∆)

Fig. 6.4 Basic eclipse geometry. The figure shows the distances ξ and ρ of a point P to components

1 and 2, the distance ∆ between the centers of the stars, and S(∆)

where rc denotes the radius of the luminous disk. The luminosity of the system is

normalized to unity. See Fig. 6.4 for the geometry. During the eclipse of star ρ, the

flux Ic(ρ) originating from surface area element dσ , and beamed into solid angle

element dΩ , is absorbed by the extended atmosphere of star ξ to the extent

Ic(ρ)
[

1 − e−τ (ξ )
]

dσdΩ, (6.4.2)

where τ (ξ ) =
∫ +∞
−∞ a(r )dx , where a(r ) is the absorption coefficient per unit volume

in star ξ , and r is the distance from the center of this star. The absorbed flux must

be reradiated in the extended atmosphere of star ξ , and this is asserted to be the

equivalent of the reflection effect [Goncharsky et al. (1978)]. The light loss due to

eclipse is determined by the integration over the overlapping surface S∆

Lξ + Lρ − ℓ1(∆) = 1 − ℓ1(∆) =
∫

S∆

Ic(ρ)
[

1 − e−τ (ξ )
]

dσ, (6.4.3)

where ℓ1(∆) is the light seen when the star centers are separated by plane-of-sky

distance ∆2 = cos2 i + sin2 i sin2 θ , and S denotes the overlap region. During

the secondary minimum, the light absorbed by the atmosphere of star ρ is written,

analogously, as

Lξ + Lρ − ℓ2(∆) = 1 − ℓ2(∆) =
∫

S∆

Ic(ξ )[1 − e−τ (ρ)]dσ. (6.4.4)

Cherepashchuk refers to the quantities [1−e−τ (ξ )] and [1−e−τ (ρ)] as Ia(ξ ) and Ia(ρ),

respectively. The relations among Ic and Ia require two a priori relations in addition

to (6.4.3) and (6.4.4). These relations must involve the choice of a model of particu-

lar structure for each component. Models of stars of unknown structure will not suf-
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fice. Cherepashchuk suggests two types of models: Classical and semi-classical. The

following brief exposition of the treatment of these two cases is intended to convey

the flavor of the Russian school’s concern about the determinability of light curve

solutions. The classical model assumes spherical stars with opaque disks and thin

atmospheres. The functions in this model are

Ia(ξ ) :=
{

1, if 0 ≤ ξ ≤ rξa,

0, if ξ > rξa,
Ia(ρ) :=

{

1, if 0 ≤ ρ ≤ rρa,

0, if ρ > rρa .
(6.4.5)

It is the “standard model” with arbitrary limb-darkening laws described by the func-

tions Ic(ξ ), and Ic(ρ), found from solving the integral equations (6.4.3) and (6.4.4).

The semi-classical model comprises a classical model star and a “peculiar star”

with extended atmosphere. In Cherepashchuk’s formulation, the functions Ic(ρ) and

Ia(ρ) describing the “normal” star are known. The radiative and absorption proper-

ties of the peculiar component, viz., Ic(ξ ) and Ia(ξ ), are not assumed a priori but

are determined by solving the equations (6.4.3) and (6.4.4). The latter equations

determine only two functions which depend on the parameters of the light curve:

The stellar radii and the orbital inclination. To permit the determination of other

elements, the luminosity normalization equation (6.4.1) must be solved as well. The

number of additional equations required to provide system parameters depends on

the maximum value of the overlap region, i.e., on whether the eclipses are partial or

total. Cherepashchuk considers two cases:

(a) cos i > rρ : where rρ is the radius of the normal component. In this case, at the

moment of conjunction (ϑ = 0), the limb of star ρ does not reach the center of the

disk of component ξ and the light curve does not contain information about the

functions Ic(ξ ) and Ia(ξ ) for the central regions of the ξ -component, described

by the expression: ξ < cos i − rρ . In such a case, even though it is possible in

principle to derive the parameters of the normal star, a unique solution of (6.4.1),

(6.4.3), and (6.4.4) is not possible for the peculiar binary. In the second case, on

the other hand, where

(b) cos i < rρ : all parts of component ξ are eclipsed, and functions Ic(ξ ) and Ia(ξ )

are determined by the troika of equations for all values of ξ : 0 ≤ ξ ≤ rξa,c .

The accuracy of the light curve and the specific values for rρ and i determine the

efficiency with which (6.4.3) and (6.4.4) can determine the parameters.

On the basis of a “determinability” analysis for the classical and semi-classical mod-

els, Cherepashchuk (1971) concluded that unique solutions are determinable only in

the following cases:

1. Classical models:

• total eclipses;

• partial eclipses when for each minimum, cos i < rocc, where rocc is the radius

of the eclipsing star.
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2. Semi-classical models:

• total eclipse of the peculiar star by the normal component;

• partial eclipses with the condition: cos i < rρ , where rρ is the radius of the

normal component.

3. Semi-classical models including opaque cores:

• total eclipses of the peculiar star by the normal component;

• total eclipses of the normal star by the core of the peculiar star;

• partial eclipses when cos i < rρ .

Cherepashchuk recommends that external sources of information, such as spec-

trophotometric light ratios, be used to determine if the cos i < rρ condition holds.

In order to keep the problem well-posed and therefore to be able to solve the light

curve of extended atmosphere systems, it is assumed that any unknown functions,

such as the center-to-limb variation, are monotonic and nonnegative.

Perhaps the line of attack is best illustrated by an analysis of the light curves

of the WN5+O6 system V444 Cygni, studied in detail by Cherepashchuk and his

colleagues. It is described as a typical semi-classical system with an extended atmo-

sphere (disk) around the Wolf–Rayet WN5 component, which is in front at primary

minimum. The absorption of the O6 star’s light by the disk of the WN5 star is

expressed as

I ρa (ξ ) = I 0
ρ

[

1 − e−τ (ξ )
]

, (6.4.6)

where I 0
ρ is the brightness of the O6 component at the disk center, and τ (ξ ) is the

optical depth of the disk of the Wolf–Rayet component. The data are assumed to

be in the form of normal points in a rectified light curve. The adopted formalism

requires solutions of a series of equations:

1 − ℓ1(ϑ) =
Rξa
∫

0

K1(ξ,∆, rρ)I ρa (ξ )dξ, if cos i ≤ ∆ ≤ Rξa
+ rρ, (6.4.7)

0 ≤ I ρa (ξ ) ≤ I ρa (0), (6.4.8)

1 − ℓ2(ϑ) =
Rξc
∫

0

K2(ξ,∆, rρ)Ic(ξ )dξ, if cos i ≤ ∆ ≤ Rξc
+ rρ, (6.4.9)

0 ≤ Ic(ξ ) ≤ C2 , (6.4.10)

I ρa (0) =
1 − 2π

Rξc
∫

0

Ic(ξ )ξdξ

Dr2
ρ

, D := π
(

1 −
x

3

)

. (6.4.11)
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The upper limit of Ic(ξ ) in (6.4.10), C2, is not known but is found by trial and error.

The computation of the quantities on the left-hand side of (6.4.7) and (6.4.9) is to be

done so as to achieve the least-squares minima of the two sets of data of |O − C |,
here defined as:

|O − C | =
N
∑

j=1

w j

{

[1 − ℓobs
1,2(θ j )] − [1 − ℓcal

1,2(θ j )]
}2
, (6.4.12)

where the weight of a normal point, w j = k/ǫ2
j ; k is arbitrary and ǫ j is the standard

deviation of the j th normal point. Computer codes to accomplish the fitting and

extraction of the unknowns are described in Cherepashchuk (1973), Cherepashchuk

et al. (1973), and Goncharsky et al. (1985). The steps are done as follows:

• the condition cos i < rρ is established;

• the quantities rρ and i are assumed, and (6.4.9) is solved for Ic(ξ, rρ, i) and the

corresponding values of |O − C |rρ ,i ; and

• substitution of Ic(ξ, rρ, i) in (6.4.8) and the solution of (6.4.7), which then pro-

vides the function I
ρ
a (ξ, rρ, i) and corresponding values of |O − C |rρ ,i .

The absolute minima of the two sets of (6.4.12) yield the parameters rρ, i and

the functions Ic(ξ ) and I
ρ
a (ξ ). These two functions are used to determine physi-

cal characteristics of the WN5 component of V444 Cygni such as the temperature

and absorption coefficient over the disk and core radius, r0. The data which were

analyzed were taken in a rectified light curve in a 7.5 nm passband centered at

λ = 424.4 nm in the continuum. The results by Cherepashchuk (1975) are

rρ = 0.25 ± 0.02, i = 78◦ ± 1◦, LW R = 0.197 ± 0.03, 2.2 ≤
r0

R⊙
≤ 2.6.

Cherepashchuk notes that the relatively small value of r0 suggests that the WN5

component is the helium remnant core of a star formed as a result of extensive mass

exchange in an interacting, massive binary.

Treatment of more complicated cases is illustrated by the solution of the inverse

problem for SS433, an interesting, interacting X-ray binary with relativistic jets.

Extensive fitting of a model with a thick, precessing accretion disk with an oblate

spheroid shape to an extensive body of optical (V-passband) data consisting of 10

light curves representing a range of precessional phases failed to satisfy the level of

significance (1% by the accuracy and precision of the data). The results, described

in detail by Antokhina & Cherepashchuk (1987) and in Goncharsky et al. (1991),

are as follows: The “normal” star fills its Roche lobe; and the equatorial radius of

the accretion disk is equal to the maximum radius of the compact object’s Roche

lobe. The choice of the optimum mass ratio was uncoupled to the temperature of the

“normal” star. The model for q ≥ 0.25 is shown in Fig. 6.5 along with a still more

complicated model with q = 0.20 (lower three figures).
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Fig. 6.5 More complex models: Three-dimensional representatives of the interacting X-Ray sys-

tem SS433. Courtesy, A. M. Cherepashchuk

The mass ratio of the SS433 system is not directly observed. Instead, the mass

function

fx (m) =
m3

1 sin3

(mx + m1)2
(6.4.13)

has been determined to be somewhere between 2 M⊙ (cf. D’Odorico et al. 1991)

and 10 M⊙ (Crampton & Hutchings, 1981), with a third determination of 7.7 M⊙
(Fabrica & Bychkova, 1990). X-ray systems are among the principal binaries stud-

ied by the “Russian School.” Goncharsky et al. (1991) and Antokhina et al. (1992,

1993) discuss the more recent studies. A more recent review on this field is by

Cherepashchuk (2005).
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6.5 Other Approaches

Et sic de similibus (And so of like kind)

6.5.1 Budding’s Eclipsing Binary Model

Budding (1993, Chap. 8) discusses in didactic detail his “Standard Eclipsing Binary

Star Model” (SEBM) to analyze circular orbit systems. It is basically a spherical

model including circular spots, and thus, often applied to analyze spotted stars; cf.

Budding & Zeilik (1987). Note that the original light curves are “cleaned” of the

effects of spots.

6.5.2 Kopal’s Frequency Domain Method

Kopal’s contributions to the field of modern light curve analysis were crucial; his

early works prepared the way for the new era. Here, however, we discuss a technique

that he developed in his later years, the “Frequency Domain Method.”

The basic aspects of this technique are described in Kopal (1979) and also in

Kopal (1990, pp. 41–69). Kopal discusses, in great mathematical depth, the repre-

sentation of the fractional light loss in symmetric EB light curves in terms of integral

transforms, especially Hankel and Fourier transforms, and the asymptotic properties

of finite sums of the latter.

The method concentrates on the determination of quantities such as the area,

A2m , under the function of measured light, ℓ, plotted against sin2m θ . A2m is the

moment of the eclipse of index m. This empirically determined quantity, A2m ,

may be defined as

A2m =
θ1
∫

0

(1 − ℓ)d(sin2m θ ), (6.5.14)

with phase of first contact, θ1. A theoretical expression for A2m is

A2m = mL1 csc2m i

δ2
1
∫

δ2
2

(

δ2 − δ2
0

)m−1
αdδ2, (6.5.15)

where α is the fractional loss of light, δ indicates the separation of the components

so that δ0 = cos i , namely, the value of δ at closest approach (at θ = 0), and δ1,2

mark separations at first and second contact, respectively. The analysis also requires

the determination of the coefficients c j of the light curve representation
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L1 + L2 = 1 + c0 −
4
∑

j=1

c j cos j ψ. (6.5.16)

Although his approach and the notation used above is based mostly on uniform,

circular disks, some corrections are applied for limb- and gravity-darkened, tidally

distorted nonspherical stars with light curve perturbations (Kopal, 1989, 1990). The

analysis of the moments yields the elements of the system. For perturbed light

curves, the prescriptive procedure is as follows:

1. determine the necessary number of moments of the light curves (at least 4);

2. evaluate the necessary number of constants c j=1,n (at least 4) from the light curve

maxima and take their weighted sum;

3. evaluate the (normalized) moments;

4. evaluate the r1,2, i , and L1,2 from the moments;

5. compute the light curves from the elements and evaluate the perturbations, P2m ;

6. use the perturbations to obtain improved moments; and

7. iterate Steps 3–6 to the final set of elements.

Kopal (1979, p. 193) asserts that no “time-domain” analyses , by which he char-

acterizes all the other methods described here, can make use of empirical data

to convert observed light curves into a form from which the elements can be

derived directly; keeping in mind that the whole idea of least-squares procedures

is to extract parameters indirectly, it is not clear why the direct determination

of parameters should be an advantage. Interpreting the assertion to mean that a

closed analytic solution cannot be found for such cases, the question remains

whether this method can do so either. Its claimed superiority has yet to be demon-

strated.

The Fourier analysis frequency domain method is a rather formal mathematical

approach suffering from the following disadvantages:

1. the components are assumed to be spheres, or at best, corrected spheres (Kopal

1989, 1990);

2. it is doubtful that a few Fourier coefficients can reveal fully the information in

a light curve, generally. The Fourier analysis method uses an integral moment11

of the observations, thus masking the contribution of each point to the value of

A2m , particularly for small sin2m θ as m increases. That means that perturbation

terms for proximity effects are evaluated essentially from the uneclipsed portion

of the light curve;

3. it is necessary to specify the luminosity scaling;

4. the value of the angle θ1 of external tangency must be specified; and

5. it is not easy to introduce additional physical effects into the model in this

analysis.

11 This process smoothes the observations. Strictly speaking, information is thrown away in the

process.
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Budding (1993, p. 211) notes similarly that although the method is straightforward,

in practical situations complications arise, especially because the proximity effect

representation must be very precise, but the c j quantities “are not well suited to

accurate numerical derivation.” He also notes that the procedure loses the advantage

of simplicity for partial eclipses.

Light curve analysis based on the solution of an inverse problem with an

underlying physical model as its core is not limited by these disadvantages. Physical

models are open to the implementation of improved physics.

6.5.3 Mochnacki’s General Synthesis Code, GENSYN

The GENSYN code was developed by Mochnacki and Doughty in the early 1970s, of

Mochnacki & Doughty (1972a, b), and further improved around 1983. Mochnacki’s

work began by using Lucy’s (1968) code, which he found to be reliable but slow

due to its use of a “ray-tracing” algorithm. The GENSYN code was intended to do

both light curve and line profile synthesis. It used a cylindrical coordinate scheme

making the radius vector a single-valued function for all configurations: contact

and noncontact. This might be an advantage, although not a crucial one, because

there is no problem finding the correct surface in spherical coordinates either. The

program was designed to be compact, fast, and numerically stable but, unlike the

Wilson–Devinney LC program, did not incorporate an accurate correction scheme

for horizon visibility. GENSYN was applied originally to totally eclipsing A-type

contact systems (such as AW Ursae Majoris and V566 Ophiuchi). According to

Mochnacki, it was the first Roche geometry-based light curve code to incorporate

full mutual irradiation by mapping each surface element to all those illuminating it.

6.5.4 Collier–Mochnacki–Hendry GDDSYN Spotted General

Synthesis Code

Andrew Collier and Stefan Mochnacki combined their programs SPOTTY and

GENSYN in 1987 to analyze spotted eclipsing systems. An improved geodesic grid

system with triangular elements was introduced by Paul Hendry as part of his MSc

thesis at the University of Toronto under Mochnacki’s direction. Mochnacki states

that the resulting code, GDDSYN, is both faster and more accurate than WD93. All

grid elements have comparable surface areas and there is little aliasing due to pro-

jected symmetries (Hendry & Mochnacki, 1992). In addition, Hendry wrote a pro-

gram to determine the most likely spot distribution which makes use of a maximum

entropy algorithm, and combined it with GDDSYN and SPOTTY to determine spot

distributions in contact systems (Hendry et al. 1992). Finally, Hendry more recently

wrote a program to fit both orbital elements and spot distributions to photometric

and spectroscopic data. Mochnacki notes that this code was used to analyze several

years of DDO observations as part of Hendry’s PhD thesis.
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6.5.5 Other Spot Analysis Methods

A long-standing tradition at the Osservatorio Astrofisico di Catania, on the island

of Sicily, has been the study of the effects of star spots on light curves. Their work

has focused on the RS CVn (e.g., Rodonò et al. 1995) and to the similar systems AR

Lac, II Peg, and SZ Psc. This work was then extended to the somewhat more com-

plicated system RT Lac, discussed earlier. The spot modeling technique is described

in several papers; see Lanza et al. (1998, 2002) and references contained therein.

Their goal has been to observe the spot distribution as a function of longitude on the

star’s surface and to study spot migrations over longer intervals of time and modu-

lation over shorter intervals. Information of this sort can lead to an understanding of

magnetic structures and their relationship to the rotational and orbital dynamics of

the system. Eclipsing systems provide the necessary spatial resolution to explore the

brightness distribution on the surface of the eclipsed component, which is divided

into several hundred pixels, each of which is allowed to vary within constrained

limits. Fittings were obtained with the use of a priori assumptions supplied by a

maximum entropy criterion, and, in an independent check on the results, a Tikhonov

regularization criterion. According to the authors, the use of such criteria leads

to stable and unique solutions of the distribution over the surfaces of the stars. A

lengthy series of observations extending over decades provided the database, and

the maximum brightness of the system observed during that time served as a kind

of unspotted calibration for the pixels. In the case of AR Lac, data were available for

20 annual light curves in the interval 1968–1992. The system is subject to variations

exceeding 0.05 magnitudes in a single day, possibly due to flares on timescales of

tens of minutes. The reference level was established for the system as observed in

1987 when V = 6.m 030 ± 0 .m005 at orbital phase 0.d7395. The EB model for the sys-

tem, at least for the earlier studies, involved tri-axial ellipsoids for the stellar shapes

but also Kopal’s (1959) geometric treatment of ellipsoids, reflection, and gravity

darkening (Lanza et al. 1998). The resulting longitude distributions are obtained for

each component and show general agreement for particular years for each of the two

restrictive criteria.

6.6 Selected Bibliography

This section is intended to guide the reader to recommended books or articles on

light curve models and programs.

• The review article by Wilson (1994) gives an excellent overview on light curve

models. It provides a historical view and discusses the underlying astrophysics.

• An early overview on modern Light Curve Modeling of Eclipsing Binaries is

provided by Milone (1993). In this collection, several authors briefly describe or

comment on the latest versions of some of the better-known light curve models

and programs.
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• The Determination of the Elements of Eclipsing Binaries by Russell & Merrill

(1952) is probably the best and most complete description of material related to

the Russell–Merrill model.

• In his review Close Binary Star Observables: Modeling Innovations 2003–06,

Wilson (2007) summarizes the developments of the WD program during 2003

and 2006.

• The journal publication Eclipsing Binary Solutions in Physical Units and Direct

Distance Estimation by Wilson (2008) is a pleasant-to-read article on the assump-

tion and implications of direct distance estimation.
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Chapter 7

The Wilson–Devinney Program: Extensions

and Applications

Since the Wilson–Devinney program is the most widely used of all the light

curve modeling tools, it is appropriate to describe its features, capabilities, and

continuing development in some detail. The WD program itself has seen contin-

ual improvements, and the current version (briefly summarized in Chap. 6) with

its powerful features provides the opportunity to extract a maximum of informa-

tion from a variety of observational data. As a side-effect, publications on the

WD model and on the WD program1 have stimulated the development of new pro-

grams, which in their kernel use the WD program. Several such programs with

new innovative features or added functionality now coexist with the WD program.

Some of these features were developed independently in several programs,

including WD.

Starting in the 1980s, several extensions and enhancements to the original WD

program have been implemented in the programs LCCTRL and LC83KS by Kallrath

(1987), WD83K83 by Stagg & Milone (1993), WD83K93 by Milone et al. (1992b),

WD93K93 by Stagg & Milone (1993)), and LC93KS by Kallrath (1993). The suc-

cessor to these programs is WD95 (Kallrath et al. 1998) and versions up to WD2007

(Milone & Kallrath, 2008). The naming is now unified to WDx2007 with the WDx

indicating extensions to the WD program. WD has now also become the physical

model engine of PHOEBE, a simulation and analysis tool developed by Prša &

Zwitter (2005b) and described in Sect. 8.2 that offers an attractive graphical user

interface.

The first section of this chapter describes the functionality of WDx2007, the sec-

ond focuses on the Kurucz atmospheres option in WDx2007 and WD, the third gives

a brief review of research performed with the WD program and its offspring versions

(LC83KS, WD93K93, LC93KS, and WDx2007), which include enhanced features

by other authors. The third section also discusses analyses of astrophysically inter-

esting systems such as X-ray binaries and EBs in globular and open clusters. Finally,

in the fourth section, some future prospects for the WD program are considered.

1 The WD program itself continues to be developed by R. E. Wilson.

J. Kallrath, E.F. Milone, Eclipsing Binary Stars: Modeling and Analysis, Astronomy

and Astrophysics Library, DOI 10.1007/978-1-4419-0699-1 7,
C© Springer Science+Business Media, LLC 2009
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7.1 Current Capabilities of WDx2007

Ad vitam aut culpam (For life – or, until you mess up)

The stand-alone Fortran77 program WDx20072 enables the user to make use of the

Wilson–Devinney (WD) program3 to compute EB light and radial velocity curves

and to analyze data, i.e., to fit light curves or merely to compute a synthetic light

curve. WDx2007 contains the WD program but provides several features around it,

which enables the user to

• carry out computations using the original WD programs LC and DC;

• convenient preprocessing of the input data to LC and DC;

• use the Kurucz atmospheres and to model better the wavelength-dependent stellar

flux (Milone et al. 1992b);

• on-fly computation of limb-darkening coefficients using an interpolation scheme

based on the Van Hamme (1993) tables (during the iterations of the least-squares

iteration the limb-darkening coefficients are automatically computed as a func-

tion of temperature, log g and wavelength);

• fit EB observables using the simplex method (Kallrath & Linnell 1987), differ-

ential corrections (Wilson & Devinney 1971), a Levenberg–Marquardt scheme

(Kallrath et al. 1998), or simulated annealing as described in Milone & Kallrath

(2008);

• do automatic iterations (Kallrath 1987);

• produce gnuPlot graphics files;

• obtain best-fit solutions for grids or tables over fixed parameters (Kallrath &

Kämper 1992) which otherwise may be poorly determined; and

• develop and test new features, e.g., the analysis of large number of light curves

using the matching approach described in Sect. 5.3.2.

WDx2007 couples directly to the WD code which may cause some delays in keeping

up with newly issued versions of the WD program. It runs under the operating system

LINUX (especially, Ubuntu Linux), CygWin, as well as in Windows Command

Shell under Win95, Win98, WinNT, Win2000, and WinXP. WDx2007 has been

developed upon the framework of the preceding programs LCCTRL (Kallrath 1987),

WD93, WD95, WD98 (Kallrath et al. 1998), and WD2002, the first that combined all

previous developments and included all stellar atmosphere improvements by Milone

et al. (1992b) and local limb-darkening coefficients. These additional atmosphere

and limb-darkening features are now an integral part of the WD program.

2 This program, maintained and further developed by Josef Kallrath, and its documentation is

available at http://www.astro.ufl.edu/˜kallrath/
3 The Wilson–Devinney program is distributed by Robert E. Wilson (University of Florida) and

available at ftp://ftp.astro.ufl.edu/pub/wilson/lcdc2007
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7.2 Atmospheric Options

In nubibus (In the clouds)

The WD program has seen two enhancements for stellar atmospheres. The earlier

one was implemented in WD95 (and carried through WDx2007); in 2003 another

was integrated directly into the WD code by Van Hamme & Wilson (2003). Both

are based on Kurucz’s stellar atmospheres models contained on a CD-ROM4 made

available by Robert L. Kurucz.

Kurucz’s new stellar atmospheres incorporate computed opacities from a com-

prehensive list of 58 million lines. The opacities were computed for 56 temperatures

in the range 2,000 to 200,000 K, 21 values of the log of the pressure (measured in

cgs units) over the range −2 to +8, and 5 values ofmicroturbulent velocity (0, 1, 2,

4, and 8 km/s). They include ranges of abundances: 20 models in the range [Fe/H]5

= +1.0 to −5.0, and for 0.0 with no helium. The new line opacities and added con-

tinuous opacities were all included in the new atmosphere calculations. Temperature

ranges depend on log g and abundance [M/H], with the largest range from 3,500 to

50,000 K. Temperature limits and the 19 abundances are given in Kurucz (1993).

7.2.1 Kurucz Atmospheres in WDx2007

WD95 (as well as WD93K93, which has been used for light curve modeling of

EBs since 1993) and the current version, WDx2007, make use of Kurucz’s stel-

lar atmosphere models. The atmospheres were integrated over the standard system

passbands UBVRJIJ, RCIC, and uvby, the nominal extended Johnson infrared pass-

bands JHKLMN, the improved infrared passbands, iz, iJ, i H, iK, iL, iL’, iM, iN,

in, and iQ, and for a range of narrow, square-edged passbands centered on wave-

lengths in the far-ultraviolet, appropriate for IUE, HST, or other space platforms

with far-ultraviolet detectors. The raisons d’être and other details of infrared pass-

band optimization may be found in Young et al. (1994).

The flux ratio files for a specified filter can be computed as described below. This

procedure was developed and applied by C.R. Stagg at the University of Calgary.

At first we tabulate the filter transmission function. Then create a file of wavelength

versus transmission for the filter.

line 1 FACTOR, 1, WLBEGIN (nm), WLEND (nm), NW

line 2 WLBEGIN, TRANSMISSION (WLBEGIN)

...

last line WLEND, TRANSMISSION (WLEND)

4 Kurucz CD-ROM No. 13 ATLA S9—Stellar Programs and 2 km/s grid. Robert L. Kurucz,

Aug 22, 1993, Smithsonian Astrophysical Observatory. Cambridge, MA 021138, USA. Copyright

Smithsonian Astrophysical Observatory, 1993.
5 The symbol [Fe/H] denotes the logarithm of the ratio of iron and hydrogen abundances relative

to the same ratio for the Sun. Thus, stars of solar composition have [Fe/H ] = 0.
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FACTOR is the factor to multiply the wavelengths to convert them to nm, i.e.,

WLBEGIN*FACTOR = WLBEGIN (nm). The wavelengths (in nm) must corre-

spond to those in the file FPHEAD. NW is the number of wavelengths listed. All

lines are in open format.

1.0 1 485.0 743.0 130

485.00 0.0000

487.00 0.0032

...

743.00 0.0000

The program FLUX2000 prompts the user for the name of the Kurucz flux file (e.g.,

e:\cdromfm\fm05k2.pck), the name of the filter transmission file, (e.g., Rtrans), and

the name of the output file (e.g., Rm05)?

Here are the extra lines the header that must be added to the top of the LC or DC

input to run it with the revised Kurucz atmospheres program:

line 1: 1 for LC, 2 for DC

line 2: g(star1), g(star2)

line 3: flux file for first filter listed

line 4: flux file for second filter listed

...

last line: END

Example of lines to be added to DC input:

2

5.0 5.0

Uflux

Bflux

Vflux

END

Below you will find the program listing.

program read2000

character*2 a2

character*18 a18

character*22 a22

character*65 a65

character*2 char(35)

DATA CHAR/

&8*’ ’,’ A’,’ E’,’ W’,’F1’,’F2’,’PH’,’VG’,’ I’,

&’G1’,’G2’,’T1’,’T2’,’A1’,’A2’,’P1’,’P2’,’ Q’,

&’T0’,’ P’,’DP’,’DW’,’ ’,’L1’,’L2’,’X1’,’X2’,’L3’/
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imax=20

open(4,file=’parm’)

open(7,file=’pout’)

9 write(7,35)

do 6 n=1,2

1 read(4,2,end=10) a2,a18,a22

2 format(a2,25x,a18,18x,a22)

if(a2.ne.’No’) go to 1

if(n.eq.1) write(7,25) a2,a18,a22

25 format(a2,1x,a18,1x,a22)

5 read(4,3) i,a18,a22

3 format(i2,25x,a18,18x,a22)

if(i.eq.0) go to 6

if(n.eq.1) write(7,25) char(i),a18,a22

go to 5

6 write(7,35)

35 format(1x)

do 8 n=1,imax

read(4,7) a65

7 format(a65)

8 write(7,7) a65

imax=6

go to 9

10 close(4)

close(7)

stop

end

7.2.2 Kurucz Atmospheres in WD

Van Hamme & Wilson (2003) implemented the following Kurucz atmosphere

approximation in the WD program. It requires only a few additional a priori com-

puted files and increases the computational time only slightly. As the scheme

models temperature dependence of passband intensities6 through Legendre poly-

nomial approximation functions, the only remaining interpolation is in log g. The

Legendre approximations reproduce normal emergent stellar atmosphere passband

intensities in absolute units with errors typically smaller than astrophysical uncer-

tainties in the original atmospheres and are used to compute the integrated response

for the 25 passbands listed in the WD program documentation.7 Among these

6 Note that the Legendre approximation is not used for a specific wavelength but directly over the

whole integrated passband response. This is more accurate than a posteriori integration over all

wavelengths of the passband.
7 Monograph ebdoc2007 available at ftp://ftp.astro.ufl.edu/pub/wilson/lcdc2007
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are Johnson standard UBVRJIJ, RCIC, and Strömgren uvby, the nominal extended

Johnson infrared passbands JHKLMN, and the HIPPARCOS hip and TYCHO BT

and VT passbands.

Their computations are based on the normal emergent intensities provided on

CD-ROMs 16 and 17 described in Kurucz (1993) for microturbulent velocity 2 km/s.

Intensities are given at 1,221 wavelengths from 9 to 160,000 nm and 11 log g’s from

0.0 to 5.0 (cgs).

For each atmosphere model Van Hamme & Wilson integrated intensities over

each passband, weighted by response function, and similarly integrated blackbody

intensities. Irrespective of abundance or surface gravity, Legendre polynomials rep-

resent passband intensities accurately as functions of Teff over four subintervals,

with passband-dependent beginning and end points. Accordingly, four Teff subin-

tervals were bounded by lower (Tl) and upper (Th) effective temperatures with Teff

scaled according to φT = (Teff − Tl)/(Th − Tl). The coefficients φT result from

least-squares Legendre fits of degree m with m ≤ 9 based on the number of points

in a subinterval, which leads to a maximum of 10 Legendre coefficients. Use of a

subinterval end point as the starting point of the next subinterval greatly reduces

discontinuities at subinterval boundaries.

In many close binaries, especially those with tidally distorted components, at

least one of the stars has part of its surface outside the range of available atmosphere

models. Van Hamme & Wilson (2003) give one example; late-type W UMa over-

contact binaries with low gravity connecting necks are provide other examples. It

would be perverse to abandon atmosphere models for the entire star because of such

range limitations, yet a simple blackbody patch would impose an artificial discon-

tinuity that could introduce very bad numerical effects in light curve computation.

To avoid radiative discontinuities in very high and very low temperature regions,

Van Hamme & Wilson developed polynomial ramping functions in Teff and log g

that smoothly transition from atmosphere to blackbody regions. If a (Teff, log g) pair

is outside the range of atmosphere applicability, the program smoothly connects

atmosphere model intensities to blackbody band intensities over built-in ranges in

log g and Teff whose limits can easily be changed. This strategy allows atmosphere

computations of spotted stars with surface parts hotter or cooler than existing atmo-

sphere models.

7.3 Applications and Extensions

Abeunt studia in mores (You are what you learn)

This section describes specific astrophysically interesting applications and resulting

experiences with the most recent versions of the Wilson–Devinney program, or spe-

cial extensions (pulse arrival times, line profile analysis, LC93KS, and WD95) of

the Wilson–Devinney program. The intention is to provide hints about what can be

achieved and how various extensions can be used to derive astrophysical results. The

binaries discussed also demonstrate how interesting binary star astrophysics can be.

HD 77581/GP Velorum is an X-ray pulsar which makes it a very rich data source.

Some binaries in the ancient globular cluster NGC 5466 and some others in M71
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provide useful information both on binaries and clusters, although they are very

faint stars. The binary H235 in the open cluster NGC 752 is an interesting example

of the evolution of binary stars in clusters. The 24.6-day period EB AI Phoenicis is

one of the best-studied field EB systems. Finally, the chapter provides some results

on the analysis of fast and slowly rotating Algols based on line profile fitting.

7.3.1 The Eclipsing X-Ray Binary HD 77581/Vela X-1

This binary contains an X-ray pulsar. The pulse arrival times are an additional

observable used in asimultaneous analysis described in Sect. 4.1.1.6 and are mod-

eled as outlined in Sect. 3.8. For more background on pulse arrival time modeling,

we refer the reader to Wilson & Terrell (1998) on the methodology of incorporating

pulse arrival times in light curve modeling.

The ellipsoidal variableHD 77581/GP Velorum is the optical counterpart of the

pulsed, eclipsing X-ray source Vela X-1. A B0.5 supergiant and a neutron star move

in an eccentric orbit of about e = 0.1 and a period of 8.96 days. Spectral line broad-

ening indicates that the optical star rotates subsynchronously with 0.5 ≤ F2 ≤ 0.75

(Zuiderwijk 1995). The analyses by Wilson & Wilson & Terrell (1994, 1998), per-

formed with the original WD program, demonstrate the fruitfulness of asimultaneous

least-squares analysis of all available data. The analysis included the data shown in

Fig. 7.1:

1. B and V light curves observed by Van Genderen (1981);

2. optical (He I) radial velocity curves by Van Paradijs et al. (1977) , Petro & Hiltner

(1974), Van Kerkwijk et al. (1995), and Stickland et al. (1997);

3. pulse arrival times measured by Rappaport et al. (1980) and other sources given

in Wilson & Terrell (1998); and

4. estimations of the X-ray eclipse duration8 by Watson & Griffiths (1977).

The light curves were used only in preliminary experiments, not in the final solution.

The known X-ray eclipse duration was included in the analysis as an additional con-

straint with the formalism implemented in subroutine DURA (see Appendix E.11). In

thesimultaneous fitting of many types of data, appropriateweighting is very impor-

tant (see Sect. 4.1.1.6). Wilson & Terrell (1994, 1998) commented on which obser-

vations contribute most to specific output parameters:

X-ray eclipse ⇒ relative size of the B star,

pulse arrival times ⇒ orbital eccentricity,

radial velocities and pulse arrival times ⇒ absolute dimensions.

Neither the X-ray nor optical variations can yield the inclination. They indicate only

that the orbit is close enough to edge-on to produce broad eclipses. The important

point is that all relationships are used simultaneously to ensure a self-consistent

solution.

8 The 1994 analysis used the eclipse duration data by Avni (1976), Ögelman et al. (1977), and

also by Van der Klis and Bonnet-Bidaud (1984).
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Fig. 7.1 HD 77581 light curve and radial velocities, Vela X-1 pulse delays. This figure, taken from

Wilson & Terrell (1994), shows the light curve, radial velocity, and pulse delay data involved in

the simultaneous analysis and the curves fitted to the data. Courtesy D. Terrell

7.3.2 The Eclipsing Binaries in NGC 5466

The EB systems in the ancient globular cluster NGC 5466 (see Fig. 2.3) were

included in the University of Calgary binaries-in-clusters program. The objective

was to analyze EBs in well-studied clusters in a boot-strap program to increase

knowledge of both binaries and clusters. The systems were discovered to eclipse

by Mateo et al. (1990), who provided the only published light curves. These were
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Fig. 7.2 Light curves of NH31 in the globular cluster NGC 5466. Observed data and computed V

and B light curves of the detached (a) transit, (b) semi-detached, and (c) occultation models. This

is Fig. 1 in Kallrath et al. (1992)

the first binaries modeled with an updated version of LC83KS in which spot param-

eters could be adjusted automatically. The modeling work to date is summarized in

Kallrath et al. (1992) and in Milone et al. (1992a). The models for the components
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of the over-contact systems [NH19 and NH30 in the notation of Nemec & Harris

(1987)] and the two most likely models for the non-contact system NH31 (its light

curves and fits are shown in Fig. 7.2) indicate all the stars to be among the large blue

straggler population of this cluster. Since blue stragglers are brighter and bluer than

the isochrones drawn through the bulk of the stars on the color-magnitude diagram,

they appear to be far younger than the other cluster stars. Since most over-contact

systems are not blue stragglers, the two cases in NGC 5466 are very important. A

current theory for the origin of blue stragglers is that they are merely unresolved

binaries which appear brighter and bluer as a result of a dredge up of material from

the interior because of some sort of binary interaction. Another, not necessarily

independent, theory is that they represent merged stars. The over-contact systems

appear to have contact parameters exceeding 0.90, while the non-contact system

has a period of only ∼ 0.d5, making it apparently one of the shortest-period Algol

systems. Therefore, all three seem to be heading toward mergers. To summarize, the

three main facts about binaries and blue stragglers in NGC 5466 are

1. each star of these blue straggler systems is itself a blue straggler;

2. these three systems are the only known EBs in the cluster; and

3. there are many blue stragglers in this cluster.

These facts argue for an ongoing merger process during which the three systems

have not yet merged because they are themselves the remnants of four-body systems,

all previous two-body systems having merged long ago.

The conclusions are dependent on the light curve solutions for the EB s, but

it is legitimate to ask how reliable the solutions are. The systems are faint: The

V magnitudes range from 18.4 for NH19 at maximum to 19.6 for NH30 at min-

imum, and only V and fragmentary B light curves have been published. Two of

the three show a clear O’Connell effect (defined on pages 6 and 135). One way

to overcome this problem is to include spots in the light curve modeling, although

in such cases spots serve only as an artifice to “save the phenomena.” As we have

noted elsewhere, the general acceptance of a spot model depends on a satisfactory

representation of the observations, and on evidence beyond the light curve. Impor-

tant tracers of the physical existence of star spots are the following: variability of

the O’Connell effect, phase migration of the light curve asymmetry with time, the

presence of molecular bands in spectra taken at phases for which large, cool spots

are predicted, magnetometry evidence of strong Zeeman splitting, and line profile

perturbations which are interpreted as rotational velocity fields. Unfortunately, most

of these tracers require very high spectral resolution and light gathering power. In

the case of the nineteenth magnitude systems in NGC 5466, this evidence is hardly

forthcoming. Therefore we cannot show in any conclusive way that the O’Connell

effect is correctly modeled by spots; neither can we show that it was not. The other

major difficulty with the solutions is the lack of radial velocity measurement. Milone

et al. (1987, 1991) and Milone (1993, pp. 195–202) demonstrated that radial velocity

curves provide an important discriminant among models, especially if light curve

phase coverage is incomplete or if eclipses are only partial. Unfortunately, it is
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difficult to convince telescope allocation committees (for telescopes of sufficient

size to provide the data) that this kind of project is feasible and worthy of telescope

time. The best that can be done at present is to obtain data in passbands across a large

range of wavelength. This will make it easier to find the relative surface fluxes; it

will also permit exploration of the flux distribution of any light curve perturbations.

But for the final discrimination amongoccultation andtransit models in the detached

case, and critical confirmation in others, we must continue to seek radial velocity

data. Hopefully, some “telescope allocation committees” will sufficiently appreciate

the importance to astronomy of fundamental properties of stars to risk three days of

telescope time.

7.3.3 The Binary H235 in the Open Cluster NGC 752

For the over-contact system H235 in the open cluster NGC 752 both radial-velocity

(Fig. 7.4) and light curves are available. The system was modeled with the WD93K93

code (the enhanced 1993 Wilson–Devinney program with 1993 Kurucz atmo-

spheres), and the upgraded Simplex version LC93KS, which permitted the simulta-

neous fitting of radial velocity and light curves, with spots for the first time.

The solution (Milone et al. 1995) assumed a radiative envelope because of the

relatively early spectral type. The analysis was successful but evidence of a variable

O’Connell effect precluded the modeling of an additional, incomplete CCD light

curve, and necessitated the use of three spots to secure a satisfactory, but not perfect

fit (Fig. 7.3) to the photoelectric light curve. Subsequently it was found that the

assumption of nonlinear limb darkening, a two-iteration reflection effect treatment,

and the use of albedos and gravity brightening coefficients appropriate for convec-

tive envelopes improved the fit by nearly 8%, most of which occurred with the use

of the two-pass reflection option. The most important changes in the parameters of

the fittings (Milone & Terrell 1996) are

1. the temperature difference is almost zero with ∆T = −1 ± 42, so that

T2 = 6501 ± 156, compared to T1 = 6500 ± 150 (est.);

2. the components are slightly larger, increasing both luminosities and fill-out

factor;

3. the “fill-out factor” changed from 0.214 to 0.583; and

4. the absolute magnitude changed from MV = 3.27 [not 3.41 as given in Milone

et al. (1995)] to 3.18 ± 0.11.

Although the changes in modeling elements may appear to be modest, they lead to

important differences in the interpretation of H235. It appears to be more evolved

and thus closer to a merger system than was originally thought. The system is impor-

tant in our understanding of the dynamical processes in open clusters because the

star density of open clusters is sufficiently low that collisional interactions were

considered not frequent enough to be important. The case of H235 may require a

reassessment of the effects of many weak interactions on binary star evolution in

such clusters.
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Fig. 7.3 Light curve of the over-contact system H235. This plot, part of Fig. 2 in Milone et al.

(1995), shows the V light curve (observed data and fit in the three-spot case) of H235 in the open

cluster NGC 752

Fig. 7.4 Radial velocities of the over-contact system H235. This plot, part of Fig. 5 in Milone et al.

(1995), shows the observed and calculated radial velocity curves (three-spot case) of H235 in the

open cluster NGC 752
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7.3.4 The Field Binary V728 Herculis

Not every application is automatically successful. The system V728 Herculis was

modeled with both WD93K93 and LC93KS, but for a long time the latter con-

sistently yielded physically unrealistic temperatures for the secondary which was

found to be the hotter component. These earlier runs were carried out under the

assumption that both envelopes were radiative – a reasonable assumption because

the spectral type is F3-5, and the minima are of similar depth. However, subse-

quent modeling indicated that deeper valleys existed in parameter space if convec-

tive atmospheres were assumed. When gravity brightening and albedo coefficients

appropriate for this case were adopted, the Simplex and the WD programs converged

to quite similar results. These later trials were concluded with WD93K93 in a two-

iteration reflection effect treatment, with nonlinear limb darkening. Both radiative

and convective solutions were obtained with binned and unbinned data sets. The

results for the convective modeling solution indicate that binning sometimes is sig-

nificant to the final solution: For the radiative modeling solution, it did not matter

(both data sets converged to the same solution). For the convective runs, the results

were 1σ or more different for some parameters. The observations and analytical

results are discussed in Nelson et al. (1995). The final mass ratio was determined

to be q = 0.1786 ± 0.0023 and the contact parameter, f = 0.71 ± 0.11. Work by

(1995) and Rasio & Shapiro (1994, 1995) suggests that over-contact systems with

deep convective envelopes and small mass ratios (q < 0.45) may be unstable and

enter into the final merger stage. One of the interesting results of the Nelson et al.

(1995) study, however, is that there was no evidence of significant period change

that might be expected to accompany such a situation, although more recent times of

minimum obtained by Nelson et al. suggest at least a different period if not a variable

one is needed to satisfy them. However, forV728 Her, one index of instability, the

radius of gyration as defined by Rasio (1995), is found to be in the stable region of

Rasio’s Fig. 1: k2
1 = 0.16. The instability of this over-contact system is, therefore,

not demonstrated observationally – at least not yet.

7.3.5 The Eclipsing Binaries in M71

There are five known EBs in the globular clusterM71 (Yan & Mateo 1994, Mateo &

Yan 1996). The systems are around eighteenth magnitude in V, with V − I ≈ 1 but

the Yan & Mateo CCD light curves are relatively smooth. These have been modeled

with WD93K93 by J. McVean for an MSc thesis at the University of Calgary. The

results are summarized in McVean et al. (1997). He assumed9 initial masses of 1.7

M⊙, roughly twice the turn-off mass for the cluster, from the models of Bergbusch

& Vandenberg (1992). Three of the binaries (V1, V2, and V5) are over-contact

9 The radial velocity curves by Mateo & Yan (1996) were not yet included in this analysis.
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Fig. 7.5 Cluster magnitude diagram of M71 with isochrones. It also contains the positions of the

binaries and their individual components (open symbols); from Fig. 2 in McVean et al. (1997)

systems; the other two appear to be detached systems according to the best fit

models, but the photometric secondary star of V4 has a contact parameter of −0.11,

indicating that it nearly fills its Roche lobe. Due to O’Connell effects in the light

curves of V1 and V3, a spot group was required on one of the components of

both systems. All five systems have derived distances, within errors, in agreement

with those (3.6 ± 0.5 kpc) determined by Cudworth (1985) but V3, has an unusual

location on the color-magnitude diagram of the cluster (see Fig. 7.5), and for this

reason Yan & Mateo (1994) doubted its membership. The interesting results of the

analysis were first that a slight preference was found for the [Fe/H]= −0.3 Kurucz

atmosphere fluxes and second that the uncertainties, especially for the mass ratios,

were unusually low for systems of this kind, where radial velocities are not avail-

able. As in most investigations involving the WD93K93 program, the probable errors

for the full set of the final run were used and cited, but in some cases, the formal
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probable error was of order ∼ 2%. This is a purely internal error, of course, and

refers only to the uncertainty in the deepest minimum in each of the modeling runs,

since uncertainties in the DC output file refer only to the values near the minimum.

The true errors in such parameters are certainly higher, but the accuracy of the result

nevertheless is very high, mainly on the basis of the extensive Simplex as well as

perturbed WD modeling.

7.3.6 The Eclipsing Binaries in 47 Tuc

A HST search for “hot Jupiters” around the stars of the globular cluster NGC 104,

otherwise known as 47 Tuc, has been described by Gilliland et al. (2000). A by-

product of the 8-day continual imaging of a portion of the core region of the cluster

produced a large number of variables, only some of which were previously known.

Subsequent ground-based imaging of wider regions of the cluster produced even

more variable star discoveries and more light curves on those that were obtained

by Gilliand’s experiment, but here we describe only a few results from the HST

experiment alone.

Although the data for each light curve are numerous (∼1290) in each of pass-

bands transformed to the V and IC band, respectively), the information is not

always as complete as one would desire. Two passbands are the minimal informa-

tion needed to argue about temperatures of the components from the standpoint of

light curve data alone. The faintness of these stars and the crowdedness of the field

effectively eliminates the possibility of obtaining radial velocity dispersion spectra

for these objects. The only way one can proceed to obtain fundamental data from

EB light curves in this cluster is to rely on the very careful studies that have been

carried out of the cluster itself. Fortunately, Bergbusch & VandenBerg (2001) have

been able to obtain consistent models for the cluster isochrones (curves of constant

age on the magnitude-color diagram). With these, Milone et al. (2004) were able to

devise and use a method to bootstrap this information and the results of modeling

the two passband curves to obtain a consistent set of results for both component

stars in a handful of the systems of the cluster. Initial parameter guesses were made

from a set of light curve properties (eclipse depths, widths, contact phases) pro-

vided by simulated light curves for systems with 47 Tuc metallicity and with the

brightness and color of the VandenBerg (2000) isochrone [see also Bergbusch &

VandenBerg (2001) and VandenBerg et al. (2002)]. This work is described briefly

by Milone et al. (2004). The method to use only the two light curves and the most

reliable isochrone for the cluster has been described in Chapter 5. Since the initial

modeling work, R. Gilliland (private correspondence to EFM) suggested that the 47

Tuc photometry should be redone. This has been carried out by R. Guhathakurta

(2009, private communication) for constant stars; R. Stagg and Milone are examin-

ing the impact of revised photometry on the properties of the eclipsing binary star

components.
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7.3.7 The Well-Studied System AI Phoenicis

This 24.6-day period binary is one of the best-studied field EB. Its discovery on

sky patrol plates taken at a Remeis-Sternwarte Bamberg Southern Station was

announced by Strohmeier (1972). Subsequently, Reipurth (1978) obtained uvby

data and Imbert (1979) obtained the first radial velocities and analyzed the system.

Hrivnak & Milone (1984) obtained the first UBVRI light curves and performed the

first light curve analyses with the WD program using the blackbody option. This was

one of the earlier uses of the program to study an eccentric orbit binary. They found

the components to be a mid-F dwarf of mass (1.12 ± 0.03) M⊙ and (1.77 ± 0.03)

R⊙ and a late G subgiant of (1.16 ± 0.03) M⊙ and (2.85 ± 0.03) R⊙, respectively.

Vandenberg & Hrivnak (1985) investigated the evolutionary state of the system.

From the color indices, they deduced the bounds of the metallicity (Z = 0.0169

to 0.04) and used these to establish bounds for the helium content and the age: For

Y = 0.33, τ = (4.3 ± 0.3) Gyr, whereas for Y = 0.43, τ = (2.9 ± 0.2) Gyr. Subse-

quently, Andersen et al. (1988) made use of additional uvby photometry, new radial

velocities, and highresolution (R ≈ 50,000) spectra obtained at good S/N (∼200)

to reanalyze all existing data with the NDE model, although they do not specify

the program they used (presumably therefore a version of EBOP). Andersen et al.

(1988) do not show the computed light curves but the radial velocity predictions are

seen to be in excellent agreement with the data, and they reported good fittings of

the separate passband solutions to the light curve data. They found somewhat larger

uncertainties for the elements at least partially because they rejected two points on

the rising portion of the light curve that had been accepted by Hrivnak & Milone

(1984) and improved precision for the uvby light curves. Andersen et al. (1988) con-

cluded from an analysis of their high- resolution spectra that [Fe/H] = −0.14±0.10,

and Z = 0.012±0.003; from this they derived Y = 0.27±0.02 and τ = (4.1±0.4)

Gyr.

Thus, even before the modeling with improved atmospheres options, the ele-

ments of AI Phe were among the best determined of all evolved systems. Milone

et al. (1992b) reanalyzed all previously published data and IUE ultraviolet obser-

vations obtained in the primary minimum. The latter had been obtained in order

to investigate the limb darkening in the hotter component, which, on the basis of

earlier work by Imbert (1979) was thought to be a solar analogue with a spectral

type of G2V, and suitable for direct comparison with the solar center-to-limb vari-

ation studied by Kjeldseth-Moe & Milone (1978). Milone et al. (1992b) made use

of the Kurucz (1979) atmospheres option in the University of Calgary version of

the WD program, WD83K83, and obtained a multiwavelength solution consistent

with individual passband elements. This modeling used the empirical corrections of

Wade & Rucinski (1985) to fit the ultraviolet light curves better than any previous

modeling. They found the mass and radius for the hotter and cooler star, respectively,

to be (1.190 ± 0.006) M⊙ and (1.762 ± 0.007) R⊙; and (1.231 ± 0.005) M⊙ and

(2.931 ± 0.007) R⊙. With the temperature of the hotter component taken as 6310 K

(±150 K, assumed), that of the secondary was determined to be (5151±150) K. Sub-

sequently, modeling with WD93K93 was carried out to test the effects of multiple
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reflections and slight changes in metallicity with flux files that made use of the atmo-

sphere models by Kurucz (1993). This modeling has produced little improvement

at the present writing, but this was expected given the small range of metallicity of

the models attempted so far ([Fe/H] = −0.02, 0, +0.02). In the later 1990s AI Phe

has been analyzed with WD95, as a test for this new package. Finally, in Sect. 8.4

we briefly indicate how the distribution of residuals in the AI Phe modeling process

have been analyzed.

It is useful to summarize why this system has been of such interest. The main

reason is that the components have evolved from the main sequence, and at differ-

ent rates. Their intrinsic properties thus provide the means to test evolution models.

A precise determination of the elements is possible in this case because the system is

double-lined, and the eclipses are total ( i = 88.◦45±0.◦01) despite the long period of

the system, so that the shape of the minima can be observed in detail. The improved

modeling has provided more precise values of the radiative and at least as precise

values of the nonradiative properties as previous studies, but with improved confi-

dence. Additional reasons for modeling this system are the significant differences

between the component’s colors and magnitude, due to the relatively cool temper-

ature of the secondary component. The modeling of the flux of the cool secondary

is a challenge for stellar atmosphere theory. The far-ultraviolet limb darkening of

the hotter star can be studied more easily because of the lack of contribution from

the cooler component. Finally, effects seen in other systems involving a late-type

subgiant are absent, namely the RS CVn-type behavior, which can complicate the

determination of fundamental stellar properties.

Current modeling involves the exploration of the effects of multiple reflection,

of nonlinear limb darkening, and of chemical composition. The models tested have

thus far not included stars as deficient as −0.1 and −0.2 but this is planned for the

near future.

The full sweep of the importance of systems such as AI Phe and binaries in

clusters is beyond the scope of this book, but we refer to Andersen (1991) for

an extensive discussion of the former, and the contributions detailed in Milone &

Mermilliod (1996) for the latter.

7.3.8 HP Draconis

The 10.d76-day period, eccentric orbit double-lined eclipsing binary HP Draconis

was among the systems used to test the capability of the GAIA mission to yield

fundamental stellar data; cf. Milone et al. (2005). The system was discovered as

variable in the HIPPARCOS mission albeit with an incorrect period (6.d 67). The

test involved using HIPPARCOS and TYCHO photometric data, which were of

somewhat lower precision than GAIA was expected to provide, and radial veloc-

ities measured from echelle spectra obtained at Asiago Observatory. The mean

standard errors for the HIPPARCOS and TYCHO light curves were 0.012 and

0.11 magn., respectively; the spectral resolution is 20,000 and the mse of the RV



322 7 The Wilson–Devinney Program: Extensions and Applications

curve is 3 km/s. The latter is higher than expected for the GAIA spectroscopy but

the latter were to include more observations in compensation. The main problem

with the photometry was the paucity of data in the minima: only three data points

in the primary minimum and seven in the secondary minimum of the hip light

curve. The TYCHO data were even worse: the minima could not be identified. They

were, however, useful for determining colors and thus temperatures; T1 was taken

as 6,000 K. The modeling code was the package WD2002, in which the simplex

program and self-iterating damped least-squares routines were used. The converged

solution was able to yield very good results for some parameters and excellent if

preliminary results, for others. Among the preliminary results were a significant

dω/dt term.

Independently, Kurpinska–Winiarska et al. (2000) with photometry from Cracow

Observatory determined the system to be eccentric. The Cracow photometry con-

sisted of B and V light curves with complete coverage of the minima and this group

obtained additional radial velocities from the ELODIE spectrograph on a telescope

at the Haute Provence Observatory.

In 2008–2009 all available data except the TYCHO set were analyzed with

the Wilson–Devinney program, 2007 version. Nineteen parameters were simulta-

neously adjusted, 13 of which are curve independent: a, ǫ, ω, γ , T2, i , Ω1,2, q, t0,

P , dP/dt , dω/dt , L1(B,V,hip), ℓ3(B,V,hip). Initial values were taken from the solu-

tions obtained by Milone et al. (2005) and Kurpinska–Winiarska et al. (2000). This

program is not self-iterating and the method of non-correlating subsets was used

to improve fittings from run to run. Solar composition was assumed for the stellar

atmospheres corrections, which are completely internal in this version. Several thou-

sand runs were carried out in several series. The lowest SSRs were obtained with

a set of elements that included a significant third light component ineach of the B,
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Fig. 7.6 The fitting of the B primary minimum of the HP Draconis light curve. The data are from

Cracow Observatory. Courtesy, M. Kurpinska-Winiarska and E. Oblak
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Fig. 7.7 The fitting of the B secondary minimum of the HP Draconis light curve. The data are

from Cracow Observatory. Courtesy, M. Kurpinska-Winiarska and E. Oblak

V , and hip passbands and there is a marginally significant dω/dt term. Figures 7.6

and 7.7 show the final B light curve fitting at primary and secondary minimum,

respectively.
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Fig. 7.8 Fitting line profiles. This figure, Fig. 6 in Mukherjee et al. (1996), shows fitted versus

observed profiles. Courtesy J. D. Mukherjee
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7.3.9 Fitting of Line Profiles

Although it never became available as public software, Mukherjee et al. (1996)

combined the theory of stellar line broadening for local profiles with the WD pro-

gram and used it to estimate rotation rates of Algol binaries by fitting line profiles

to observed data. They used the Simplex algorithm and the method of Differential

Corrections to adjust the damping constant Γ, number N f of absorbers along the

line-of-sight, turbulent velocity vtur, absorption versus scattering parameter ε, and

the rotation parameter F1for the primary star. Figure 7.8 shows the observed and

fitted line profiles for some rapidly (U Cep, S Cnc) and slowly (RZ Cas, TV Cas)

rotating Algols. For the full analysis we refer the reader to Mukherjee et al. (1996).

7.4 The Future

In futuro ...

This section looks into the future of the WD program. We keep the Future as Seen in

1999 (the year when the first edition was printed), add comments [in square brack-

ets] where significant progress has been made, and then lend a current perspective

on future developments.

7.4.1 “The Future” as Envisioned in 1999

The history of the WD program has been one of various special purpose versions that

were developed for particular problems, followed by absorption of their capabilities

into the general program. For example, it is anticipated that the 1998 version com-

putes light curves, radial velocity curves, spectral line profiles, and images, while

versions that compute polarization curves and X-ray pulse arrival times now exist

separately and eventually will be absorbed. Generalizations that a user need not

worry about are embedded invisibly wherever practical. For example, computational

shortcuts for many special case situations speed execution without compromising

more intricate cases. The 1998 version (Wilson 1997; private communication) will

have the following changes/additions vis-à-vis 1992:

1. The model can have circumstellar scattering regions (see Sect. 3.4.4) that atten-

uate star light by several scattering mechanisms. A first application is toAX

Monocerotis (Elias et al. 1997).

2. Spectral line profiles can be computed, with the various proximity and eclipse

effects and blending. Line profiles can be associated with specific regions on a

star. This feature permits analysis of chromospheric fluorescence and also lines

from star spots.

3. Either time or phase can be the independent variable. We can thereby solve for

ephemeris parameters, including time derivatives of the period and argument of

periastron, and can combine data from several epochs.
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4. Simulated observational error can now be added to light curves so as to facilitate

solution tests on synthetic data.

5. Output needed to make pictures of a binary, including spots, is now provided.

The data can be used as input to any commercial or private plotting program.

6. The Levenberg–Marquardt procedure can be applied by entering a nonzero

value for the damping constant λ.

7. The program is now entirely in double precision.

8. Input and output formats have been revised so as to assure entirely adequate

numbers of digits, even for rare and extreme cases. Some quantities that previ-

ously were in floating format are now in exponent format.

9. Because of the options to compute additional kinds of quantities, a control inte-

ger now determines the LC input/output format and triggers certain decisions

about what will be computed. The output is thereby easier to read because LC

does not try to squeeze everything into the page width.

10. Because of a preference in the literature for standard deviations, as opposed to

probable errors, the parameter error estimates are now standard deviations.

Several improvements await incorporation:

• Polarimetry is a ripe field for exploitation in light curve analysis. The data are

scarce but the means to incorporate them into analytical methods could encourage

further observational progress in this demanding field. It is expected that in a few

years the WD light curve program will support the analysis of polarimetry data.

[NB.: The development and deployment of ESPaDOnS (for Echelle SpectroPolo-

metric Device for the Observation of Stars) on the Canada–France–Hawaii Tele-

scope (CFHT) will be a boon for polarimetric studies of EBs, both hot and cool

systems. The instrument is capable of producing spectra from 0.37 to 1.00 µm

at a resolution of 50,000. The study of stellar magnetic properties has experi-

enced vigorous growth over the past two decades, and with an instrument such

as this on a major facility at a site with excellent seeing, continued growth of the

field seems assured (assuming that practitioners are granted time by telescope

allocation committees). A number of investigations of rapidly rotating early- and

late-type stars have been studied with this instrument, yielding information about

magnetic field structures. It will be interesting to see such investigations carried

out on binary stars.]

• Atmospheric eclipses for components with extended atmospheres.

• Improved accuracy, e.g., light curve quadrature and spot geometry.

An accuracy improvement for WD is on the way, but is intricate and not yet debugged.

At present the work is a “back burner” project. The accuracy improvement will

be major and might be used either to reduce error or to reduce execution time

for the same level of precision. On a shorter timescale, we can expect line profile

improvements such that several broadening mechanisms (e.g., thermal and turbulent

Doppler broadening, damping) will be included or the capability to fit spectral line

profile parameters. Also, the circumstellar scattering regions mentioned above will

be made to scatter starlight into the line-of-sight, in addition to their present function
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as attenuatingclouds. Clouds might be treated on the basis of rigidhydrodynamics.

The effects of streams in Algol systems on light curves have been modeled outside

WD by several workers, cf. Terrell (1994), who developed a hydrodynamic code.

This work could be combined withcloud modeling in a more extended module (see

Sect. 9.1.1 for a definition of modular structure and modules). Having clouds in the

models also requires us to model Thomson scattering and other types of scattering

and absorption. Although the program has a simple stellar atmosphere capability

(main sequence stars only), the atmosphere provisions of some other programs [e.g.,

Linnell (1991), Milone et al. (1992b)] are major improvements and very impor-

tant. Therefore it is anticipated that a relatively general atmosphere routine will be

added to the WD program at some point. [NB.: The improvement of the least-squares

engine to a damped least-squares one has been a major advance. Eclipses caused by

discrete clouds in atellar atmospheres can now be carried out in WD programs.

Kurucz atmospheres are now standard in the most recent WD programs and have

been directly incorporated into the code instead of relying on auxiliary files of

model atmosphere to blackbody fluxes as had to be the case in the WD98k93 and

W98 package programs developed by Milone, Kallrath, and collaborators. There

still need to be auxiliary files for the individual metallicities, however. Wilson’s

own 2007 version of WD incorporates ramp functions to move between regions for

which Kurucz models are applicable and those where black bodies must be used.

The atmospheric models are available for a wide variety of metallicities and can be

applied for a large number of passbands.]

7.4.2 The Future (as Seen in 2009)

In futuro ...

In addition to the improvements described above that are only partially implemented

at present, a number of additional improvements are in the process of being imple-

mented and still others can be foreseen. These include the following:

Direct distance estimation as described in Sect. 5.1.4 and Wilson (2008) will

be available in the 2009 version of the WD program. This is based on absolute

calibrated light curves which permits the determination of the temperatures of both

components and the comparison of computed absolute, distance-dependent flux with

the observed flux. This feature also allows the fitting of the interstellar extinction

attenuation, Aλ, i.e., for specific passbands at effective wavelength λ.

Inverse distance estimation exploits distances obtained, for example, by the

HIPPARCOS and GAIA missions to constrain the solution and to reduce correla-

tions among parameters.

Analysis of an eclipsing binary component with pulsations: Future editions of the

WD program may include the physics of pulsating variable stars. Progress toward

such a goal is in preparation by Wilson (2009).

Discontinuous period changes (Wilson 2005) also discusses possible implemen-

tation of discontinuous period changes.
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Continuum and spectral line polarization modeling: This feature is available in

a new version of WD under development by Wilson.

Addition of other adjustable parameters: There is provision in the 2007 version

of WD to include more adjusted parameters. One of the most useful of these could

be di/dt . It has been found in several eclipsing systems that the inclination varies

with time, due to the presence of a third body in the dynamical system of the binary.

This situation proved to be the case with the system SS Lacertae, for example. A

group of parameters that could be useful are those that stipulate the shape of spotted

regions on the stars. In his program LIGHT2 described in Sect. 6.3.3, Graham Hill

incorporated elliptical spots. Spot groups may be represented better by such a shape

than a circular set of spots. The major axis size could replace the current spot radius,

but the ellipticity and major axis orientation would have to be adjustable also, or at

least they would need to be specifiable.

Incorporation of stellar tomography into WD codes. The discussion of the

SHELLSPEC software in Sect. 2.5 indicated how powerful a tool this can be in

the case where specific spectral features can be associated with specific regions in a

binary star system. It would be very useful to be able to incorporate such a tool into

general light curve analysis software.

Facilitation of Passband additions. In the wd98k93 program and the WD98

package, instructions were provided to create new “flux files,” so that additional

passband data could be modeled. In the current WDx2007 program, however, the

passbands are “hard-wired” so that alterations to the program are required to add

new passbands. This cannot be done frequently, and pressure to do so would create

a nightmare for Robert Wilson and Walter Van Hamme who have already spent

a great deal of time and effort to make the program as self-contained as possible

with regard to stellar atmosphere application. Therefore, it would be useful to allow

additional passbands to be added by the user.
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Chapter 8

Light Curve Software with Graphical User

Interface and Visualization

ad unguem (to a fingernail; exactly; nicely done)

In this chapter we summarize the approach and current contributions to this area by

a number of authors. Here, however, direction rather than specific packages must be

emphasized because this subfield is rapidly changing.

Graphics and visual support1 include the plotting of light curves, graphing of

the fit and residuals, providing projected views of the components, and sometimes

the distribution of such physical quantities as surface brightness, spots, and promi-

nences. Three-dimensional and virtual reality visualizations will be discussed.

8.1 Binary Maker

Binary Maker is a commercially available software package developed by David

Bradstreet (1993); Bradstreet and Steelmans (2004) (Eastern College, Pennsylvania)

to visualize light and radial velocity curves and the appearance of the system itself

with varying phase. It permits to plot the Roche potentials and the outer and inner

Lagrangian surfaces in either Kopal or modified Kopal potentials and the calcula-

tion of several quantities among them: the radii of the components in back, side,

pole and point facings, surface areas and volumes, mean densities, locations of the

Lagrangian points L
p

1 and L
p

2, and the fill-out factor. Most importantly, it computes

and plots synthetic light and radial velocity curves. It can also be used to derive the

mass ratio from observed radial velocity curves, and other parameters, through trial

approximations of light curve fittings to data.

Binary Maker can plot observed light and radial velocity data for comparison

with computed light and radial velocity curves. It also computes and plots spec-

tral line profiles at selected phases. Generated light curve and radial velocity curve

data points can be simultaneously displayed with the projected three-dimensional

view of the system model replete with star spots and in the correct orientation

1 In the late 1990s Dirk Terrell (University of Florida, now at the Southwest Research Institute,

Boulder, CO) distributed a Wilson–Devinney program which has a user-friendly I/O interface run-

ning under Microsoft Windows.

J. Kallrath, E.F. Milone, Eclipsing Binary Stars: Modeling and Analysis, Astronomy

and Astrophysics Library, DOI 10.1007/978-1-4419-0699-1 8,
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Fig. 8.1 The limit of an eclipse of an over-contact system. Created with the help of BM2

(Bradstreet 1993)

toward the observer. The surface elements may be shown in both spherical and

cylindrical coordinates. One of its most interesting features is the demonstration

of the effects of star spot regions on the light and radial velocity curves and on the

profiles.
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Fig. 8.2 Shallow eclipses. Created with the help of BM2 (Bradstreet 1993)

The present version (3.0) at the time of this writing does not make use of the

1992 WD or WD93K93 program features such as asynchronous rotation, nonlinear

limb-darkening, multiple reflection, or Kurucz atmosphere calculations. However,
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Fig. 8.3 Deep eclipses. Created with the help of BM2 (Bradstreet 1993)

most of the features available in the pre-1979 version of the WD program are

included. Unlike BM2, however, eccentric orbits are treated and BM3 runs on a

variety of platforms, including Windows on PCs, Unix, and Macintosh computers.

The program has many uses for both research and teaching. It is perhaps most

valuable for demonstrating the effects on the synthetic light and radial velocity

curves and profiles of changes of particular parameters. The manual has been

updated and defines many of the classical WD program features. We cannot recom-

mend it strongly enough; indeed, we have illustrated many of the useful features of

Binary Maker 3.0 repeatedly throughout this book, just as the previous edition

made use of BM2 illustrations.
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In Figs. 8.1–8.3 we show some pictures produced with Binary Maker 2.0

showing the light curve, radial velocity curve, and three-dimensional shape of an

eclipsing binary system. They were produced to determine, for predefined geometry,

the smallest inclination which leads to an eclipse.

The following parameters have been used to produce the plots:

q Ω1 = Ω1 λ [nm] T1 [K] g1 = g2 x1 = x2 A1 = A2 ℓ3

0.5 2.875 550 5500 0.32 0.6 0.5 0

The normalization phase has been set to 0.25 and the phase increment was 0.01.

For the first four figures we used the latitude and longitude grid numbers 10 and 20,

while for the last two figures we chose 15 and 30.

8.2 PHOEBE

PHOEBE (PHysics Of Eclipsing BinariEs) by Prša & Zwitter (2005b) is a modeling

package for eclipsing binary stars, built on top of WD program (Wilson & Devinney

1971, Wilson 1979). The introductory paper by Prša & Zwitter (2005b) overviews

most important scientific extensions (incorporating observational spectra of eclips-

ing binaries into the solution-seeking process, extracting individual temperatures

from observed color indices, main sequence constraining and proper treatment of

the reddening), numerical innovations (suggested improvements to WD’s Differential

Corrections method, the new Nelder & Mead’s downhill Simplex method), and tech-

nical aspects (back-end scripter structure, graphical user interface). While PHOEBE

retains 100% WD compatibility, its add-ons are a powerful way to enhance WD by

encompassing even more physics and solution reliability. The operability of all these

extensions is demonstrated on a synthetic main sequence test binary; applications to

real data will be published in follow-up papers. PHOEBE is released under the GNU

General Public License, which guaranties it to be free, open to anyone interested to

join in on future development.

PHOEBE started as a wrapper, but the authors characterize it now as a standalone

EB modeling suite based on the WD model with several physical enhancements

among them:

• color indices as indicators of individual temperatures (color constraints);

• spectral energy distribution (SED) as independent data source;

• main sequence constraints; and

• interstellar and atmospheric extinction.
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PHOEBE is built in three layers: The lowermost layer is the modeling engine,

currently employing WD. On top of it is the extension layer, where all scientific,

numerical, and technical extensions are incorporated. The topmost layer is the user

interface layer, which serves as a bridge between the user and the model. PHOEBE

uses a scripting language especially designed for modeling eclipsing binaries and

giving a lot of flexibility to the user. Although the scripter is currently being rewrit-

ten into python, we give an example of its syntax:

open_parameter_file ("input.phoebe")

mark_for_adjustment (phoebe_incl, 1)

set res = minimize_using_dc ()

print res

adopt_minimizer_results (res)

PHOEBE currently uses WD as its back-end, but it can accommodate any physical

model instead or in addition to WD. It is written in ANSI C, which makes it fully

portable to any platform and any compiler around. Finally, it features a full-fledged

graphical user interface displayed in Fig. 8.4, which brings intuitivity and ease of

clicking to the EB community.

Fig. 8.4 A screen-shot of the PHOEBE graphical user interface. Courtesy Andrej Prša, Villanova

University, Villanova, PA
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PHOEBE uses a synthetic spectra database to test whether flattened, wavelength-

calibrated spectra match synthetic spectra within a given level of significance.

Originally, PHOEBE used the Zwitter et al. (2004) grid, but now the internal grid

is based on Castelli & Kurucz’s (2004) NEWODF SEDs. Accordingly, the scheme

to compute limb-darkening coefficients was changed. The computation of stellar

spectra of distorted stars is fully supported. The SED analysis is capable to find

the values of physical parameters that have not usually been attainable by light-

and RV-curve analyses, namely, metallicity and rotational velocity (see Terrell et al.

2003). In Sect. 5.1.2.2 SEDs are used to derive effective temperatures from color

indices.

8.3 NIGHTFALL

NIGHTFALL by Wichmann (2002) is a freely available amateur code2 for model-

ing eclipsing binary stars. It supports a large range of binary star configurations,

including over-contact (common envelope) systems, eccentric (noncircular) orbits,

mutual irradiance of both stars (reflection effect), surface spots and asynchronous

rotation (stars rotating slower or faster than the orbital period), and the possible

existence of a third star in the system. It allows the user to produce animated views

of eclipsing binary stars, calculate synthetic light curves and radial velocity curves,

and eventually determine the best-fit model for a given set of observational data of

an eclipsing binary star system.

8.4 Graphics Packages

Douglas Phillips (University of Calgary) has been working with a number of use-

ful visualization packages. The standard plotting tool for the University of Calgary

workstations is XMGR, for two-dimensional plots, and AVS for three-dimensional

plots. Figures 8.5 and 8.6 show high- and low-angle views of the phase and wave-

length dependence of the residuals of intermediate modeling of the binary AI

Phoenicis discussed in Sect. 7.3.7 and illustrates the power of the three-dimensional

visualization techniques.

Figures 8.5 and 8.6 represent two viewings of the residuals plotted against phase

for a succession of passbands. They therefore represent the spectra of the residuals

for each phase, and can be used, in certain instances, to gauge the physical mecha-

nism for the residuals if they are nonrandom. This case represents an unconverged

solution and is shown only to illustrate the technique only.

2 Nightfall can be downloaded from http://www.hs.uni-hamburg.de/DE/Ins/Per/Wichmann/

Nightfall.html. It runs only on Linux platforms.
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Fig. 8.5 High-angle, three-dimensional analysis of the residuals. High-angle views of the phase

and wavelength dependence of residuals

Fig. 8.6 Low-angle, three-dimensional analysis of the residuals. Low-angle views of the phase and

wavelength dependence of residuals
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Chapter 9

The Structure of Light Curve Programs

and the Outlook for the Future

This chapter reflects the authors’ views on the structure of future light curve

programs. It provides precepts for the structure of generic light curve programs and

a preview of the coming decade with the goal of promoting further activities in EB

research and light curve program development.

9.1 Structure of a General Light Curve Analysis Program

Nous avons changé tout cela (We have changed all that)

Commercially available hardware and software development packages have reached

a quality that they allow the components of the light curve analysis problem to

be incorporated efficiently into a stable and user-friendly program. These aspects

of any general light curve analysis program (hereafter, GLCAP) include the

following.

• the light curve models;

• capabilities of the least-squares solvers; and

• user-friendly front-ends.

Light curve models are most appropriately provided by astronomers. Least-squares

solvers could be implemented by some astronomers but more commonly by math-

ematicians, computer scientists, or others with a keen eye for efficiency, an exten-

sive knowledge of numerical analysis, and programming skills. The development

of a front-end typically requires the expertise of software engineers rather than

astronomers or mathematicians. Of course, many gifted individuals are capable of

fulfilling more than one of these rôles.

The three components of any GLCAP need to be linked appropriately. Although

such a program does not yet exist, a GLCAP can be expected to emerge in the future.

In order to maintain an open structure, it is likely that various experts will need to

contribute to the physical model and to the means to achieve mathematical opti-

mization. In such a distribution of labor, a framework and a number of well-defined

interfaces will be needed. In the following subsections we suggest how the frame-

work and the interfaces might be structured.
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GLCAP itself should consist of several modules and major subroutines:

• light curve models (LCI);

• module (DETPAR) controlling and invoking least-squares solvers;

• interface (F) to least-squares solvers;

• interface (DF) to compute derivatives required by the least-squares solvers;

• interface (FEI) passing the input from user-friendly front-end to vectors s con-

taining all system parameters and CP, a vector containing all control parameters;

and

• interface (FEO) passing the output back to front-end.

9.1.1 Framework of the Light Curve Models

GLCAPmay contain several light curve models of different complexity. The analysis

of eclipsing binary light curve data may start with a simple model assuming circular

orbits and spherical stars. Now, when computer power is not the limiting factor,

we might argue that the simple models have almost nothing to offer. Nevertheless,

at least for a while, simple models are likely to be used in the context of teaching

and by amateur astronomers, but also for deriving initial parameter estimates very

quickly. These results can then be used in more realistic models based on Roche

geometry. Each light curve model Li should be coded in a module LCI which in

turn is built up by several submodules. Generically, we will name it LC from now

on and describe its structure, input, and output quantities.

The structure of GLCAP and also LC should be modular. That is, it should sep-

arate the computation of orbit quantities, component surfaces, radiative physics,

eclipse effects, and special effects in modules. Modules are collections of subrou-

tines, are subroutines themselves on a higher level, and they are part of the over-

all program GLCAP but might be stored in separate files. The computation of line

profiles or the computation of the orbit might be considered as a module. Solving

Kepler’s equation would then be a subroutine in the orbital computation module. LC

should not do any file reading or file writing. This task should be carried out by an

I/O module. The input to LC would be in the form of multidimensional arrays:

• System parameters could be stored in the vector s containing all system

parameters, viz., inclination, mass ratio, etc. There should be a standard mapping,

defining, for instance,

x1 ←→ inclination i , 0◦ ≤ i < 180◦,

x2 ←→ mass ratio q, q > 0,

x3 ←→ temperature T1, T1 > 0, of component 1,

x4 ←→ . . ..

Of course, not all elements of the vector s might be used in subroutine LC. Therefore

LC would have a subroutine StoP which would map s to the vector p containing

only the parameters needed by LC. This mapping could include scaling transforms

as well as other features.
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• Control parameters CP containing a variety of control parameters, e.g.,

specifying the atmospheric model to use, accuracy to stop iterations, etc.

The output consists of the set {Lcal, RV cal, ...} of light and radial velocity curves,

and such other observables as polarization curves, spectral indices of various

kinds, or even line profiles.

9.1.2 Framework to Embed Least-Squares Solvers

Several available least-squares solvers could be included, among them

• least-squares solvers based on direct search algorithms, e.g., the Simplex algo-

rithm;

• Powell’s direction method;

• differential corrections with the Levenberg–Marquardt option;

• damped Gauß–Newton algorithm for constrained least-squares problems; and

• sequential quadratic programming.

The operational implementation amid such a group of solvers would depend on

the needs of the analysis. For instance, it could be advantageous to do an initial

search with the Simplex algorithm and then switch to the Gauß–Newton algorithm.

The switching could be automatic with control of the switch to invoke any specific

least-squares solvers in the subroutine DETPAR. This subroutine would have the

following major input data which are passed to the least-squares solvers:

• the number of data points to be considered in the least-squares fit, N ;

• the number of adjustable parameters, M ;

• the number of constraints, MC O N ;

• the vector FOBS containing all individual observed data points, e.g., all light

curves and all radial velocity curves;

• the vector FWEIGH containing the weights associated with the individual data

points. If the weights are lumped weights, they have to be computed in advance

before calling DETPAR;

• an initial guess x0 for the parameter vector to be determined. The vector s would

be mapped onto x by the use of information from a vector KEEP, which would

specify whether or not a parameter is adjustable; and

• control parameters specifying accuracy and termination criterion.

The output should consist of the

• vector x containing the parameters;

• vector ε(x) containing the statistical errors of the parameters; and

• status flag to interpret the results.

Each individual least-squares solver would access the light curve model through

a subroutine F. This subroutine would require N , M , and MC O N as passed to

DETPAR, and in addition it could find the set of phase values in a common block.
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The output would consist of the

• vector FX = {Lcal, RV cal,...}: all computed light curves and radial velocity

curves and

• status flag to interpret the results.

The subroutine F would again call subroutine LC, take the output of subroutine LC,

i.e., all light curves and radial velocity curves, and store it into the vector FX. If sev-

eral light curve models were implemented, subroutine F would find this information

in a common block.

9.2 Procedural Philosophies

Experto credite (Believe one who knows by experience)

Vergil (70–19 B.C.) Aeneid, 11, 283i

How might a general light curve analysis program be used? It should help the user to

process and analyze his data (we assume that photometric data have been reduced

and transformed to a standard system as per the precepts of Chap. 2 and that any

other data have been suitably standardized as well). It should be able to make best

use of anything that is known about the system, such as its distance, amount of

interstellar extinction, and reddening.

The first step is to import the data and to process them into standard format. The

format would depend on the type of data. For photometric data, it would consist of

triads of Julian Date or phase; differential or standard-system magnitudes, flux level,

or energy; and a suitable weighting factor. The data would then be transformed into

a standard form, such as triads of Phase (if the period, epoch, and any variations of

these elements are available) and relative light and weight.

The data would then be analyzed according to a selected light curve model. If

none is specified, a series of models could be tried, beginning with a simple one that

provides some rough initial parameter values. The preliminary parameter values

could then be used as initial input into a more sophisticated analysis using a model

based on Roche geometry. The program might request a selection of stellar atmo-

spheres, or information supplied earlier could be used to select appropriate stellar

atmospheres.

Depending on the characteristics of the binary system, the appropriate physics

would be attached to the model and the data reanalyzed. The result could be

1. geometrical parameters;

2. stellar parameters;

3. physical parameters describing gas streams, disks, or other physical objects; and

4. a statistical analysis including error limits for all parameters.

If the general light curve analysis program were used in this way, the results could

readily be compared to those of other authors. Such an analysis program could set

a standard for describing and archiving the properties of eclipsing binary stars in

general.
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9.3 Code Maintenance and Modification

Remis velisque (With oars and sails; with all one’s might)

The construction of any program requires a method by which changes can be made,

implemented, and remembered. Because science is usually progressive, model

improvements are inevitable. A prudent modeler will plan for them. Changes are

easier, faster, and safer to implement if the program is modularized.

An important issue to resolve is: Who will make the changes, check the code

for unexpected consequences or bugs, issue new version numbers, and distribute

the code? Code modifications require a central authority to take responsibility to

document and upgrade improvements, and, if our precepts regarding the modular-

ization of the code are accepted, to incorporate additional modules and subroutines

as they are developed. For data-acquisition and data-reduction packages, interna-

tional observatories (KPNO + CTIO = AURA and ESO) take on this role. There is,

however, no natural agency for a similar role to take over light curve analysis code

development. Indeed, there should be no way to prevent someone from modifying

a code to accomplish some particular task. But, if this is done, it is important that

all such modifications be identified, especially in publications that make use of the

result. While we find it unpalatable that a superauthority police the use of a code,

there is a case for a code creator to seek copyright or other protection for its use to

ensure that anyone modifying the code could be obliged to identify and document

changes in any publication that emerges. The modifying party could be required

to embed such documentation in comments before passing her/his modified code

to anyone else. This protocol could reduce confusion about code legitimacy and

performance.

Another possible mechanism to ensure responsible use and modification of pro-

grams would be to invoke the moral authority of the IAU through resolutions sug-

gesting these steps at a General Assembly: Commissions 42 (Close Binary Stars), 26

(Double Stars), 27 (Variable Stars), and 25 (Photometry and Polarimetry). Perhaps

others would be likely sources of such resolutions. In any case, we recommend a

naming scheme for identifying successive versions and upgrades. This would sim-

plify future investigators’ work associating solutions and program versions.

Technology has settled at least one class of questions. Such questions as how

upgrades could be announced and distributed (so troubling in past decades) are now

rendered trivial because of the widespread communication media of the Internet and

the World Wide Web.

The question of who will be responsible for maintaining the web pages and pro-

viding public access to various versions is still unresolved. In the case of a living

creator, there is presumably no doubt; nor would there be any if an “heir” were

designated by the progenitor. In the case that no such heir is designated, we recom-

mend again that the relevant IAU commissions (mainly 42 – Close Binary Stars, but

also 26 – Double Stars, and perhaps others) examine the question and designate an

individual or group to take on the responsibility of code maintenance, upgrade, and

distribution. One possibility is the creation of a multicommission Working Group

on Data Analysis.



346 9 The Structure of Light Curve Programs and the Outlook for the Future

9.4 Prospects and Expectations

Tempora mutantur, et nos mutamur in illis

(The times change, and we along with them)

Modern light curve analysis was born early in the twentieth century with the pio-

neering work of Henry Norris Russell. Thanks first to the theoretical investigations

of Zdenek Kopal beginning in the 1940s, and second to the development of practical

computer applications by a number of workers two decades later, the field underwent

a dramatic revolution in the 1970s. Since then light curve analysis has taken full

advantage of the remarkable progress in both computer hardware and software. The

Wilson–Devinney program has become the light curve analysis tool of choice by the

majority of the community, and the line of improved modeling and models extends

forward toward the horizon.

It seems likely that the number of observed light curves will continue to exceed

the number analyzed. Indeed, the use of CCDs of increasingly large format threaten

to overwhelm us with light curve data. Thousands of light curves are beginning to

emerge from large field imaging projects, such as OGLE and MACHO, which have

been developed to find gravitationally lensed objects. Unfortunately, the analysis

of binaries from such sources suffers from the lack of radial velocities as well as

spectral and color index data. Nevertheless, as image processing codes provide reli-

able magnitudes for more and more stars, the number of light curves will exhaust

our ability to analyze them unless concomitant ways of providing fast and reliable

analysis can be developed. Millions are expected by the Kepler or GAIA mission, or

ground-based survey such as the LSST. Section 5.3 contains promising techniques

to approach this challenge. Perhaps neural networks could be used to identify the

general type of light curve, and then adequate light curve models used to attack

the subtleties, and provide solutions. Neural network techniques are most advanta-

geous when the database of well-studied light curves is very large, since only a large

database can provide an adequate training set.

The quality of light curve analyses can also be expected to improve. Accurate

stellar atmospheres over expanded temperature and wavelength regimes will provide

the means to model the fluxes of binary components with ever-increasing accuracy.

Finally, an increasing range of types of objects and astrophysical conditions can be

expected to be modeled successfully with a package of standardized programs. The

phenomena of extended atmospheres, semi-transparent atmospheric clouds, variable

thickness disks, and gas streams, and a plethora of planetary transits as well as (from

infrared data) occultations are among such programs.

What does the long-term future hold? Besides the determination of orbits, stellar

sizes, and masses it seems likely that the detailed physics of stellar surfaces, includ-

ing those arising from activity cycles, will continue to be targets of modeling work.

It also seems likely that diagnostic tools will continue to be developed within light

curve codes to provide more insight into stellar astrophysics. The development of

ever more accurate stellar atmospheres is the key to the successful use of the anal-

ysis codes for the exploration of the radiative properties of the stars. It is crucial in
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transforming synthetic light curve codes into a diagnostic tool of great power. Such

developments will lead to ever better tools for the elucidation and understanding of

stars.

Finally, close binary research might initiate projects involving complicated

physics and requiring sophisticated mathematics or huge number crunching. Here,

we mention six problems:

1. The structural–dynamic readjustment of tidally distorted stars in eccentric orbits.

To what extent does stellar volume vary in response to forced nonradial

oscillations?

2. Computation of binary star interiors in terms of three-dimensional structural

dynamics: How is matter redistributed in a binary component that almost fills its

limiting lobe and is close to the beginning of mass loss through the Lagrangian

point?

3. Three-dimensional radiation–hydrodynamic problems in binary systems. This

includes meridional circulation and stellar winds and would treat the radiative

transfer without geometric assumptions.

4. A number of sources of spectral emission could be modeled usefully. The

presence of coronal plumes in systems with solar-like and later spectral type

stars is one of these. Another is the stream in morphologically defined Algol

systems. A third is the extensive disks around W Serpentis systems or around

white dwarfs in CV systems. Such complex structures, however, are not easily

characterized by one or even two parameters. However, there is software around

that treats these kinds of objects.

5. Investigation of dynamically evolving configurations that result from tides in

eccentric orbits, as in high-mass X-ray binaries such as GP Velorum/Vela-X1,

Centaurus X-3, and V884 Scorpii (HD 153919) with an optical O6.5 supergiant

and 6.m5 V magnitude.

6. Adjustable EB parameters that change in time: Currently, the rate dP/dt of period

change and orbit rotation dω/dt (apsidal motion) are the only parameters which

are traced in time. Third bodies inducing Kozai cycles as discussed in Sect. 5.2.1

can produce significant changes in binary’s eccentricity and inclination [cf. SS

Lac studied, for instance, by Torres & Stefanik (2000), Milone et al. (2000),

or Eggleton & Kiseleva-Eggleton (2001)]. Whereas the longer period in Kozai

cycles related to circularization and shrinkage of the orbit is of the order of

100,000 years, the shorter cycles from large to small and again back to large

eccentricities is of the order of 1,000 years. Thus, the effects are measurable

over decades. Another group of adjustable parameters that would be useful for

systems such as V781 Tau analyzed by Kallrath et al. (2006) are curve-dependent

spot parameters and allowance for differential stellar rotation and latitude migra-

tion of spot groups. The idea here is that the curves have been observed during

times with different spots on the stars. This work has been done for single stars

by Harmon & Crews (2000) and by the Catania astronomers.

These examples reemphasize that close binaries are not only rich in physics but the

ongoing need to extract the full measure of information contained in the data, leads,
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in turn to progress in the mathematical and numerical methods used in astrophysics.

Vive l’astrophysique!
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Appendix A

Brief Review of Mathematical Optimization

Ecce signum (Behold the sign; see the proof)

Optimization is a mathematical discipline which determines a “best” solution in a

quantitatively well-defined sense. It applies to certain mathematically defined prob-

lems in, e.g., science, engineering, mathematics, economics, and commerce. Opti-

mization theory provides algorithms to solve well-structured optimization problems

along with the analysis of those algorithms. This analysis includes necessary and

sufficient conditions for the existence of optimal solutions. Optimization problems

are expressed in terms of variables (degrees of freedom) and the domain; objective

function 1to be optimized; and, possibly, constraints. In unconstrained optimization,

the optimum value is sought of an objective function of several variables without any

constraints. If, in addition, constraints (equations, inequalities) are present, we have

a constrained optimization problem. Often, the optimum value of such a problem

is found on the boundary of the region defined by inequality constraints. In many

cases, the domain X of the unknown variables x is X = IRn . For such problems

the reader is referred to Fletcher (1987), Gill et al. (1981), and Dennis & Schnabel

(1983). Problems in which the domain X is a discrete set, e.g., X = IN or X = ZZ,

belong to the field of discrete optimization ; cf. Nemhauser & Wolsey (1988). Dis-

crete variables might be used, e.g., to select different physical laws (for instance,

different limb-darkening laws) or models which cannot be smoothly mapped to each

other. In what follows, we will only consider continuous domains, i.e., X = IRn .

In this appendix we assume that the reader is familiar with the basic concepts

of calculus and linear algebra and the standard nomenclature of mathematics and

theoretical physics.

A.1 Unconstrained Optimization

Let f : X = IRn → IR, x → f (x) be a continuous real-valued function. The

problem

1 The fitting of a model with free parameters to data leads to a minimization problem in which the

objective function is the sum of squares of residuals.
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352 A Brief Review of Mathematical Optimization

UC P : min
x
{ f (x)} ⇐⇒ f∗ := min

x
{ f (x) | x ∈ X}, (A.1.1)

is called an unconstrained minimization problem. A vector x∗ corresponding to the

scalar f∗ is called a minimizing point or minimizer x∗, f∗ = f (x∗) and is also

expressed as

x∗ = arg min{ f (x)} := {x | f (x) ≤ f (x′), ∀ x′ ∈ X}. (A.1.2)

Maximization problems can be transformed into minimization problems with the

relation

max
x

{ f (x)} = −min
x
{− f (x)}. (A.1.3)

Therefore, it is sufficient to discuss minimization problems only.

A typical difficulty associated with nonlinear optimization is the problem that

in most cases it is only possible to determine a locally optimal solution, not

the global optimum. Loosely speaking, the global optimum is the best of all

possible solutions, whereas a local optimum is the best in a neighborhood (for

instance, the local sphere introduced on page 172) of x∗ only. The formal definition

reads:

Definition A.1.1 Given a minimization problem, a point x∗ ǫ X is called a local

minimum with respect to a neighborhood N of x∗ (or simply local minimum )if

f (x∗) ≤ f (x), ∀ x ∈ N (x∗). (A.1.4)

If N (x∗) = X , then x∗ is called global minimum .

N (x∗) could be chosen, for instance, as the ball Bε(x∗) introduced on page 172.

Early methods used for minimization were ad hoc search methods merely com-

paring function values f (x) at different points x. The most successful method

of this group is the Simplex method [Spendley et al. (1962), Nelder & Mead

(1965)] described in Chap. 4.In this group we also find the alternating vari-

ables method, in which in iteration k (k = 1, 2, ..., K ) the variable xk alone is

changed in an attempt to reduce the value of the objective function, and the other

variables are kept fixed. Both methods are easy to implement. They can han-

dle nonsmooth functions, and they do not suffer from the requirement of many

derivative-based optimization procedures depending on sufficiently accurate initial

solutions for convergence. However, sometimes they converge very slowly. The

most efficient way to use such methods is to derive an approximate solution for

the minimization problem and use it to initialize a derivative-based minimization

algorithm.

Derivative-based methods need the first- and possibly second-order derivatives

involving the following objects:
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• Gradient of a scalar, real-valued differentiable function f (x) of a vector

x; f : X = IRn → IR, x→ f (x)

▽ f (x) :=
(

∂

∂x1

f (x), . . . ,
∂

∂xn

f (x)

)

∈ IRn. (A.1.5)

• Jacobi matrix2 of a vector-valued function F(x) = ( f1(x), . . . , fm(x))T

J(x) ≡ ▽F(x) := (▽ f1(x), . . . ,▽ fm(x)) =
(

∂

∂x j

fi (x)

)

∈ M(m, n). (A.1.6)

• Hessian matrix3 of a real-valued function f (x)

H(x) ≡ ▽2 f (x) :=
∂

∂xi

(

∂

∂x j

f (x)

)

=
(

∂2

∂xi∂x j

f (x)

)

∈ M(n, n). (A.1.7)

Note that the Hessian matrix of the scalar function f (x) is the Jacobian matrix of

the gradient, i.e., vector function ▽ f (x). Derivative-based minimization algorithms

are local minimizers and may optionally involve the Jacobian J and the Hessian H.

In any case, we assume that f (x) is sufficiently smooth so that the derivatives are

continuous.

As in the one-dimensional case, a local minimizer x∗ satisfies

▽ f (x∗) = 0, ▽ f (x∗) ∈ IRn. (A.1.8)

A Taylor series expansion about x∗ can be used to prove the following theorem on

sufficient conditions:

Theorem A.1.2 Sufficient conditions for a strict and isolated local minimizer x∗ are

that (A.1.8) is satisfied and that the Hessian H∗ := H(x∗) is positive definite ,that is,

sT
H∗s > 0, ∀ s �= 0, s ∈ IRn. (A.1.9)

Here s denotes any vector different from zero. The widespread approach to solve the

minimization problem (A.1.1) numerically is to apply line search algorithms. Given

a solution xk of the kth iteration, in the next step xk+1 is computed according to the

following scheme:

2 So called after Carl Gustav Jacob Jacobi (1804–1851).
3 So called after the German mathematician Ludwig Otto Hesse (1811–1874). In the German the

matrix is correctly called the “Hesse matrix,” but in English, the not quite correct term “Hessian.”

The correct spelling would be “Hesseian” or “Hessean.” M(m, n) denotes the set of all matrices

with m rows and n columns.
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• determine a search direction sk ;

• solve the line search subproblem, i.e., compute an appropriate damping factor

αk > 0, which minimizes4 f (xk + αsk); and

• define xk+1 := xk + αksk .

Different algorithms correspond to different ways of computing the search direction

sk . For damped methods there are several procedures to compute the damping factor

αk . Undamped methods do not solve the line search problem and just put αk = 1.

If f (xk + αsk) is exactly minimized, in the new point the gradient ▽ f (xk+1) is

orthogonal to the current search direction sk , i.e., sT
k▽ f (xk+1) = 0. This follows

from the necessary condition

0 =
d f

dα
( f (xk + αksk)) = (▽ f (xk + αksk))T sk . (A.1.10)

With this concept in mind several methods can be classified. Descent methods are

line search methods in which the search direction sk satisfies the descent property

▽ f (xk)Tsk < 0. (A.1.11)

The steepest descent method results from sk = −▽ f (xk). Obviously, (A.1.11) is

fulfilled in this case. The gradient may be calculated analytically or may be approx-

imated by finite differences with a small h > 0, that is, e.g., forward differences

▽i f (x) =
∂ f

∂xi

(x) ≈
f (x+ hei )− f (x)

h
+ f ′′(x)h (A.1.12)

or central differences

▽i f (x) =
∂ f

∂xi

(x) ≈
f (x+ 1

2
hei )− f (x− 1

2
hei )

h
+ 1

24
f ′′′(x)h2. (A.1.13)

Here ei denotes the unit vector along the i th coordinate axis. From a numerical point

of view, central differences are preferred because they are more accurate and have

an error which is only of the order of h2.

Another approach to compute the search direction sk is to expand the function

f (x) about xk in a Taylor series up to second order. So we approximate f (x) locally

by a quadratic model, i.e., x = xk+sk, f (x) = f (xk+sk), and

f (xk+sk) ≈ f (xk)+▽ f (xk)Tsk+ 1
2
sT

k Hksk . (A.1.14)

4 Usually, f (xk + αsk ) is not exactly minimized with respect to α. One possible heuristic is to

evaluate f for αm = 2−m for m = 0, 1, 2, . . . and stop when f (xk + αmsk ) ≤ f (xk ).
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If both the gradient ▽ f (x) and the Hessian matrix H are known analytically, the

classical Newton method can be derived from (A.1.14). Applying the necessary

condition (A.1.8) to (A.1.14) leads to

Hksk = −▽ f (xk), (A.1.15)

from which sk is computed according to

sk = −H
−1
k ▽ f (xk). (A.1.16)

It can be shown [see, for instance, Bock (1987)] that the damped Newton method

(Newton method with line search) converges globally, if Hk is positive definite. The

case where Hk is not positive definite is treated only after a modification to the

Hessian.

In most practical problems, the matrix of the second derivatives, i.e., the Hessian

matrix H is not available. If, however,▽ f (x) is given analytically or can be approx-

imated accurately enough, a quasi-Newton method can be applied . There are two

approaches to quasi-Newton methods. Either the finite difference approximation H̄k

of Hk is symmetrized and Hk in ( A.1.16) is replacedby

1
2

(

H̄k + H̄
T
k

)

, (A.1.17)

or, more efficiently, the inverse matrix H
−1
k is approximated by a symmetric, positive

definite matrix H̃k . The initial matrix H̃0 can be any positive definite matrix. Usu-

ally, due to the absence of any better estimate, the identity matrix 1l, or, if specific

information of the problem can be exploited, a diagonal matrix is used to initialize

H̃0. These methods are sometimes called variable metric methods. The efficiency

of quasi-Newton methods depends on the formula to update H̃k+1 from H̃k . The

construction of such formulas is still an active research field; some updates rules

operate directly on the inverse H
−1
k and generate H

−1
k+1.

Furthermore, conjugate direction methods (CDMs) can be applied efficiently to

quadratic optimization problems such as (A.1.14), as in that case CDMs terminate

after at most n steps (or iterations). CDMs are based on the concept of the conjugacy

of a set of nonzero vectors {s1, s2, ...sn} to a given positive matrix H, that is,

sT
i Hs j = 0, ∀ i �= j. (A.1.18)

When applied to a quadratic function with Hessian H, CDMs generate these direc-

tions {s1, s2, ...sn}.
A special situation (see Appendix A.3) arises when f (x) is built up from sums

of squares, i.e., results from a least-squares problem. In that case, the Hessian H is

specially linked to f (x).
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A.2 Constrained Optimization

A.2.1 Foundations and Some Theorems

For historical reasons, nonlinear constrained optimization is also referred to as non-

linear programming. A general nonlinear programming (hereafter referred to only

as “NLP”) problem with n variables, and n2 equations, and n3 inequalities is defined

as Problem NLP

Minimize: f (x), x ∈ IRn,

Subject to: F2(x) = 0, F2 : IRn → IRn2 ,

F3(x) ≥ 0, F3 : IRn → IRn3 .

(A.2.1)

The functions f (x),F2(x), and F3(x) are assumed to be continuously differentiable

on the whole vector space IRn . The vector inequality, F3(x) ≥ 0, used for brevity,

represents the n3 inequalities F3k(x)≥0, 1≤k≤n3. The set of all feasible solutions,

i.e.,

S :=
{

x ∈ IRn | F2(x) = 0 ∧ F3(x) ≥ 0
}

(A.2.2)

is called the feasible region S. The binding or active constraints with respect to

x ∈ S are characterized by the index set

I(x) := {i | F3i (x) = 0, i = 1, . . . , n3} , (A.2.3)

which is sometimes called the active set. In the early 1950s Kuhn & Tucker (1951)

extended the theory of Lagrange multipliers, used for solving equality constrained

optimization problems, to include the NLP problem (formulated as a maximum

problem in the original work) with both equality and inequality constraints. This

theory is based on the definition of a Lagrangian function

L(x,λ,µ) := f (x)− λTF2(x)− µTF3(x), (A.2.4)

that links the objective function f (x) to the constraints F2(x) and F3(x). The vector

variables λ ∈ IRn2 and µ ∈ IRn3 are called Lagrange multipliers. They are additional

unknowns of the problem.

Let J2 and J3 denote the Jacobian matrix of F2 and F3. Below we list some the-

orems and results in order to present a brief survey of the foundations of nonlinear

optimization theory. Necessary conditions for an optimal solution to NLP problems

are given by the following theorem [see, for instance, Ravindran et al. (1987)]:

Theorem A.2.1 If x∗ is a solution to an NLP problem, and the functions f (x), F2(x),

and F3(x) are differentiable, then there exists a set of vectors µ∗ and λ∗ such that

x∗, µ∗, and λ∗ satisfy the relations:
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ensure feasibility F2(x) = 0, (A.2.5)

ensure feasibility F3(x) ≥ 0, (A.2.6)

complementary slackness µTF3(x) = 0, (A.2.7)

µ ≥ 0, (A.2.8)

▽ f (x)− λT
J2(x)− µT

J3(x) = 0. (A.2.9)

This theorem has been derived by Kuhn & Tucker (1951). Proofs are also found in

Collatz & Wetterling (1971), or Fletcher (1987). Equations (A.2.5) through (A.2.9)

are known as (Karush5–) Kuhn–Tucker conditions ,they are also referred to as

first-order (necessary) conditions. A point (x∗, µ∗, λ∗) satisfying these conditions

is called a Kuhn–Tucker point .

Introducing some restrictions on the functions f (x), F2(x), and F3(x), called

constraint qualification by Kuhn and Tucker, certain irregularity conditions can be

excluded – particularly at a stationary point. Different constraint qualifications are

discussed for instance in Bomze & Grossmann (1993) and by Gill et al. (1981). A

rather general formulation is given by Bock (1987).

Definition A.2.2 Let I(x′) denote the set of active inequality constraints at x′. Let

F̃3 be the function composed of all F3i with i ∈ I(x′); J̃3 is the associated Jacobian.

Let uT := (FT
2 , F̃T

3 ) : IRn → IRN , N := m + |I|. Let L(x,µ, λ) be the Lagrangian

function of NLP defined in (A.2.4).

Definition A.2.3 Let JN = JN (x) =
∂u

∂x
be the Jacobian of u associated with the

equations and active inequalities. A feasible point x′ is called regular if rank(JN (x′))

= N [Bock (1987, p. 48)].

Theorem A.2.4 Let x∗ ∈ IRn be a regular point and a local minimizer of problem

NLP. Then there exist vectors µ∗ and λ∗ such that x∗, µ∗ and λ∗ satisfy the (Karush–

) Kuhn–Tucker conditions [Eqs. (A.2.5) through (A.2.9)].

Note that the difference between Theorems A.2.6 and A.2.1 is in the assumptions,

i.e., constraint qualifications. If we further define the set of directions

T (x∗) :=
{

p �= 0

∣

∣

∣

∣

J2(x∗)p = 0,

J̃3(x∗)p ≥ 0,
µ̃i ∗J̃3(x∗)p = 0, ∀ i ∈ I(x∗)

}

, (A.2.10)

and the Hessian

H(x∗,µ∗,λ∗) :=
∂2

∂x2
L(x∗, µ∗,λ∗), (A.2.11)

5 It was later discovered that Karush (1939) had proven the same result in his 1939 master thesis

at the University of Chicago. A survey paper by Kuhn (1976) gives a historical overview of the

development of inequality-constrained optimization.
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by extending the assumptions in Theorem A.2.1, the following results can be

derived:

Theorem A.2.5 (Second-Order Necessary Conditions). If the functions f (x), F2(x),

and F3(x) are twice differentiable, the second-order necessary conditions for the

Kuhn–Tucker point (x∗, µ∗, λ∗), being a local minimizer, is

pT
H(x∗,µ∗, λ∗) p ≥ 0, ∀ p ∈ T (x∗). (A.2.12)

The interpretation of this theorem is that the Hessian of the Lagrangian function is

positive semi-definite for all directions p ∈ T (x∗).

Theorem A.2.6 (Second-Order Sufficient Conditions). Let (x∗, µ∗, λ∗) be a Kuhn–

Tucker point of NLP, and for all directions p ∈ T (x∗), let the Hessian of the

Lagrangian function be positive definite, i.e.,

pT
H(x∗,µ∗,λ∗) p > 0, ∀ p ∈ T (x∗). (A.2.13)

Then x∗ is a strict local minimum of NLP.

A proof of this theorem, further discussion of second-order conditions, and an even

less restrictive formulation of the constraint qualification (based on a local charac-

terization by linearized constraints) are given by Fletcher (1987).

For a special class of problems, namely convex problems, the following theorem

based on the formulation in Ravindran et al. (1987) is useful:

Theorem A.2.7 (Kuhn–Tucker Sufficiency Theorem) . Consider the nonlinear

programming problem, NLP. Let the objective function f (x) be convex, let F2(x)

be linear, and let F3(x) be concave. If there exists a solution (x∗, µ∗,λ∗) satisfying

the Kuhn–Tucker conditions (Eqs. (A.2.5) through (A.2.9)) , then x∗ is an optimal

solution to NLP.

A proof of this theorem can be found, e.g., in Kuhn & Tucker (1951), Collatz and

Wetterling (1971), and Bomze & Grossmann (1993).

If the functions f (x), F2(x), and F3(x) satisfy the assumptions6 of Theorem A.2.7

the optimization problem is called a convex optimization problem. This class of

problems has the property, cf. Papadimitriou & Steiglitz (1982), that local optimality

(see Appendix A.1.1) implies global optimality, i.e., every local minimum of NLP

is a global one, if the problem is convex.

Algorithms to solve (A.2.1) are found, for instance, in Gill et al. (1981) or

Fletcher (1987). Most are based on linearization techniques. Inequalities are included,

for instance, by applying active set methods. The most powerful nonlinear opti-

mization algorithms are the Generalized Reduced Gradient algorithm (GRG) and

Sequential Quadratic Programming (SQP) methods and Interior Point Methods

6 These assumptions guarantee that the feasible region is a convex set and that the objective func-

tion is a convex function.



A.2 Constrained Optimization 359

(IPM) [see, for instance, Bazaraa et al. (1993) or Wright (1996)] for problems

involving many inequalities. The GRG algorithm was first developed by Abadie &

Carpenter (1969); further information is contained in Abadie (1978), Lasdon et al.

(1978), Lasdon & Waren (1978), and Gill et al. (1981, Sect. 6.3)]. It is frequently

used to solve nonlinear constrained optimization problems, it is rarely used to solve

least-squares problems. A similar remark holds for IPM. A special class of this

method includes inequalities by adding logarithmic penalties terms to the objective

function. Then the problem can solved as a nonlinear optimization problem with

possible equations but no inequalities. SQP methods are described in Appendix

A.2.2 and they are applied to constrained least-squares problems (Schittkowski

1988). Finally, generalized Gauß–Newton methods are an efficient approach to solve

constrained least-squares problems.

A.2.2 Sequential Quadratic Algorithms

SQP methods belong to the most powerful and frequently used nonlinear optimiza-

tion algorithms (Stoer 1985) to solve problem (A.2.1). The basic idea is to solve

(A.2.1) by a sequence of quadratic programming subproblems. The subproblem in

iteration k appears as

min
∆x

{

1
2
∆xT

Hk∆x+∇ f (xk)T∆x
}

, ∆x ∈ IRn (A.2.14)

subject to

J2(xk)T∆x+ F2(xk) = 0,

J3(xk)T∆x+ F3(xk) ≥ 0,

where the subscript k refers to quantities known prior to iteration k, and ∆x is

the correction vector to be determined. This subproblem [cf. Gill et al. (1981,

Sect. 6.5.3)] is obtained by linearizing the constraints and terminating the Taylor

serious expansion of the objective function of (A.2.1) after the quadratic term; the

constant term f (xk) has been dropped. The necessary condition derived from the

Lagrangian function associated with (A.2.14) is

Hk∆x+∇ f (xk)− J2(xk)λ̃k+1 − J3(xk)µ̃k+1 = 0. (A.2.15)

If, furthermore, λk denotes the vector of Lagrange multipliers (for convenience we

do not distinguish between λ and µ for equations and inequalities) known prior to

iteration k, and ∆xk , λ̃k , and µ̃k represent the solution of (A.2.14), then the next

iteration follows as





xk+1

λk+1

µk+1



 =





xk

λk

µk



+ αk





∆xk

∆λk

∆µk



 ,

(

∆λk = λ̃k − λk

∆µk = µ̃k − µk

)

, (A.2.16)
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where αk ≥ 0 is a damping factor.

For the solution of the quadratic subproblems the reader is referred to Gill et al.

(1981, Sect. 5.3.2) or Fletcher (1987, Chap. 10).

A.3 Unconstrained Least-Squares Procedures

A special case of unconstrained minimization arises when the objective function

is of the form7 maximum likelihood estimator (Brandt, 1976, Chap. 7) for the

unknown parameter vector x. This objective function dates back to Gauß (1809) and

in the mathematical literature the problem is synonymously called a least-squares or

ℓ2 approximation problem.

f (x) = ‖R(x)‖2
2 = R(x)TR(x)=

N
∑

ν=1

[Rν(x)]2 , R(x) ∈ IRN . (A.3.1)

This structure may arise either from a nonlinear over-determined system of equa-

tions

Rν(x) = 0, ν = 1, ..., N , N > n, (A.3.2)

or from a data-fitting problem, e.g., the one described in Chap. 4 [formula (4.1.11)]

with N given data points (tν, Ỹν) and variances σν , a model function F̃(t, x), and n

adjustable parameters x:

Rν := Rν(x) = Yν − Fν(x) =
√
wν

[

Ỹν − F̃(tν, x)
]

. (A.3.3)

The weights wν are related to the variances σν by

wν := β/σ 2
ν . (A.3.4)

Traditionally, the weights are scaled to a variance of unit weights. The factor β

is chosen so as to make the weights come out in a convenient range. Sometimes, if

variances are not known, they may be estimated by other considerations as described

in Sect. 4.1.1.5. In short vector notation we get

R := Y− F(x) = [R1(x), . . . , RN (x)]T , F(x),Y ∈ IRN . (A.3.5)

Our least-squares problem requires us to provide the following input:

7 The minimization of this functional, i.e., the minimization of the sum of weighted quadratic resid-

uals, under the assumption that the statistical errors follow a Gaußian distribution with variances

as in (A.3.4), provides a
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1. model;

2. data;

3. variances associated with the data; and

4. measure of goodness of fit, e.g., the Euclidean norm.

In many practical applications, unfortunately, less attention is paid to the third point.

It is also very important to point out that the fourth point requires preinformation

related to the problem and statistical properties of the data.

Before we treat the general case of nonlinear models in Appendix A.3.3, we

discuss the linear case first, i.e., F(x) = Ax with a constant matrix A.

A.3.1 Linear Case: Normal Equations

With y =
√

Wỹ and Ax =
√

WÃ the weighted residual vector

R(x) = y− Ax =
√

W(ỹ− Ãx) (A.3.6)

is linear in x and leads to the linear least-squares problem

min ‖y− Ax‖2
2 , x ∈ IRn, y ∈ IRN , A ∈ M(N , n), (A.3.7)

with a constant matrix A. It can be shown that the linear least-squares problem has at

least one solution x∗. The solution may not be unique. If x′
∗ denotes another solution,

the relation Ax′
∗ = Ax∗ holds. All solutions of (A.3.7) are solution of the normal

equations

A
T
Ax = A

Ty, (A.3.8)

and vice versa: All solutions of the normal equations are solutions of (A.3.7). Thus,

the normal equations represent the necessary and sufficient conditions for the exis-

tence and determination of the least-squares solution.

The modulus R∗ = |R∗| of the residual vector R∗ at the solution is uniquely

determined by

min ‖y− Ax‖2
2 = R∗ = |R∗| , R∗ = y− Ax∗. (A.3.9)

However, only if A has full rank, the problem (A.3.7) has a unique solution and there

exists a unique solution for R∗ which can be obtained, for instance, as the solution

of the linear system of equations

A
TR = 0. (A.3.10)

In this case the symmetric matrix ATA has full rank

rank A
T
A = n. (A.3.11)
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From a numerical point of view the normal equation approach for solving

least-squares problems should, if used at all, be applied with great caution for the

following reasons:

• the computation of ATA involves the evaluation of scalar products (numerical

analysts usually try to avoid the evaluation of scalar products because this often

leads to loss of significant digits due to adding positive and negative terms of

similar size); and

• strong propagation of errors on the right-hand side term ATy may occur when

solving (A.3.8) as the propagation depends on the condition number κ2(ATA)

= κ2
2 (A).

As shown in Deuflhard & Hohmann (1993, p. 74), during solving least-squares prob-

lems, for large residual problems the error propagation related to perturbations of

the matrix A is approximately given by κ2
2 (A) while for small residual problems it

is better approximated by κ2(A). In that case solving (A.3.7) by the normal equation

approach and, for instance, the Cholesky–Banachchiewicz algorithm ,is not recom-

mended. Note that in practical problems A itself may already be badly conditioned.

Condition numbers of 102–103 are common which leads to κ2
2 (A) of the order of

104–106. Therefore, it is recommended to use methods which use only the matrix A

itself. Such an algorithm is described in Sect. A.3.2.

A.3.2 The Linear Case: An Orthogonalization Method

Numerical problems due to bad condition numbers of A can be limited if the least-

squares problem is solved using only A. Orthogonalization methods involve orthog-

onal transformations P to solve linear least-squares problems. Orthogonal transfor-

mations leave the Euclidean norm of matrices invariant and lead to stable linear

least-squares solvers. Householder transformations are special types of orthogonal

transformations. The matrix A is transformed in such a way that

1. the solution of the problem is not changed;

2. the condition number κ2(PA) of the transformed matrix is not larger than κ2(A);

and

3. the transformed matrix PA has a triangular structure very suitable for numerical

computations.

Let Pk, k ∈ IN, be a sequence of Householder transformations. Householder trans-

formations are special matrices of the form 8

P := 1l− 2vvH, (A.3.12)

8 Although for our current case it is not necessary to use complex vectors, we describe the general

case, for reasons of consistency, with most of the mathematical literature. Unitary matrices in

complex vector spaces correspond to orthogonal matrices in real vector spaces.
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where 1l is the (n, n) identity matrix and v is an arbitrary n-dimensional vector.

Householder transformations x → Px are reflections of the vector space Cn with

respect to the orthogonal complement

{v} := {y ∈ Cn | vHy = 0}. (A.3.13)

They have the property

P
H
P = 1l, (A.3.14)

where PH is the conjugate transpose, i.e., that P is unitary. Unitary matrices U are

known to conserve the norm of vectors x and linear operators A, i.e.,

‖Ux‖2 = ‖x‖2 ,

‖U‖2 =
∥

∥U
H
∥

∥

2
= 1, (A.3.15)

‖UA‖2 = ‖A‖2 = ‖UA‖2 .

The matrix

P = Pn · · · · · P1 (A.3.16)

is unitary as well, as it is a product of unitary matrices. The vector w is chosen such

that P maps a given vector x = (x1, . . . , xn)T with9 x1 �= 0 onto a multiple of the

first unit vector e1 = (1, 0, . . . , 0)T, i.e.,

Px = ke1.

For a given vector x �= 0 this implies the following formulas for computing the

associated Householder transformation (for x = 0 there is nothing to do):

σ = ‖x‖2 , (A.3.17)

β = σ (σ + |x1|) ,
eiα = x1/ |x1| ,

k = −σeiα,

u = x− ke1,

P = 1l− β−1uuH.

If the matrix A has n linearly independent columns a1, . . . , an , the matrix A and the

vector y in the linear least-squares problem (A.3.7) are finally transformed by P into

a upper triangular matrix A

9 If x �= 0 we can, by appropriate permutations, always achieve x1 �= 0. For x = 0 there is nothing

to do.
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A = PA =
[

S

0

]

∈ M(N , n), S =



















s11 · · · · · · · · · s1n

0 s21 · · · · · ·
...

... 0
. . .

...
...

...
. . .

...

0 0 · · · · · · snn



















∈ M(n, n), (A.3.18)

and a vector h

h = Py =
[

h1

h2

]

, h1 ∈ IRn, h2 ∈ IRN−n. (A.3.19)

As usually in numerical computations, for accuracy and stability, P is not computed

via the matrix multiplication (A.3.16) but is established by successive Householder

transformations, i.e., successive modifications of A.

The original problem (A.3.7) now takes the form

min ‖y− Ax‖2
2 = min ‖P (y− Ax)‖2

2 = min

∥

∥

∥

∥

[

Sx− h1

0− h2

]∥

∥

∥

∥

2

2

. (A.3.20)

As we are using the Euclidean norm and as P is unitary we get

min ‖y− Ax‖2
2 = min ‖Sx− h1‖2

2 + ‖h2‖2
2 . (A.3.21)

Because h2 is a constant vector, ‖y− Ax‖2
2 takes its minimum when the unknown

vector x is the solution of the linear system of equations

Sx = h1. (A.3.22)

Thus, the solution of Sx = h1 solves our problem (A.3.21). The upper triangular

matrix S has a unique inverse matrix if and only if Si i �= 0 for all i . As P is regular,

regularity of S is equivalent to regularity of A.

A.3.3 Nonlinear Case: A Gauß–Newton Method

In order to solve the nonlinear problem (A.3.1) we can treat it as an unconstrained

optimization problem by computing the gradient ∇ f (x) as well as the Hessian

matrix H and proceeding as described in Appendix A.1. This approach derives the

necessary conditions, linearizes them, and ends up with the normal equations. From

a numerical point of view, this approach is not recommended. Nevertheless, for

didactical reasons, we will describe it and discuss its structure. In addition we also

sketch an equivalent approach avoiding the numerical problems associated with the

solution of the normal equation.
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The gradient, ∇ f (x), of f (x) takes the simple form

∇ f (x) = 2J
TR = 2∇R(x)TR(x) ∈ IRn (A.3.23)

with the Jacobian matrix J of R

Ji j :=
∂Ri

∂x j

⇐⇒ J(x) := ∇R(x) =
[

▽RT
1 ,▽RT

2 , ...,▽RT
N

]

. (A.3.24)

The Hessian H of f (x) follows as

H = 2J
T
J+ 2B(x), H ∈ M(n, n), (A.3.25)

with

B(x) :=
N
∑

i=1

[

Ri▽2 Ri

]

. (A.3.26)

If the second derivatives ▽2 Ri are readily available, then (A.3.25) can be used in

the quasi-Newton method. However, in most practical cases it is possible to utilize

a typical property of least-squares problems. The residuals Ri are expected to be

small at a solution point x∗, and H might, under the “small residual assumption,” be

sufficiently well approximated by

H ≈ 2J
T
J. (A.3.27)

This approximation of the Hessian matrix is also achieved if the residuals Ri are

taken up to linear order. Note that by this approximation the second derivative

method, the Hessian matrix, H, requires only first derivative information. This is

typical for least-squares problems, and this special variant of Newton’s method is

called the Gauß–Newton method. The damped Gauß–Newton method including a

line search iterates the solution of xk of the kth iteration to xk+1 according to the

following scheme:

• determination of a search direction sk by solving the linear system

J
T
k Jksk = −J

T
k Rk (A.3.28)

derived from (A.1.15);

• solving the line search subproblem, i.e., computing the damping factor

αk = arg min
α
{ f (xk + αsk) | 0 < α ≤ 1}; (A.3.29)

• defining
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xk+1 = xk + αksk . (A.3.30)

The Gauß–Newton method and its convergence properties depend strongly on the

approximation of the Hessian matrix. In large residual problems, B(x) in formula

(A.3.25) is not negligible when compared to JTJ, and the rate of convergence

becomes poor. In fact, for B(x) �= 0 and, sufficiently close to an optimal solution, the

Gauß–Newton method achieves only a linear convergence rate. Only for B(x) = 0

quadratic convergence rate can be achieved. Nevertheless, it represents the tradi-

tional (although not recommended) way to solve nonlinear least-squares problems;

below we show how to do better.

Note that the linear equations (A.3.28) to be solved at each iteration k are the

normal equations of the linear least-squares problem

min ‖y−Ax‖2
2 (A.3.31)

with

x = sk, y = Rk, A = −Jk . (A.3.32)

We are already aware that there exist numerical techniques to solve the linear least-

squares problem (A.3.31) avoiding the normal equations and using only A and y.

If we linearize the nonlinear least-squares problem slightly differently (similar to

Sect. 4.2.2) we get a Gauß–Newton method avoiding the formulation of the normal

equations completely. It is based on a Taylor series expansion of the residual vector

R(x) to first order:

min
x

f (x) = min
x
‖R(x)‖2

2

.= min
x
‖R(xk)+ J(xk)(x− xk)‖2

2 . (A.3.33)

Note that the necessary optimality conditions of the linear least-squares problem

(A.3.33) are again the normal equations of (A.3.31) and (A.3.32). This shows that

the solutions of (A.3.33) and our original problem are the same. The expansion used

in ( A.3.33) is a good approximation of our original problem only

• if the residual vector R(x), or equivalently B(x), is sufficiently small; or

• if the difference ∆x := x− xk is sufficiently small.

In a damped Gauß–Newton method with step-size cutting or damping parameter α,

the original problem (A.3.33) is therefore replaced by

min
∆x
‖R(xk)+ J(xk)∆x‖2

2 (A.3.34)

subject to the line search problem described in the previous section. At first, the

linear least-squares problem (A.3.34), with y = R(xk) and A = −J(xk), is solved

with the orthogonalization method described in Appendix A.3.2, yielding the search

direction ∆x. Then, we put
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xk+1 = xk + αk∆x, αk := arg min
α
{ f (xk + α∆x) | 0 < α ≤ 1}, (A.3.35)

where the damping factor αk is determined by solving a line search subproblem or

by exploiting natural level functions as in Bock (1987).

A.4 Constrained Least-Squares Procedures

While many special purpose solvers for unconstrained least-squares problems are

available as public domain or commercial software, the situation is different for

constrained least-squares problems of the type

NLCLS min f (x) = min ‖R(x)‖2
2 , x ∈ IRn,

subject to

F2(x) = 0, (A.4.1)

F3(x) ≥ 0. (A.4.2)

One basic technique to solve nonlinear constrained optimization problems is the

SQP method described in Appendix A.2.2. However, as most nonlinear least-

squares problems are ill conditioned, it is not recommended solving the NLCLS

problem directly by a nonlinear programming method. Instead, we might use the

transformation described by Schittkowski (1988). This transformation and the sub-

sequent solution of the problem by SQP methods retain typical features of a special

purpose code and eliminate the need to take care of any negative eigenvalues of an

approximated Hessian matrix.

Another promising approach is the generalized Gauß–Newton methods (see

Sect. 4.2.2) developed by Bock (1987) and coworkers. This group provides several

subroutine libraries to support the solution of least-squares problems based on mod-

els involving equations and/or differential equations. In certain cases inequalities

are also supported. However, concerning the incorporation of inequalities into least-

squares problems great care is required regarding the interpretation of these inequal-

ities. If the model reflects the physics well enough, and the data are of good quality,

we might argue that inequalities should not be necessary at all. However, inequalities

might be used to prevent the solver, for numeric reasons, entering certain regions in

parameter space while iterating. Consider, for example, a physical parameter p lim-

ited to 0 ≤ p ≤ 1 and simulated data based on p = 0.98 contaminated with Gaus-

sian noise. Because of the statistical noise in the data, the solver might try to evaluate

a model for p = 1.001 in the course of iterations. If, however, some inequalities are

active at the solution, a careful interpretation of the result is necessary.
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A.5 Selected Bibliography

This section is intended to guide the reader to recommended books or articles related

to mathematical optimization and least-squares problems.

• Solving Least-Squares Problems by Lawson & Hanson (1974) provides a useful

introduction into the field of least squares. The book covers mostly linear least

squares. A newer edition appeared in 1987.

• Branham (1990) gives an introduction to overdetermined systems and scientific

data analysis on an easy-to-follow level.

• The introduction into numerical analysis by Stoer et al. (1992) provides, besides

other topics, a strict and serious mathematical treatment of the linear and nonlin-

ear least square problems.

• Readers interested in practical optimization are referred to Gill et al. (1981), a

useful source on ideas and implementation issues of algorithms used in mathe-

matical optimization.

• Newton Methods for Nonlinear Problems by Deuflhard (2004) gives an overview

on Newton techniques to solve optimization and least-squares problems.

• Numerical Optimization by Nocedal & Wright (2006) is an excellent book on

optimization and as such covers most of the modern methods. It covers many of

the algebra-related details very well.



Appendix B

Estimation of Fitted Parameter Errors:

The Details

Hoc opus, hic labor est (Here is the work – and the labor;

this is the really tough one)

This appendix describes useful techniques regarding the estimation of errors asso-

ciated with the determined parameters in EB analysis. The Kolmogorov–Smirnov

test, a procedure which checks whether the residuals fit the normal distribution,

is reviewed. We also present here the sensitivity analysis approach and the grid

approach, as they provide realistic estimations of the parameter errors.

B.1 The Kolmogorov–Smirnov Test

With the Kolmogorov–Smirnov test [cf. Ostle (1963)] it is possible to check whether

the residuals of a least-squares solution are normally distributed around the mean

value 0. An alternative is the χ2-test. As Linnell’s program (Linnell 1989) uses

the Kolmogorov–Smirnov test we prefer this method, which works as follows:

1. let M := (x1, x2, ..., xn) be a set of observations for which a given hypothesis

should be tested;

2. let G : x ∈ M → IR, x → G(x) be the corresponding cumulative distribution

function;

3. for each observation x ∈ M define Sn(x) := k/n, where k is the number of

observations less than or equal to x ;

4. determine the maximum D := max(G(x)− Sn(x) | x ∈ M);

5. Dcrit denotes the maximum deviation allowed for a given significance level and a

set of n elements. Dcrit is tabulated in the literature, e.g., Ostle (1963, Appendix

2, p. 560) ; and

6. if D < Dcrit, the hypothesis is accepted.

In our case the hypothesis is “The residuals xν := lo
ν − lc

ν are normally distributed

around the mean value 0.” Therefore, the cumulative distribution function G(x)

takes the form

369
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√
2πG(x) =

∫ x

−∞
g(z)dz =

∫ −x0

−∞
g(z)dz +

∫ x

−x0

g(z)dz, g(z) := e−
1
2

z2

. (B.1.1)

In a typical light curve analysis, the absolute values of the residuals are usually

smaller than x0 = 0.025 light units assuming unit light at maximum. If we take

G(−x0) = 0.490 from a table, it is no problem to compute the second part of the

integral numerically. Unfortunately, in many cases the errors in EB observations do

not follow the normal distribution.

B.2 Sensitivity Analysis and the Use of Simulated Light Curves

Let us assume that a light curve solution x∗ has been derived, and the correspond-

ing calculated light curve Ocal is available. If we add some noise ∆lν to the com-

puted light lc
ν(x∗) we get the simulated light curve Osim. The values ∆lν follow

from (4.1.21):

∆lν = σεlb
ν , (B.2.1)

where σ is a characteristic measure for the noise of the data. Photoelectric light

curves of high quality may have σ = 0.005 light units assuming unit light at

maximum, less good observations rather have σ ≈ 0.01 light units. The variable

ε denotes a normalized random variable obeying a normal distribution; indeed,

observations usually produce residuals ε which follow a normal distribution around

a mean value ε = 0. A set of normally distributed values ε can be generated as

follows (Brandt 1976, p. 57):

1. Assume that the mean of the distribution function is a and that the standard devi-

ation is σ . In addition, we ask for the biased values

a − 5σ ≤ ε ≤ a + 5σ. (B.2.2)

The reason for this bias is that in light curve analysis we usually do not observe

outliers beyond a range of 5σ .

2. Let ρ(i) be a function that produces uniformly distributed random numbers

within the interval [0, 1]. The generation of such functions is usually part of any

Fortran compiler; i is an arbitrary number.

3. Let g(z) =
1

√
2πσ

e
− (z−a)

2σ

2

be the Gaussian function. In addition, gmax = g(a)

denotes the amplitude of the Gaussian function.

4. By means of uniform random numbers x = ρ(i), 0 ≤ x ≤ 1, a test value

ε = a + 5σ (2x − 1) and g(ε) is computed. Furthermore, a value εt = ρ(i)gmax

is computed to compare it with ε.

5. If g(ε) ≤ ε, then ε is accepted as an additional random number. Otherwise, go

back to 4. Due to this transformation the set of elements ε is normally distributed

and has the desired properties. In our case, of course, we have a = 0 and σ = 1.
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Now the simulated light curve Osim

Osim := Osim(x∗) = {ls
ν | l

s
ν = lc

ν(x∗)+∆lν(x∗)} (B.2.3)

can be reanalyzed and the parameters derived. The results will show what effect

errors in the observational data will have on the uncertainty of the parameters. For

sufficiently small noise, in well-behaved regions of the parameter space, the original

parameter vector x∗ is recovered within small error bounds. But if noise increases,

uniqueness problems may arise, and the recovery of the parameters be jeopardized.

Note that this kind of analysis is a local one. It holds only for the parameter set of

interest.

Although analysis can be used to investigate parameter uncertainties, we should

bear in mind that (in many cases) the residuals in EB observations may not follow a

normal distribution.

B.3 Deriving Bounds for Parameters: The Grid Approach

The grid approach is very useful if some of the parameters are correlated or can only

be determined with great uncertainty. Usually the mass ratio q or the inclination i

are such parameters. A parameter x may be constrained by or likely be located in

the interval

0,008

0,009

0,007

σfit

0,9 1,0 1,1 1,2
Mass ratio q

1,3 1,4 1,5

Fig. B.1 Standard deviation of the fit versus mass ratio. This plot, part of Fig. 4 in Kallrath &

Kämper (1992), shows the standard deviation of the fit, σ fit, versus the mass ratio, q
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X− ≤ x ≤ X+. (B.3.1)

Now, for some equidistant value xi in this interval, x is fixed to xi and the inverse

problem is solved yielding the other light curve parameters and σ fit = σ fit(xi ). If

σ fit is plotted versus xi as shown in Fig. B.1, very often the result is a curve with a

flat region as in Kallrath & Kämper (1992). The limits x− and x+ of that flat region

yield realistic bounds on the uncertainty of the parameter x :

X− ≤ x− ≤ x ≤ x+ ≤ X+. (B.3.2)



Appendix C

Geometry and Coordinate Systems

η ισ óτης η γ εωµετρικη µέγ α δύναται

(The geometrical identity has great meaning)

This part of the appendix contains some additional material on coordinate systems

and geometry.

C.1 Rotation of Coordinate Systems

Consider two right-handed Cartesian coordinate systems with the same origin. Let

the second system with coordinates (x ′, y′, z′) be generated by a counterclockwise

rotation of the first one with coordinates (x, y, z) around its z-axis by an angle α.

This situation is demonstrated in Fig. C.1. Then a point (x, y, z) in the first sys-

tem has the coordinates (x ′, y′, z′) in the second system, and they can be computed

according to





x ′

y′

z′



 = Rz(α)





x

y

z



 , Rz(α) :=





cos α sin α 0

− sin α cos α 0

0 0 1



 , (C.1.1)

with

Rz(α) :=





cos α sin α 0

− sin α cos α 0

0 0 1



 . (C.1.2)

The explicit formula reads





x ′

y′

z′



 =





x cos α + y sin α

−x sin α + y cos α

z



 . (C.1.3)

The matrix Rz(α) is an orthogonal matrix, i.e.,

Rz(α)R−1
z (α) = R

−1
z (α)Rz(α) = 1l. (C.1.4)
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α

y -axis

y

y '-axis

y '

y

x'

x-axis

x'-axis

rotation of coordinate axes

Fig. C.1 Rotation of Cartesian coordinate systems

Its inverse is the matrix

R
−1
z (α) :=





cosα − sinα 0

sinα cosα 0

0 0 1



 , (C.1.5)

which may be used to compute (x, y, z) as a function of (x ′, y′, z′).

Some caution is needed when coordinate systems are connected by several rota-

tions around different axes. As commutativity is violated in most cases, i.e.,

Rx (α)Ry(β) �= Ry(β)Rx (α), (C.1.6)

the sequence of rotations has to be considered very carefully.

C.2 Volume and Surface Elements in Spherical Coordinates

Let us start with the derivation of the volume element. The derivation of the volume

element in spherical coordinates is based on the n-dimensional substitution rule in

calculus:

∫

g(I )

f (u)du =
∫

I

f (g(v))
∣

∣det g′(v)
∣

∣ dv, (C.2.1)

where g(v) describes the coordinate transformation from coordinates v to u, I is the

domain of integration in the coordinates v, and g′(v) is the Jacobian matrix associ-

ated with g. In our case, the vectors u and v represent the Cartesian and spherical

polar coordinates θ and ϕ introduced in Sect. 3.1.1, i.e.,
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u =





x

y

z



 = g(r, θ, ϕ), g(r, θ, ϕ) = r





cosϕ sin θ

sinϕ sin θ

cos θ



 , (C.2.2)

and

I = Ir × Iθ × Iϕ = [0,∞)×
[

0, 180◦
]

×
[

0, 360◦
]

. (C.2.3)

The Jacobian matrix is

g′(v) :=
∂g(v)

∂v
=





cosϕ sin θ r cosϕ cos θ −r sinϕ sin θ

sinϕ sin θ r sinϕ cos θ r cosϕ sin θ

cos θ −r sin θ 0



 , (C.2.4)

and the determinant is

det g′(v) = r2 sin θ. (C.2.5)

Note that due to 0 ≤ θ ≤ 180◦ the expression r2 sin θ is always nonnegative. There-

fore, the volume element in spherical polar coordinates follows as

dV =
∣

∣det g′(v)
∣

∣ dv = r2 sin θdrdθdϕ. (C.2.6)

The derivation of the surface element in the form (3.1.5) requires some formulas

from vector calculus and differential geometry. At first we review that for three-

dimensional vectors a, b, and c the scalar product a · (b× c) can be represented by

a determinant according to

a · (b× c) = det





a1 b1 c1

a2 b2 c2

a3 b3 c3



 , (C.2.7)

where b× c denotes the cross product or outer product defined as

b× c = (b2c3 − b3c2, b3c1 − b1c3, b1c2 − b2c1)T . (C.2.8)

As the determinant of a matrix with linearly dependent columns vanishes we further

have

a× a = 0, (C.2.9)

and

a · (a× c) = 0. (C.2.10)
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Finally, we need the distributive law for the cross product, i.e.,

(v1 + v2)× (v3 + v4) = v1 × v3 + v1 × v4 + v2 × v3 + v2 × v4. (C.2.11)

Let us now consider a surface embedded in a three-dimensional vector space

parametrized by two coordinates θ and ϕ, i.e.,

r = r(θ, ϕ) =





x(θ, ϕ)

y(θ, ϕ)

z(θ, ϕ)



 . (C.2.12)

The normal vector, n, at a surface point, r, is defined as

n :=
rθ × rϕ
∣

∣rθ × rϕ
∣

∣

, (C.2.13)

where rθ and rϕ denote the partial derivatives of r w.r.t. θ and ϕ. If the surface

encloses a finite region of the three-dimensional space, the normal vector n points

into the region external to this volume, and the vectors rθ , rϕ , and n establish the

unit axis of a right-handed coordinate system. The surface element, dσ , is defined

as

dσ :=
∣

∣rθ × rϕ
∣

∣ dθdϕ. (C.2.14)

If we multiply (C.2.13) by er , we can eliminate
∣

∣rθ × rϕ
∣

∣ from (C.2.14) by using

cosβ in definition (3.1.3), i.e.,

cosβ :=
r

r
· n = er · n. (C.2.15)

If we do so, we get the expression

dσ :=
1

cosβ
er ·

(

rθ × rϕ
)

dθdϕ. (C.2.16)

We now need to evaluate the term

er ·
(

rθ × rϕ
)

(C.2.17)

for the special case of interest

r = r(θ, ϕ) = r (θ, ϕ)er = r (θ, ϕ)





cosϕ sin θ

sinϕ sin θ

cos θ



 . (C.2.18)



C.2 Volume and Surface Elements in Spherical Coordinates 377

In this case we have

rθ = rθer + rS
θ , rϕ = rϕer + rS

ϕ (C.2.19)

where rS
θ and rS

ϕ denote the derivatives for the unit-sphere case, i.e.,

rS
θ = r (θ, ϕ)





cosϕ cos θ

sinϕ cos θ

cos θ



 , rS
ϕ = r (θ, ϕ)





− sinϕ sin θ

cosϕ sin θ

cos θ



 .

If we substitute (C.2.19) into (C.2.17) and apply (C.2.11), we get

er ·
(

rθ × rϕ
)

= er ·
(

rS
θ × rS

ϕ

)

. (C.2.20)

The other three terms vanish due to (C.2.7) and (C.2.9). If we evaluate (C.2.20) we

get

er ·
(

rS
θ × rS

ϕ

)

= det





cosϕ sin θ r cosϕ cos θ −r sinϕ sin θ

sinϕ sin θ r sinϕ cos θ r cosϕ sin θ

cos θ −r sin θ r cos θ



 = r2 sin θ.

(C.2.21)

So, finally, we get the surface element

dσ =
1

cosβ
r2 sin θdθdϕ. (C.2.22)

For readers who prefer graphical demonstrations, we also provide the following: we

can apply the sine rule to the infinitesimal small triangle ABC (left part of Fig. C.2):

ds

sin dθ
=

r

sin(180◦ − dθ − 90◦ − β)
. (C.2.23)

Considering that dθ is an infinitesimal small angle, i.e., sin dθ ≈ dθ and cos(β +
dθ ) ≈ cosβ, we get

ds

dθ
=

r

cosβ
⇔ ds =

r

cosβ
dθ. (C.2.24)

The right part of Fig. C.2 shows the projection of r onto the x–y plane, yielding

R = r cos(90◦ − θ ) = r sin θ, (C.2.25)

and an infinitesimal small triangle containing the angle dϕ and the arc dl. The arc

dl follows as
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β
β

C

ds

r

n

B

r

dθ

90–θ

A

90–θ

r

R

d

dϕ
R

x-y-plane

Fig. C.2 Derivation of the surface element

dl

R
= tan dϕ ⇔ dl ≈ Rdϕ = r sin θdϕ. (C.2.26)

As θ and ϕ establish an orthogonal coordinate system we get

dσ = dsdl =
1

cosβ
r2 sin θdϕdθ (C.2.27)

as before.

C.3 Roche Coordinates

Although the Roche potential is frequently used among binary astronomers, the

Roche coordinates are less known. Roche coordinates, as investigated by Kitamura

(1970) and Kopal(1970,1971), try to establish an(orthogonal) coordinate system

(u, v, w) associated with the Roche potential Ω in the circular case. The centers

of both components are singularities of this coordinate system. The first coordi-

nate is just equal to the Roche potential, i.e., u = Ω . Unlike polar coordinates or

other more frequently used coordinate systems which are related to the Cartesian

coordinates by some explicit formulas, Roche coordinates cannot be described by

closed analytical expression but can only be evaluated numerically. This property

limits the practical use. Kopal & Ali (1971) and again Hadrava (1987) showed that

it is not possible to establish a system of three orthogonal coordinates based on the

Roche potential. The requirement that such coordinates exist [Cayley’s (1872a, b)

problem] imposes a necessary condition [the Cayley–Darboux equation (Darboux

(1898)] which must be satisfied by the function Ω . Hadrava (1987) defines general-

ized Roche coordinates in asynchronous rotation binaries with eccentric orbits and

calculates them in the form of power series of the potential (3.1.77). His definition
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abandons the orthogonality of the coordinates v and w. As an example for the

application of Roche coordinates we mention Hadrava’s (1992) investigation of the

radiative transfer in an atmosphere or in a rotationally oblated star.

Finally, the reader more interested in the mathematical background of coordi-

nate systems and the classification of the Roche coordinates is referred to Neutsch

(1995).

C.4 Solving Kepler’s Equation

Standard and improved techniques for solving Kepler’s equation are described, e.g.,

in Neutsch & Scherer (1992) – a rich resource book strongly recommended for

celestial mechanics in general. A less well-known technique to solve Kepler’s equa-

tion is the following iterative scheme based on Padé approximants. The roots of the

function

f (x) := x − e sin x − M (C.4.1)

can be computed according to

xi+1 = xi +∆xi , ∆xi = −
f f ′

f ′2 − 1
2

f f ′′
, (C.4.2)

with the correction, ∆xi ,

∆xi = −
f f ′

f ′2 − 1
2

f f ′′
(C.4.3)

=
(xi − e sin xi − M)(1− e cos xi )

(1− e cos xi )2 − 1
2
(x − e sin xi − M)e sin xi

.

This method is also known as Halley’s method. The derivation based on the formal

concept of Padé approximants is described in Kallrath (1995). The advantage of this

method is that it has a large convergence region; it does not depend too much on the

initial value x0.



Appendix D

The Russell–Merrill Model

Locus poenitentiae (Opportunity for repentence)

D.1 Ellipticity Correction in the Russell–Merrill Model

This material gives further details on the Russell–Merrill model already discussed

in Sect. 6.2.1.

The expression for the ellipticity correction was developed as follows (Russell

& Merrill 1952, p. 43) . The basic model for the unrectified system consists of two

similar triaxial ellipsoids with equal limb-darkening and gravity (or, sometimes,

“gravity brightening”) coefficients. For synchronous rotation, the ellipticity of star

1 is assumed to be representable by equations of the kind

a1 − b1

r̄1

=
3m2

2m1

(1+ 2K1)r̄3
1 (D.1.1)

and

b1 − c1

r̄1

=
m1 + m2

2m1

(1+ 2K1)r̄3
1 , (D.1.2)

where a, b = a
√

1− η2, and c = a
√

1− ζ 2 are the radii (a) in the line through the

stellar centers, (b) in the direction perpendicular to this line but in the orbital plane,

and (c) in the polar direction, respectively. Note that b and c are the radii “seen”

during eclipses. The quantity K depends on the central condensation and lies in the

range 0.0018–0.018. The surface brightness1 in a given passband is assumed to obey

J = J0(1− x + x cos γ )[1− y(1− g/ḡ)], (D.1.3)

1 Note that J is the usual symbol for mean intensity in radiative transfer theory. Russell used J

instead of I for ordinary intensity.
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where J0 is the mid-disk surface brightness, x is the limb-darkening coefficient, g

is the (local) gravitational acceleration, ḡ is the average of g over the surface, and y

is given by

y =
c2

4λT

e
c2

λT

e
c2
λT − 1

, c2 =
hc

k
. (D.1.4)

The second expression in (D.1.4) is a gray-body approximation. A correction for

different-sized components made use of a theorem demonstrated by Russell (1948)

that the light distribution as given by (D.1.3) is the same for a uniformly bright star

of surface brightness J0(1 − 1
3
x) and having axes 1 + Na, 1 + Nb, and 1 + Nc,

where

N =
(15+ x)(1− K−2

4K+2
y)

15− 5x
≈

(15+ x)(1+ y)

15− 5x
(D.1.5)

and where the factor multiplying y is in the range−0.996 to−0.957 for the expected

range of K (0.0018–0.018, respectively).

The effect of the ellipticity on the light curve is to provide an observed variation

in system flux:

ℓcomp =
(

1− 1
2

N z cos2 θ
)

(ℓ
max
− ℓ1max

f1 − ℓ2max
f2), (D.1.6)

where z = η2 sin2 i , and the observed flux is

ℓ = A0 + A2 cos 2θ. (D.1.7)

The coefficient A2 is intrinsically negative, and Russell & Merrill (1952, p. 43)

express the peak light as ℓmax = A0 − A2, and N z = −4
A2

A0 − A2

. The rectified

light then becomes

ℓrect =
(A0 − A2)ℓcomp

A0 + A2 cos 2θ
= ℓmax(1− L1 f1 − L2 f2), (D.1.8)

where L1 =
ℓ1max

ℓmax

and L2 =
ℓ2max

ℓmax

. A rectification in phase is also required because

of the ellipticity of the components; the rectified phase is computed from

sin2 Θ =
sin2 θ

1− z cos2 θ
. (D.1.9)
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This completes the rectification due to the deviation of the stars from sphericity.

The effects of gravity brightening and reflection must be treated now. The effect

of centrifugal forces is to widen the equatorial axes at the expense of the polar

one and causes the star to brighten toward the rotation poles; the effect of tidal

distortion (increasing the star’s diameter along the line of centers) is to darken it at

the extremes of the axis a. The net center-to-limb variation across an ellipsoid is

given by (D.1.3). Express the coordinates in the directions of the ellipsoid axes as

X , Y , and Z and take the gravity-darkening relative to the Y -axis, a = b(1 + u) ,

c = b(1− v), so that (D.1.3) may be written as

J = J0(1− x + x cos γ )
[

1+ 4y
(

1−
r

b

)]

. (D.1.10)

As cos γ is the direction cosine of the normal to the ellipsoid at the position X ,

cos γ = r X/a2. Setting X = a cosβ, and neglecting second-order terms in Z and

u, the relative surface brightness J in (D.1.10) becomes

J = J0

{

1− x + x cosβ − u
[

x cosβ + 4y(1− x) cos2 β + (4y − 1)x cos3 β
]}

.

(D.1.11)

The theoretical basis for the treatment of the reflection effect is that of Milne (1926)

who assumed a parallel beam of incoming radiation, with corrections from Sen

(1948) for penumbral effects. The expected enhancement in light from the second

star “reflection” is

∆L2 = f (ε)r2
2 L1, (D.1.12)

where an approximation may be used for f (ε)

f (ε) = 0.30+ 0.40 cos ε + 0.10 cos 2ε. (D.1.13)

Here ε is the phase angle from full phase (i.e., from mid-secondary minimum for

star 2). The net result of the reflection effect alone (Russell & Merrill 1952, p. 45)

is

∆L = Lcr
2
h f (εh)+ Lhr2

c f (εc)

= (Lcr
2
h + Lhr2

c )(0.30− 0.10 cos2 i + 0.10 sin2 i cos 2θ )

+ 0.40(Lcr
2
h − Lhr2

c ) sin i cos θ. (D.1.14)

Note that both ellipticity and reflection contribute cos 2θ values, but with opposite

sign, and the effect of reflection is to decrease the effect of ellipticity. The cos θ con-

tribution is due, however, to the reflection effect. Note that this is true for Russell’s

ellipsoid model, but not for an equipotential model.
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Instead of removing the enhancement due to the reflection effect the prescription

requires the addition of light at other phases. It is done this way to avoid iterative

rectification. Given a situation in which the light curve outside the eclipse is well

represented by a truncated Fourier series involving only terms A0−4, and star 2 is

heated by star 1, the total radiation reemitted by star 2 shows up in the effects on

coefficients A3 and A4 as

A3 = 0.005L1r2
2 < 0.0008L1, (D.1.15)

assuming r2 ≤ 0.4 and

A4 = (0.002− 0.050r2
2 − 0.006r2

1 )L1r2
2 < 0.0012L1 (D.1.16)

(Russell & Merrill 1952, p. 52). For cases, where the distortion of the figures of the

stars is large, Russell and Merrill cite Kopal (1946, Eqs. (210) and (220.1) on pp.

135 and 139):

A3 = −0.59(L2m1/m2)r4
2 (D.1.17)

and

A4 = +0.27(L2m1/m2)r5
2 . (D.1.18)

A crude form of the mass–luminosity relation (m ∝ L0.26) was then used to evaluate

the magnitude of the expressions. As A3 ≤0.33r4
2 and thus 0.001 ≤ A3 ≤ 0.01 for

0.23 ≤ r2 ≤ 0.41 and A4 ≤ 0.16r5
2 , so that A4 ≤ 0.001 for r2 ≤ 0.36 .

For cases where both sine and cosine terms must be used to represent the maxima,

the general prescription is to apply “empirical corrections” (Russell & Merrill 1952,

pp. 53–54). They recommended dividing by the expression

A0 + B1 sin θ + B2 sin 2θ . . . , (D.1.19)

if the light perturbations are thought to affect both stars in proportion to their bright-

nesses, but otherwise producing no shape or surface brightness asymmetry. If star

1 alone were affected, they recommended subtraction of the sine terms from all

phases but those at which star 1 was eclipsed, and during the eclipse of star 1, the

subtraction of (1 − f )(B1 sin θ + B2 sin 2θ ), where f is the fraction of that star’s

light which is obscured at any particular phase.



Appendix E

Subroutines of the Wilson–Devinney Program

Finis coronat opus (The end crowns the work)

The WD program is a practical expression of the WD model and there have been many

more publications about the model than about the program. Even the best programs

ordinarily have much shorter lifetimes than good ideas, so the model has been kept

conceptually separate from its software implementation. Thus papers on the model

essentially never mention the names of subroutines or main programs – only papers

specifically about the program [e.g., Wilson (1993)] use those names. This appendix

tries to provide some of the details which might improve the reader’s understanding

of the program and to connect the subroutines to the relevant features in the model.

The program’s history has been one of various special-purpose versions that were

developed for particular problems, followed by absorption of their capabilities into

the general program. Overall, the idea has been to have one “direct problem” pro-

gram (LC) and one “inverse problem” program (DC), each with multiple capabili-

ties, rather than a library of special purpose programs. For example, the 1998 version

computed light curves, radial velocity curves, spectral line profiles, and images,

while versions that compute polarization curves and X-ray pulse arrival times now

exist separately and may eventually be absorbed. The WD 2007 version incorpo-

rated improved atmosphere simulation, parameters of eclipses by clouds in extensive

stellar atmospheres of hot stars, and third-body parameters. Generalizations that a

user need not worry about are embedded invisibly wherever practical. For example,

computational shortcuts for many special case situations speed execution without

compromising more intricate cases.

The overall structure of the Wilson–Devinney program and its main routines

LC and DC is shown in Figs. E.2 and E.3. The purpose of some subroutines is

explained in Wilson (1993) and in Wilson’s program manuals. Other subroutines

lack a detailed description of the mathematics. Although the overall ideas of com-

puting EB light curves usually can be presented in an elegant and systematic man-

ner, the implementation of these ideas in practice requires a substantial amount of

numerical analysis. An example is the problem of computing accurate derivatives

and providing them with a derivative-based least-squares solver. This topic is related

to the accuracy of representing the model in the computer (both the discretization of
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the surface of the components represented by a finite grid and the finiteness of the

number representation in the machine).

A subroutine having an asterisk in its name is part of WD2009, but not of the

2008 version of the Wilson–Devinney program.

E.1 ATM – Interfacing Stellar Model ATMospheres

This subroutine was the interface to a stellar model atmosphere. The original

Wilson–Devinney program uses the Carbon–Gingerich model atmospheres. In

WDx2007, this subroutine is replaced by a routine written by C. Stagg (Milone

et al. 1992b), implementing the Kurucz atmospheres. In both cases it returns the

ratio between the flux based on the atmosphere and the blackbody law. The version

of Jan. 23, 2004, and later versions incorporate the models of Kurucz (1993) in

an use of external tables of metallicity, temperature, and log g to provide modern

atmosphere simulations. The tables are automatically read in the 2007 version.

E.2 ATMx – Interfacing Stellar Model ATMospheres

The WD subroutine interfacing to Kurucz atmosphere is for the ATMx. It performs a

four-point interpolation in log g and then an m-point Lagrangian interpolation. This

routine exploits an a priori computed file that contains a block for each of the 19

compositions, each block listing the temperature limits and Legendre coefficients

for every band, log g, and temperature sub-interval. With 11 log g’s, 25 bands, 19

compositions, 4 temperature subintervals, and 10 Legendre coefficients with 2 tem-

perature limits per subinterval, the data file contains 250,800 numbers.

Where grid elements require elements outside the grid, a tranfer is made to a

Planckian through a “ramp” function that provides smooth continuity. That way

Van Hamme & Wilson (2003) established an atmosphere to blackbody transition

region in Teff and in log g and avoid any discontinuity. If the Teff, log g combina-

tion is outside the range of atmosphere applicability, the program smoothly con-

nects atmosphere model intensities to bandpass blackbody intensities over built-in

ranges in log g and Teff whose limits can easily be changed. Similarly to the files

above, a Legendre blackbody file spans 500–500,000 K and is very small, as the

only dimensions are bandpass and temperature sub-interval. Note that the files can

be incorporated into other binary star programs to calculate model and blackbody

intensities.

E.3 BBL – Basic BLock

Subroutine BBL is the so-called Basic BLock of the WD program (see Fig. E.1). It

keeps the computation of numerical derivatives as simple as possible and at the same

time tries to avoid redundant computations.
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Fig. E.1 Structure of subroutine BBL. Courtesy R. E. Wilson

E.4 BinNum – A Search and Binning Utility

BinNum is a tool to find the bin in which a number is located. It is essentially

similar to LOCATE in the Numerical Recipes by Press et al. (1992), which searches

an ordered table by bisection.

E.5 BOLO – Bolometric Corrections

Subroutine BOLO uses Harris’s (1963) calibration from T = 3, 970 K to 5, 800 K,

Morton & Adams (1968) from T = 5, 800 to 37, 500 K, and the blackbody law

(3.2.21) below T = 3, 970 K and above T = 37, 500 K to compute bolometric

corrections. These corrections are needed to compute the ratio of bolometric lumi-

nosities involved in the reflection effect in Sect. 3.2.5.

E.6 CofPrep – Limb-Darkening Coefficient Preparation

Subroutine COFPREP computes the coefficients used in the limb-darkening inter-

polation scheme. It reads the numbers from the table selected based on input metal-

licity into an array which is then available to LIMDARK.

E.7 CLOUD – Atmospheric Eclipse Parameters

Added in the 2002 version of the WD program, subroutine CLOUD computes atmo-

spheric eclipse parameters as described in Sect. 3.4.4.5.
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E.8 CONJPH – Conjunction Phases

This subroutine computes the phases of superior and inferior conjunctions. For

eccentric orbits this becomes a relevant and subtle issue as described on page 88.

E.9 DGMPRD – Matrix–Vector Multiplication

Subroutine DGMPRD performs matrix multiplication and returns the resulting vector

r = Ab, where matrix A ist stored in a one-dimensional chain and b is the input

vector.

E.10 DMINV – Matrix Inversion

Subroutine DMINV computes the inverse of a n by n matrix A stored in a one-

dimensional chain.

E.11 DURA – Constraint on X-Ray Eclipse Duration

This subroutine puts an explicit constraint on the size of a star based on the

duration of an X-ray eclipse. Such constraints may be considered when X-ray

eclipses of neutron stars, black-holes, or white dwarfs occur, as described in Wil-

son (1979) where the full mathematics is given. The basic observable is the semi-

duration Θe of an X-ray eclipse. For circular orbits and synchronous rotation a

relation

Θe = Θe(i,Ω, q) (E.11.1)

has been derived by Chanan et al. (1977) which relates the inclination i , the Roche

potential Ω , the mass ratio q, and Θe. The more general eccentric, nonsynchronous

case is in Wilson (1979).

E.12 ELLONE – Lagrangian Points and Critical Potentials

This subroutine computes the x-coordinates of the equilibrium points L
p

1 and L
p

2 and

the associated critical Roche potentials Ωcrit
1 and Ωcrit

2 . The name equilibrium points

is used here as a generalization of Lagrangian points, as used for the synchronous,

circular case. The required input quantities are the mass ratio q = M2/M1, the

ratio F1 = ω1/ω, and the distance d between the stars in units of the semi-major

axis a of the relative orbit. The x-coordinate of the equilibrium points follows from

the condition
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Ωx :=
∂Ω

∂x
= 0. (E.12.1)

As the equilibrium points are located on the line connecting the centers of the com-

ponents in (6.3.2), the distances of a point x on that line take a special form. The star

centers are at positions x1 = 0 and x2 = d. The coordinate xL
p
1

of the equilibrium

point L
p

1 fulfills the relation

0 ≤ xL
p
1
≤ d, (E.12.2)

so that its distances to the component centers are xL
p
1

and d − xL
p
1
. Therefore, for

xL
p
1
, the potential (6.3.2) takes the form

Ω(r = (x, 0, 0); q, F, d) =
1

x
+ q

[

1
√

d2 − 2dx + x2
−

x

d2

]

+
q + 1

2
F2

1 x2.

(E.12.3)

From (E.12.3), condition (E.12.1) takes the form

f (x) :=
∂Ω

∂x
= −

1

x2
− q

x − d

|d − x |3
+ F2

1 (q + 1)x −
q

d2
= 0. (E.12.4)

This nonlinear equation (E.12.4) is solved with the Newton–Raphson algorithm.

Therefore, the derivative f ′(x) is needed:

f ′(x) =
2

x3
+

2q

|d − x |3
+ F2

1 (q + 1). (E.12.5)

Now the Newton–Raphson procedure proceeds as

x (n+1) = x (n) +∆x, ∆x = − f (x (n))/ f ′(x (n)) (E.12.6)

with the initial value x (0) = d/2. If sufficient accuracy is achieved, viz., if |∆x | ≤
10−6, the iteration is halted and xL

p
1

is set to

xL
p
1

:= x (n+1). (E.12.7)

With known xL
p
1

it is easy to compute Ωcrit
1 as

Ωcrit
1 =

1

xL
p
1

+ q

(

1

| d − xL
p
1
|
−

xL
p
1

d2

)

+
q + 1

2
F2

1 x2
L

p
1
. (E.12.8)

The case to compute xL
p
2

and Ωcrit
1 for L

p

2 is somewhat more difficult. The computa-

tion of xL
p
2

and Ωcrit
2 is only valid for F1 = F2 = 1 and d = 1. For nonsynchronous
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or noncircular cases these quantities are not needed. In the valid cases, the inequality

d ≤ xL
p
2

(E.12.9)

holds; Wilson uses the same function f (x) as defined in (E.12.4) but computation

is performed after explicit setting of F j = 1 and d = 1. Furthermore, this time, the

initial value

x (0) = 1+ µ1/3 + 1
3
µ2/3 + 1

9
µ3/3 + . . . , (E.12.10)

with

µ := 1
3

Q

Q + 1
, Q :=

{

q,

q−1,

0 ≤ q ≤ 1,

q ≥ 1.
(E.12.11)

is used. If convergence is completed, xL
p
2

follows from

xL
p
2

:= x (n+1). (E.12.12)

For completeness we note for d = 1 and F1 = 1

Ωcrit
2 =

1

x
+ q

(

1
√

1− 2x + x2
− x

)

+
q + 1

2
x2 (E.12.13)

with

x :=
{

xL
p
2
,

1− xL
p
2
,

0 ≤ q ≤ 1,

q ≥ 1.
(E.12.14)

This subroutine now works also for very extreme mass ratios, e.g., q = 10−6.

E.13 FOUR – Representing Eclipse Horizon

FOUR computes a Fourier series for the representation of the boundaries of the

eclipsed regions. In the 1998 and later versions this subroutine is replaced by

FOURLS.

E.14 FOURLS – Representing Eclipse Horizon

FOURLS computes the Fourier coefficients by solving a least-squares problem. It

replaces subroutine FOUR present in versions older than 1998. The new subroutine

fits the horizon points by least squares and avoids the Fourier approach. It is more

accurate and the sorting routine is no longer needed.



E.18 LC and DC – The Main Programs 391

E.15 GABS – Polar Gravity Acceleration

GABS computes the polar acceleration due to effective gravity in cm2/s.

E.16 JDPH – Conversion of Julian Date and Phase

Subroutine JDPH allows to convert phase into Julian date but also Julian Date into

phase. It computes a phase (phout) based on an input JD (xjdin), reference epoch

(t0), period (p0), and dP/dt (dpdt). It also computes a JD (xjdout) from an input

phase (phin) and the same ephemeris.

E.17 KEPLER – Solving the Kepler Equation

This subroutine solves Kepler’s equation (3.1.28) with the Newton–Raphson scheme

(see Appendix E.12) with initial value E (0) = M . Iterations are stopped when

|∆E | ≤ 10−10. Eventually, the true anomaly is computed according to (3.1.27).

If υ < 0, then 2π is added to ensure that 0 ≤ υ < 2π .

E.18 LC and DC – The Main Programs

These are the main programs of the Wilson–Devinney program. LC solves the direct

problem: From a given set of parameters, phased light and radial velocity curves,

spectral line profiles, star dimensions, or sky coordinates for producing images are

computed. DC solves the inverse problem: The parameters are derived from obser-

vations. The structure of the main programs is illustrated in Figs. E.2 and E.3.

Fig. E.2 The WD main program: LC. Courtesy R. E. Wilson
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Fig. E.3 The WD main program: DC. Courtesy R. E. Wilson

E.19 LCR – Aspect Independent Surface Computations

This subroutine (see Fig. E.4) oversees all aspect-independent computations of the

stellar surfaces by calling other subroutines in proper sequence. This includes the

shapes of the components and the potential gradient on both stars. It updates those

quantities if they change in an eccentric orbit. In that case, LCR computes the vol-

ume from the potentialΩp at periastron and finds the phase-specific potential for that

volume. Then, the polar temperature is computed by (3.2.19) from the average sur-

face effective temperature. Eventually, LCR calls subroutine LUM, and either OLUMP

or LUMP.

E.20 LEGENDRE – Legendre Polynomials

Based on the recursive relationship this subroutine evaluates the Legendre polyno-

mials used in the atmosphere calculation. LEGENDRE reconstructs values for inten-

sity from the precomputed coefficients stored in atmcof.dat and atmcofplanck.dat.
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Fig. E.4 Subroutine LCR. Courtesy R. E. Wilson

E.21 LIGHT – Projections, Horizon, and Eclipse Effects

Subroutine LIGHT performs the aspect computations involving the projections,

horizon, and eclipse effects and summation over the visible surface S′′ of each star.

The WD program uses a normal vector, n, pointing inward and a line-of-sight vector,

s, pointing from the binary to the observer. In the first part of subroutine light there

is a test which decides which star is in front. If the phase Φ is close to 0.5,

(Φ − 0.5)2 ≤ 0.0625 = 0.252, (E.21.1)

then the primary is in front, otherwise the secondary is in front.

For the star in front, subroutine LIGHT checks all grid points for

cos γ < 0. (E.21.2)

For the orientation of n and s reviewed above, the grid point is visible if the condition

is fulfilled. The whole horizon is then represented by an array (θ H , ρH ), the nearest

points to the horizon. These points are identified when integrating the star in front

and detecting a change in the sign of cos γ . LIGHT fits a Fourier representation ρ(θ )

of the horizon by least-squares in subroutine FOURLS.

The star in the background, possibly eclipsed by the star in front, is treated sim-

ilarly. Visible grid points are identified (E.21.2). A quick test is then applied to

ascertain if a visible point is eclipsed. This test is followed by a fine-tuned test using

ρ(θ ) which is improved by a fractional area correction if the boundary lies between

adjacent grid points.
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The related program WD93K93, developed in Calgary, integrates the flux by

Simpson integration for points visible on the “distant” star.

E.22 LimbDark – Limb Darkening

LimbDark supports the computation of local limb darkening by interpolating in

Van Hamme’s (1993) band-specific limb-darkening tables.

E.23 LinPro – Line Profiles

Added in the 1998 version of the WD program, subroutine LinPro computes spec-

tral line profiles of absorption and emission lines are generated for MPAGE=3 in

LC (not DC). The profiles are for rotation only, although other broadening mecha-

nisms may be added later. Blending is incorporated, including blending of mixed

absorption and emission lines. Lines can originate either from an entire star or from

designated sub-areas of the surface, as explained below. Spectra are formed by bin-

ning, with the spectra of the two stars formed separately. The user can add them

(weighted by observable flux) if spectra of the binary are needed.

E.24 LUM – Scaling of Polar Normal Intensity

The computation of the flux from each surface element is based on the local inten-

sity. In order to integrate star brightness (in subroutine LIGHT) we need to know the

normal intensity at a reference point on the surface, ordinarily the pole. However,

the input parameter to the WD program is the luminosity in units determined by the

user. Subroutine LUM accomplishes the necessary inversion such that luminosity

becomes input and reference intensity is output. It uses (6.3.7) to compute the polar

normal intensity I j required to yield the relative monochromatic luminosity when

the local fluxes are suitably integrated over the surface. For both components LUM

also computes and stores the local bolometric and monochromatic ratios G j (rs) of

normal intensities at all local points rs to that at the pole according to (6.3.8). LUM

also implements model atmosphere corrections.

E.25 LUMP – Modeling Multiple Reflection

As the multiple reflection effect involves many iterative computations it is strongly

recommended to pay some attention to the structure and logic of computations. As

in Wilson (1990) we now put the formulas in a more symmetrical form and label the

stars A and B. The effective irradiance fluxes are denoted by primes (F ′), while the
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“intrinsic” fluxes (those which would exist in the absence of the reflection effect)

are unprimed.

Let us start by computing the irradiance flux F ′′B from component B received at a

surface point on component A. Combining ( 6.3.10) and (3.2.47) we get

F ′′B = IB

∑

ϕ

∑

θ

{

RB

cos γA

ρ2
GB D(γB)

cos γB

cosβB

r2
B sin θB∆ϕB∆θB

}

, (E.25.1)

where γ denotes, at a given surface point, the angle between the local surface normal

and the line-of-sight to a given surface element on the other star, and ρ is the distance

between that point and the surface element. If, in the common coordinate system,

the surface point of component A and the surface element of the other star have the

coordinates rA and rB, cos γA follows simply as

cos γA = nA ·
rB − rA

ρ
, ρ = |rB − rA| . (E.25.2)

The effective irradiance flux considers the local bolometric albedo, AA, and givesus

F ′B = AA F ′′B . (E.25.3)

The intrinsic flux, FA, is given by

FA = DA IBGA,

where D is the effective bolometric limb-darkening factor introduced on page 122.

Wilson (1990) expresses the bolometric flux ratio F ′B/FA in the kth iteration as

F ′B
FA

=
F ′B
FA

(

R
(k)
A

)

=
CB

GB

∑

ϕ

∑

θ

GA KA R
(k)
A QAB D(γA), (E.25.4)

with CB, which is constant for a given binary star system and surface grid

CB =
IA AB∆θA

IBDB

, (E.25.5)

and KA, which (as well as GA) does not change in the course of iterations

KA = r2
A

sin θA∆ϕA

cosβA

, (E.25.6)

and, finally, QAB,

QAB =
cos γA cos γB

ρ2
. (E.25.7)
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The iterative procedure (note that R
(k)
A really represents a vector of reflection factors

R
(k)
A over the whole surface) is then defined by

R
(k+1)
A = 1+

F ′B
FA

(

R
(k)
A

)

, T
(k+1)

A = 4

√

R
(k)
A T

(k)
A . (E.25.8)

The formulas for the other components are just achieved by interchanging the sub-

scripts A and B. For further details and the logic of the implementation the reader is

referred to Wilson (1990).

E.26 MLRG – Computing Absolute Dimensions

MLRG stands for mass, luminosity, radius, and gravity. This subroutine computes

absolute dimensions and other quantities for the stars of a binary star system. This

includes the masses, radii, and absolute bolometric luminosities of the stars in solar

units as well as the logarithm to base 10 of the mean surface acceleration (effective

gravity) of both components.

E.27 MODLOG – Handling Constraints Efficiently

This subroutine controls some of the geometrical constraints. If, for instance, a

contact binary should be modeled, then this subroutine enforces the equations

A2 = A1, g2 = g1, and Ω2 = Ω1.

E.28 NEKMIN – Connecting Surface of Over-Contact Binaries

This subroutine is only called for contact binaries (modes 1 and 3). A plane through

the connecting neck defines the star boundaries. The (“vertical”) plane is essentially

at the neck minimum, so not exactly at the L
p

1 point. Subroutine NEKMIN computes

the x-coordinate of that plane as described by Wilson & Biermann (1976).

E.29 OLUMP – Modeling the Reflection Effect

In order to understand the meaning of the bolometric albedos used in the Wilson–

Devinney model to describe the reflection effect, it is useful to have a detailed

knowledge of how the reflection effect is modeled. We first describe subroutine

OLUMP, which means “old LUMP.” OLUMP is used for eccentric orbit calculations.

It is a bit less accurate but much faster than subroutine LUMP.
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As shown in Fig. E.5, d denotes the distance between the star centers in unit a.

For a circular orbit d ≡ 1. The index 2 refers to the secondary component. Let

dxy
y

x

secondary
primary

x*

d

Fig. E.5 Geometry of the reflection effect 1. The basic geometry

r j = (x j , y j , z j )↔ (r j , θ j , ϕ j ), j = 1, 2, (E.29.1)

be the coordinates with the origin in the center of component j . The coordinate

systems can be transformed into each other by

x2 = d − x1, y2 = −y1, z2 = z1. (E.29.2)

Spherical coordinate systems, C1 and C2, introduced in Sect. 3.1.1, also are used. All

quantities indexed by * refer to the coordinate system with center in the origin of

the irradiating star. If two signs are given, as in (E.29.3), the upper one refers to the

case that the primary component is the irradiated star. The coordinates x , y, and z

always refer to the irradiated component:

x1 =
{

d

0

}

± x, y1 = ±y, z1 = z, x∗ = x1 −
{

d

0

}

. (E.29.3)

According to Fig. E.5 the distance from a point of the irradiated star to the center of

the irradiating star is given by

d =
√

x2
∗ + y2

1 + z2
1, dxy =

√

x2
∗ + y2

1 . (E.29.4)

The transformation

r = (r, θ, ϕ)→ (r∗, θ∗, ϕ∗) = (d, θ∗, ϕ∗) (E.29.5)

is, as shown in Fig. E.6, realized by

cot θ∗ =
z

x∗
(E.29.6)
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z'-axis
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θ∗

ϕϕ∗

z-axis –y'-axis y-axis
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dxy
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Fig. E.6 Geometry of the reflection effect 2. The relevant angles are shown. Quantities indexed

by * refer to the coordinate system with center in the origin of the irradiating star. Although, for

simplicity, the figure shows circles it should not give the impression that the irradiated star is

modeled as a sphere, which is not the case

and

cos2 ϕ∗ =
1

1+ y2/x2
∗
=
[

x∗

dxy

]2

. (E.29.7)

Furthermore, cos2 ϕ∗ is needed in the following computations.

The ellipticity factor used in (3.2.45) is the ratio between the flux FE (r) in an

arbitrary point outside of an ellipsoidal star with axes a = rpoint, b = rpole, and

c = rside, and the flux FS(r) in the same point which would result from a spherical

star of the same luminosity:

E = E(r) =
FE (r)

FS(r)
=

G

S
. (E.29.8)

Here G is the incident flux at F. In the following, only those values G = G(r) are

of interest for which x is a surface point of the irradiated star. The nomenclature is

similar to that in Russell & Merrill (1952). i(= θ∗) and θ (= ϕ∗) are spherical polar

coordinates with center at the origin of the radiating star. Conservation of flux, and

the observation that for a star with unit luminosity we have S = 1/4π , yields the

normalization condition:

∫

G(i, θ )dΩ =
1

4π

∫

E(i, θ )dΩ = 1, dΩ = sin ididθ. (E.29.9)

According to Russell & Merrill (1952, p. 33), it follows that

E(i, θ ) = C

[

1−
N z

2
cos2 θ

]

, (E.29.10)
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where N describes limb darkening and gravity darkening according to Russell and

Merrill, or (D.1.5), and

1

C
=

1

4π

∫ (

1−
N z

2
cos2 θ

)

dΩ = 1−
N

8π

∫

z cos2 θdΩ. (E.29.11)

The quantity z follows from Fig. E.9 and the definition of a, b, and c therein and is

given by

z =
1− b2/a2

1+ b2/c2 tan2 i
. (E.29.12)

Wilson approximates the integral in expression (E.29.11) by

∫ 2π

0

∫ π

0

z cos2 θ sin ididθ = 2π (1− b2/a2)

∫ π/2

0

sin i

1+
b2

c2 · tan2 i

di, (E.29.13)

where z has been eliminated using (E.29.12) and eventually gets

1

C
= 1−

N

4

(

1−
b2

a2

)(

0.9675− 0.3008
b

c

)

. (E.29.14)

The required quantities cot i = cot θ∗ and cos2 θ = cos2 ϕ∗ have already been com-

puted in (E.29.6) and (E.29.7).

R

ϕ

u

R

γ

Fig. E.7 Geometry of the reflection effect 3. Here we see the quantities rc and rH involved in

describing the visible part of the irradiating star

The bolometric flux F1(a) received at a point a is, after application of the correction

for limb darkening, modified by a multiplicative correction factor E(θ∗, ϕ∗)
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F1(r) = E(θ∗, ϕ∗)F1(r, sphere). (E.29.15)

The step from an irradiating point source to an extended source star requires an

explicit treatment of penumbral regions. Modeling penumbral effects forces us also

to include limb darkening. Derived in Chapter 3 for a linear limb-darkening law,

formula (3.2.31) gives the flux received from a unit disk with unit intensity at disk

center

F = π
(

1−
x

3

)

. (E.29.16)

ϕS
ϕ ϕ

rmax

R
rc rH

horizon

R
rcF∆

Fig. E.8 Geometry of the reflection effect 4. The local coordinates on the stellar disk are illustrated

Figure E.7 illustrates the geometry of the visible part of the irradiating star seen

from a point x of the irradiated star. The horizon is assumed to be a straight line. In

the first step, ϕs = ϕs(rc, R) is computed according to

ρ := sinϕs =
rc

R
↔ ϕs = arcsin

rc

R
= arcsin ρ. (E.29.17)

for given values rc and R. To each value ϕ we can assign a value rH

rH = rH (ϕ) =
rc

sinϕ
. (E.29.18)

As illustrated in Fig. E.8, we can compute sin γmax as a function of rH

sin γmax =
rH

R
(E.29.19)

and, with R ≡ 1, we get

γmax = γmax[rH (ϕ)] = arcsin
rc

sinϕ
. (E.29.20)

The contribution F∆ of the large triangle area in Fig. E.7 is
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F∆ = 2

π/2
∫

ϕs

γmax
∫

0

I (r )rdrdϕ = F1 + F2 + F3, (E.29.21)

where

F1 = (1− x)ρ
√

1− ρ2, (E.29.22)

F2 = 2
3

(π

2
− arcsin ρ

)

, (E.29.23)

F3 = − 2
3
x

∫ π/2

ϕs

(

1− ρ2/ sin2 ϕ
)3/2

dϕ. (E.29.24)

Wilson computes F3 with a Gauß integration as
∑3

i=1 wi fi . Based on the computed

quantities, it is now possible to define the penumbra function P = P(rc, R)

P = P(rc, R) =















1,

P1,

P2,

0,

case 1 :

case 2 :

case 3 :

case 4 :

ρ ≥ 1,

0 ≤ ρ < 1,

−1 < ρ < 0,

ρ ≤ −1.

(E.29.25)

Cases 1–4 represent four geometric possibilities:

1. the irradiating star is completely above the local horizon;

2. it is more than half above the local horizon;

3. it is less than half above the local horizon; or

4. it is completely below the horizon.

The quantities P1 and P2 are defined by

P1 =
Fsec + F∆

F
, P2 =

F − (Fsec + F∆)

F
= 1− P1. (E.29.26)

The contribution Fsec is

Fsec = 1
2

F + 2

∫ ϕs

0

∫ π/2

0

dF(γ ) = 1
2

F +
1

π
ϕs F (E.29.27)

and eventually

Fsec =
(π

2
+ arcsin ρ

) (

1−
x

3

)

. (E.29.28)
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Now the dependence of the factor P on rc and R according to (E.29.22), (E.29.23),

(E.29.24), and (E.29.28) is transformed into a dependence on ρ defined in (E.29.17).

As can be seen in Fig. E.9, it is also possible to define the fractional radius ρ above

or below the horizon as

ϕmax

a
d

normal
vector

tangent at
surface

h

ϕc

b

c

a: =
b+c

2

rmax

rc

horizon

Fig. E.9 Geometry of the reflection effect 5. The relation among geometrical quantities describing

the visible part of the irradiating star

ρ :=
ρc

ρmax

=

π

2
− h

arcsin

(

b + c

2d

) , ρc =
π

2
− h, (E.29.29)

where additional auxiliary quantities

ρmax = arcsin

(

ā

d

)

, ā :=
b + c

2
, (E.29.30)

and

cos h = −
n · r∗
|r∗|

, (E.29.31)

appear. The replacement of the approximation (E.29.17) by (E.29.29) is only useful

for D ≫ ā. In contact systems we have D ∼= 3ā; in detached systems the approxi-

mation is even better.

If (3.2.45) is to be used instead of (3.2.44), cos ε is replaced by cos ε. In the case

of a point source the ratio F1/F2 depends on the angle defined in (E.29.31), i.e., on

cos ε = cos h. As shown in Fig. E.10, ε can be defined as
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a

aH

da

horizon

Fig. E.10 Geometry of the reflection effect 6. The geometry at the horizon

ε =
π

2
− εmean, (E.29.32)

where εmean can be interpreted as the mean height above the horizon. However, it is

easier to define a mean radius or mean (linear) height ā. From

εmean = āρmax (E.29.33)

the angle, εmean can be computed. Then, ā follows as

ā =

∫ 1

aH
a

√

1− a2
H da

∫ 1

aH

√

1− a2
H da

=
N

D
, (E.29.34)

with

N := 1
2

[

a
√

1− a2 + arcsin a
]1

aH

, (E.29.35)

and

D := − 1
3

[

a(1− a2)3/2
]1

aH
(E.29.36)

we eventually find

ā =
1
3
[1− a2

H ]3/2

π
4
− 1

2
[aH (1− a2

H )1/2 + arcsin aH ]
. (E.29.37)
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The height aH above the horizon is identical with ρ computed from (E.29.29).

More detailed computations of the reflection effect and also multiple reflection

are done in subroutine LUMP (see Appendix E.25).

E.30 OMEGA* – Computing Ω(r)

This subroutine, similar to Wilson’s subroutine VOLUME, computes the Roche

potential Ω for a given (dimensionless) mean radius r∗ by solving the equation

r̄ V (Ω) = r∗, (E.30.1)

where r̄ V (Ω) is calculated according to (6.3.21). For given values q and Ω , a mod-

ified version of Wilson’s subroutine SURFAS yields not only the surface points but

also the volume and thus the mean radius r̄ V according to (6.3.21). Thus, the implicit

condition (E.30.1) can be solved w.r.t. Ω by applying Newton’s method, i.e.,

Ω (n+1) = Ω (n) −
r̄ V
[

Ω (n)
]

− r∗

dr̄

dΩ

[

Ω (n)
]

. (E.30.2)

The derivative in the denominator of (E.30.2) can be approximated by the finite

difference expression

dr̄

dΩ
[Ω] ≈

r̄ V (Ω +∆Ω)− r̄ V (Ω)

∆Ω
, ∆Ω = 0.01. (E.30.3)

The initial guess Ω (0) is computed by the approximations

Ω
(0)
1 =

1

r1

+ q, Ω
(0)
2 = q

(

1

r2

+
1

q

)

+
1

2
(1− q), (E.30.4)

and

Ω
(0)
2 = q

(

1

r2

+
1

q

)

+ 1
2
(1− q) = 3

2
+
(

1

r2

− 1
2

)

q, (E.30.5)

based on Kopal’s (1959, p. 129, formula 2-3) approximation

r =
1

Ω − q
(E.30.6)

for component 1 and the transformation (6.3.3) for changing into the coordinate

frame of component 2. Iterations are stopped if

∣

∣r̄ V (Ω)− r∗
∣

∣ < ε = 0.00001. (E.30.7)
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E.31 PLANCKINT – Planck Intensity

This subroutine returns the Planck intensity of the disk center over the range of

temperature 500 K ≤ T ≤ 500,300 K. This is the integral of the Planck function (or

blackbody function) folded by the response function of a particular bandpass over

the whole star.

E.32 READLC* – Reading Program Control Parameters

This subroutine reads all control parameters needed in WD95 in order to run the

least-squares solvers or to produce graphics.

E.33 RING – The Interface Ring of an Over-Contact Binary

This subroutine is called by SURFAS and is related to the construction of the

surface of over-contact binaries. It computes the area fraction of surface ele-

ments intersecting the ring (resp. the plane), separating the components of over-

contact binaries. Finally, subroutine RING, computes a Fourier representation of

the ring.

E.34 RanGau – Generation of Gaussian Random Numbers

Subroutine RanGau generates pseudo random numbers with Gaussian probability

in the range [−∞,+∞].

E.35 RanUni – Generation of Uniform Random Numbers

Subroutine RanUni generates pseudo random numbers with uniform probability in

the range [−1,+1]. The input number Sn , from which both output numbers are gen-

erated, should be larger than the modulus 108 and smaller than twice the modulus.

The returned number smod will be in that range and can be used as the input Sn+1

on the next call.

E.36 ROMQ – Distance Computation of Surface Points

This subroutine replaces the older subroutine ROMQSP, which was programmed in

single precision.
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E.37 ROMQSP – Distance Computation of Surface Points

For a single point (θ, ϕ) on the surface of a component, this subroutine computes

the distance r to the center of that component

(θ, ϕ;Ω, F, q)→ r (θ, ϕ;Ω, F, q). (E.37.1)

In addition, the following derivatives are computed:

dr

dq
,

dr

dΩ
,

dΩ

dr
. (E.37.2)

ROMQSP provides a convenient means to generate tables of dimensions and useful

derivatives for output of the main program. The subroutine was replaced with ROMQ

in the 1998 and later versions.

E.38 SIMPLEX* – Simplex Algorithm

This subroutine contains the Simplex algorithm. It calls subroutine SSR to com-

pute light curves for a parameter vector x suggested by the Simplex algorithm.

E.39 SinCos – Surface Grid Sine and Cosines

This subroutine computes and stores the sine and cosine values for all surface grid

points. This save some computing time.

E.40 SQUARE – Building and Solving the Normal Equations

This subroutine builds the normal equation, inverts the left-hand side of the normal

equations, and determines the parameter corrections. Furthermore, the correlation

matrix and parameter standard deviations are computed. The inversion of the normal

equations is performed by subroutine DMINV.

E.41 SPOT – Modeling Spots

This subroutine checks whether a surface point (θ, ϕ) lies within any of n specified

spots and corrects the local temperature. If a surface point is in more than one spot,

this subroutine adopts the product of the spot temperature factors. Note that WD

uses North polar “latitudes,” running from 0◦ at the “North” pole to 180◦ at the

other. In addition, θ c
s and ϕs refer to the coordinates on stars of a particular spot

of radius ρs . The angular distance ∆s of the point (θ, ϕ) from the center of spot s
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follows from (3.4.3), and the spot-free local temperature Tl at (θ, ϕ) is modified by

the temperature factor t f according to (3.4.5). The effects of star spots are treated

as part of the aspect computations. The reason is that only a quarter of the surface

points are stored, so as to save on memory needs. Note that spots break the up–down

and right–left symmetry of the model star.

E.42 SSR* – Computation of Curves and Residuals

This subroutine receives the adjustable parameters from the Simplex algorithm, and

the Levenberg–Marquardt algorithm picks up the all other input parameters from

common blocks, prepares the total set of parameters and other data to the WD pro-

gram, and invokes subroutine DC to compute all light and radial velocity curves for

all observed phase values and residuals. SSR is used within the context of the Sim-

plex algorithm and the Levenberg–Marquardt-type damped differential corrections

algorithm. The standard deviation of the fit and errors of the parameters are returned

to the calling subroutines.

E.43 SURFAS – Generating the Surfaces of the Components

This subroutine generates the spherical and rectangular coordinates of the surface

elements of each component, computes the rectangular components of the surface

potential gradient and other quantities which only depend on the surface elements.

The grid spacing and the motivation for it has been described in Sect. 4.5.3.

E.44 VOLUME – Keeping Stellar Volume Constant

For eccentric orbits, this subroutine computes the phase-dependent Roche potential

such that the volumes of the stars are kept constant.
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Appendix F

Glossary of Symbols

This table gives the page numbers on which the symbol occurs or gives an equation

(in parentheses) in which it is defined or used.

A matrix in linear least-squares functional (A.3.7)

A surface of a star in physical units (4.4.19)

a isothermal sound speed 140

a semi-major axis of the relative orbit, in units of R⊙ 11

a j semi-major axis of the absolute orbit of component j , in units of R⊙ (4.4.17)

B apparent magnitude in blue passband of Johnson system 38

B(x) second derivative term in the Hessian of a nonlinear least-squares

functional (A.3.25)

Bν(T ) Planck function (3.2.21)

b exponent used to compute the flux-dependent weight wflux (4.1.22)

C number of type of observables used 169

Ĉ covariance matrix (4.3.12)

c speed of light; c = 2.9979 · 108 m · s−1 105

c apparent color index 45

c0 color index outside atmosphere 45

c vector of calculated observables (4.1.5)

D telescope aperture 12

D distance of the binary 156

d separation d(φ) between binaries in eccentric orbits (3.1.36)

dV differential volume element (3.1.4)

dσ differential surface element (3.1.5)

d vector of unweighted residuals; d := o− c (4.1.6)

E eccentric anomaly 87

E0 initial epoch 42

e the orbital eccentricity = separation of foci / 2a 83

F rotation parameter 100

F j rotation parameter for star j ; F j = ω j/ω 173

F force per unit mass (3.1.58)

411



412 F Glossary of Symbols

F2(x) vector-valued function representing equations in a constrained

optimization problem (A.2.1)

F3(x) vector-valued function representing inequalities in a constrained

optimization problem (A.2.1)

f mass function f (M1, M2, i) (4.4.33)

f focal length of the spectrograph camera 50

f fill-out parameter (3.1.101)

f j fill-out factor of component j 112

f (x) continuous real-valued objective function in an optimization problem (A.1.1)

f mass function f (M1, M2, i) (4.4.33)

f∗ optimal objective function value of a nonlinear optimization problem (4.1.12)

G gravity constant; G = 6.673 · 10−11 m3kg−1s−2 96

g exponent in gravity-brightening law as expressed in terms of

bolometric flux (3.2.13)

g surface gravity acceleration (3.2.11)

g vector of surface gravity acceleration (3.2.10)

g⊙ solar surface acceleration; g⊙ = 2.74 · 102m · s−2 (4.4.21)

H(x) Hessian matrix of a real-valued function (A.1.7)

h Planck’s constant; h = 6.62608 · 10−34 J · s 55

I local monochromatic intensity 119

i orbital inclination; angle between orbital plane and plane-of-sky

(angular degree) 83

J(x) Jacobian matrix of a vector-valued function (A.1.6)

j referring to component j of the binary system if used as subscript xxxv

k Boltzmann’s constant; k = 1.3807 · 10−23 J · K−1 120

k ratio of radii, k = rs/rg in Russell–Merrill notation 91

k refering to iteration k in an iterative algorithm if used as subscript 354

l j p normalized monochromatic luminosity of component j in passband

p, p ∈ U, B, V, u, b, v, y, l j p = L j p/(L1p + L2p) 24

ℓ system light received (observable radiation flux in a given

passband in energy/time/area), often normalized in some way (3.2.50)

ℓD system light received by observer at distance D (3.2.51)

ℓ j light received from component j (3.2.48)

ℓ3 third light, sum of all contributions to ℓ from any systems parts

beyond the binary pair (usually assumed to be constant) 132

L bolometric luminosity (radiant power in Watts or L⊙, over 4π

steradians, units could be W/micron or L⊙) (4.4.24)

L j monochromatic luminosity (in a specified passband) of component

j over 4π steradians 286

L
p

1 inner Lagrangian point 109

L
p
2 outer Lagrangian point 110

L⊙ solar luminosity; L⊙ = 3.82 · 1026 W (4.4.26)

M mean anomaly (3.1.29)

M binary system mass (in units of M⊙); M = M1 + M2 (4.4.17)

M j mass of component j (in units of M⊙) (4.4.17)
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MV absolute visual magnitude (4.4.32)

M⊙ solar mass, M⊙ = 1.9891 · 1030 kg

Mbol absolute bolometric magnitude (4.4.26)

m apparent magnitude 42

m number of adjustable parameters in a least-squares problem 169

n number of data points in a least-squares problem (4.1.7)

n polytropic index 93

ne electron number density (m−3) 141

n2 number of equations in a constrained optimization problem (A.2.1)

n3 number of inequalities in a constrained optimization problem (A.2.1)

Oc set of observed or calculated data points of observable or curve type c 169

o vector of observed observables (4.1.4)

P Householder matrix (A.3.12)

P binary orbital period 42

P fractional polarization (2.3.1)

P set of adjustable parameters 190

pG vector containing the geometrical parameter involved in the Wilson–

Devinney model 285

p pressure 99

Q Stokes quantity (parameter) (2.3.2)

q binary system mass ratio: q =M2/M1 (3.5.1)

qph photometric mass ratio 173

qsp spectroscopic mass ratio 173

R universal gas constant; R = 8.31451 Jmol−1K−1 (3.2.9)

R spectral resolution (2.2.1)

R mean radius of a star in physical units (4.4.20)

R(x) weighted residual vector (4.1.9)

R j mean radius of component j ; usually the “equal volume radius”

in units of R⊙ 24

R⊙ solar radius, R⊙ = 6.971 · 108 m (4.4.22)

R(α) rotation matrix, rotation by angle α (C.1.2)

r modulus of the radius vector, r = |r| (3.1.1)

r̄ mean radius in units of a 206

r̄ j mean radius of component j in units of a 206

rs,g mean radius of smaller and greater star, respectively , in the

Russell–Merrill model in units of a 287

rback distance from star center to surface along the line of centers in

opposite direction to the other component in units of a 287

rpoint distance from star center to surface measured along the line of centers

toward the other star in units of a 287

rpole distance from star center to surface measured perpendicular to the

orbital plane in units of a 287

r side distance from star center to surface measured 90◦ from the line of

centers in the orbital plane in units of a 287

r radius vector (3.1.1)
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S feasible region (feasible set) (A.2.2)

S upper triangle matrix in Householder’s algorithm (A.3.18)

S line-of-sight direction, S = (Sx , Sy, Sz)T 81

s search direction 354

s normalized line-of-sight direction, s = (sx , sy, sz)
T (3.1.15)

σe Thomson scattering cross-section per electron (3.4.10)

Teff mean effective temperature 118

T j mean effective temperature of component j 174

Tp polar effective temperature (3.2.16)

Tp j polar effective temperature of component j (6.3.8)

Tl local effective surface temperature of a surface element 125

T⊙ effective temperature of the sun, T⊙ = 5770 K (4.4.25)

t time 42

tI, tII times of successive primary and secondary minima (3.1.22)

U unitary matrix (A.3.15)

U Stokes quantity (parameter) (2.3.2)

U apparent magnitude in ultraviolet passband of Johnson system 38

V apparent magnitude in visual passband of Johnson system 38

v reflection vector to generate Householder matrix (A.3.12)

W weight matrix in least-squares problem (4.1.8)

wc curve-dependent weight of a data point (4.1.20)

wflux flux-dependent weight of a data point (4.1.20)

wintr intrinsic weight of a data point (4.1.20)

w weight vector 170

X airmass 45

x component-centered coordinates, x-coordinate (3.1.1)

x s plane-of-sky coordinates, x-coordinate 79

xc x-coordinate of the center of mass (3.1.57)

x0 initial point or guess in nonlinear algorithms 172

x∗ solution of a nonlinear algorithms (4.1.12)

y component-centered coordinates, y-coordinate (3.1.1)

ys plane-of-sky coordinates, y-coordinate 79

z component-centered coordinates, z-coordinate (3.1.1)

zs plane-of-sky coordinates, z-coordinate 79

α, αk damping factor in Newton-type algorithms 354

β angle between radius vector and surface normal (3.1.3)

β exponent in gravity-brightening law as expressed in terms of effective

temperature (3.2.16)

γ radial velocity of the center-of-mass of a binary system 149

γ angle between line-of-sight and surface normal (3.1.16)

∆ minimum angular separation in radians 12

δ plane-of-sky distance between the center of components (3.1.9)

δ ratio of radiative of gravitational force (3.1.85)

∆λ wavelength resolution element (2.2.1)

∆T temperature difference; ∆T := T1 − T2 24
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δt heliocentric correction 42

Θa duration of eclipse at apastron (3.1.26)

Θe semi-duration of X-ray eclipses (4.1.18)

Θp duration of eclipse at periastron (3.1.26)

θ (true) phase angle or “geometrical phase” 83

θ colatitude (zero at “North” pole) (3.1.1)

λ wavelength 12

λ direction cosine (x-component) (3.1.1)

λ, λk damping factor in the Levenberg–Marquardt method 191

λ vector of Lagrange multipliers associated with the equations in a

constrained optimization problem (A.2.4)

µ direction cosine (y-component) (3.1.1)

µ vector of Lagrange multipliers associated with the inequalities in a

constrained optimization problem (A.2.4)

ν true longitude in orbit 83

ν direction cosine (z-component) (3.1.1)

π parallax, π = const/D with distance D 76

ρ mass density 93

σ constant in Boltzmann’s law; σ = 5.6705 · 10−8 Jm−2s−1K−4 (3.2.17)

σ data inner noise of the data 196

σ fit standard deviation of the fit (4.1.13)

τ optical depth 116)

τ Heliocentric Julian Date (2.1.1)

υ true anomaly 83

Φ photometric phase, orbital cycles from a reference phase (2.1.1)

Φs constant offset to phase 42

ϕ longitude (zero in the direction toward the companion star,

increasing counterclockwise) (3.1.1)

Ψ Roche potential in physical units (3.1.59)

Ψ eff effective Roche potential (in physical units) for circular orbits

and asynchronous rotation (3.1.71)

ψ ψ-function in the Russell–Merrill model (6.2.5)

ω argument of periastron 83

ω (time-averaged) angular velocity of the orbital motion in radians

per second (3.1.62)

ω j angular rotation velocity of component j in radians per second 98

ω̃ j ω̃ j := ω j − ω, j = 1, 2 (3.1.71)

Ω longitude of the ascending node (measured in the plane-of-sky) 83

Ω Roche potential (3.1.64)

Ω j Roche potential of component j 172

Ω I,O Roche potential of inner and outer Langrangian surfaces, respectively 110
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A

abbreviations, xxxiii

absolute dimensions, 396

computation of, 205–210

absorption, 326

accretion disk, 137, 140, 142, 161, 272, 293

magnetism, 161

active set, 357

activity cycle, 346

adaptive optics, 12

advice to observers, 60

Airy disk, 12

albedo, 396

bolometric, 124, 214

Algol paradox, 26, 27, 137, 137, 139

algorithm, 389, 391

Cholesky–Banachiewicz, 362

generalized reduced gradient, 358

genetic, 198

interior point methods, 359

maximum entropy, 297

minimization, 352

Price, 198

analysis

Fourier, 296

least-squares, 123

light curve, 341

line-profile, 55, 135, 279

simultaneous least-squares, 311

spectral, 51

time domain, 296

analytic derivatives, 189, 210, 214, 216, 354

anomaly

eccentric, 87, 88, 89, 237

mean, 88, 88, 89, 156

true, 83, 87, 237

apastron, 85, 86, 201

apsidal motion, 29, 75, 84, 88, 132, 235, 236,

238

apsides, 85

Astronomical Almanac, 53

astroseismology, 38

atmospheres

Carbon–Gingerich, 284, 386

convective, 317

empirical corrections, 320

extended, 136, 289, 292, 325

gray, 115

Kurucz, 26, 119, 123, 279, 280, 284, 318

Mihalas, 119

nonemissive, 289

radiative, 315

attenuation, 144

B

Balmer lines, 137, 144

barycenter, 82

best fit, 169

binaries

AM Herculis systems, 60

astrometric, 11

bizarre, 26

classification of, 109

close, 15, 21, 92, 93, 95, 98, 117, 124, 131,

132, 139, 140, 146, 160, 235

contact, 17, 95, 110, 111

detached, 21, 112

double-contact, 102, 113, 138

double-lined spectroscopic, 14

early-spectral type, 103

eclipsing, 3, 11, 14, 15, 17, 18, 22

evolution, 47, 65, 140, 235

evolution in clusters, 315

in clusters, 305

magnetic, 60

morphology of, 109

over-contact, 14, 21, 26, 95, 111, 112

protostar, 13

417
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semi-detached, 21, 112

single-lined spectroscopic, 14, 209

spectral-visual, 11

spectroscopic, 11, 13

visual, 11, 131

Wolf–Rayet, 108

X-ray, 22, 62, 108, 112, 149, 161

Binary Maker, 331, 333–335

blackbody

assumptions, 120

law, 387

radiation, 115

blaze angle, 50

blue stragglers, 47, 314

bolometric correction, 207, 208

bolometric flux, 117

Boltzmann equation, 139

Boltzmann–Saha equation, 153

Bouguer extinction method, 44

bremsstrahlung, 57

non-thermal, 57

thermal, 57

C

Ca II H&K lines, 132, 157

cataclysmic variables, 60, 101, 112

Cayley’s problem, 378

Cayley–Darboux equation, 378

CCD, xxxiii

CCD detectors, 38

CCF, xxxiii

CDM, xxxiii

center-to-limb variation, 91, 120, 266–270,

274, 320

centrifugal limit, 138

characteristic function, 129

chemical composition, 77, 321

chi-square-test, 369

chromospheres, 120, 123, 136, 157, 158

circularization, 85

circumstellar flows, 76

circumstellar matter, 77, 131, 137, 138, 140,

144, 153

clouds, 77, 136, 137, 140, 142, 144, 145, 326

CLV, xxxiii

CMD, xxxiii

coincidence correction, 39

color excess, 159, 208, 231

color index, 45, 45, 199

color-magnitude diagram, 47, 318

common envelope

binaries, 14

evolution, 98

common envelope evolution, 101

companion eclipse function, 129

component

primary, 90, 274

secondary, 274

condition number, 362

conjugacy, 355

conjunction

superior, 84

constant volume assumption, 102, 115

constraint, 351

active, 357

eclipse duration, 179

geometrical, 396

main sequence, xxxiii, 233, 234

qualification, 357

use of, 178

contact discontinuity, 144

contact parameter, 110, 111

convection, 26

convective envelopes, 117, 125, 158, 315

convergence, 26

cool Algol, 273

coordinates

barycentric, 89

Cartesian, 77

cylindrical, 278, 297

plane-of-sky, 79–82

Roche, 378, 379

rotation of, 373

spherical, 78

coronae, 157

coronal emission, 120, 157

correlation, 174

cosmic rays, 44

covariance, 186, 188, 204, 205

covariance matrix, 188

cross-correlation, 51, 54, 57, 146, 278

function, 52

curve of growth, 56

D

damping factor, 365

data

binning, 179

fundamental stellar, 3

photoelectric, 41

polarization, 37

spectrophotometric, 37

spectroscopic, 76

data fitting, 360

data reduction, 66

dead time correction, 39



Index 419

degree of contact, 110

depth relation, 270

differences

central, 354

finite, 354

forward, 354

Differential Corrections, 175

direct problem, 76, 170, 385

disks, 77, 142

opaque, 291

semi-transparent, 289

thick, 24, 273

displacement of minima, 85

distance estimation

direct, 326

inverse, 326

distance modulus, 208, 231

disturbances, 140

Doppler

imaging, 135

profile analysis, 37

profile mapping, 60, 60

shift, 50

E

EB, xxxiii

eccentricity, 83

Echelle spectra, 146

eclipse

atmospheric, 136, 137

duration of, 388

horizon, 390

moment of the, 295

occultation, 267

partial, 269, 291

self-, 129, 281

total, 291

X-ray, 388

eclipsing binaries

classification, 15, 17, 18, 21

data analysis, 15, 22, 75, 169, 221

definition, 14, 14

importance, 3, 22

large number of light curves, 27, 241

modeling, 75

observable curve, 75

ellipsoidal effect, 126

ellipsoidal variation, 6, 17

ellipticity, 92, 94, 136, 270, 381–383, 398

ellipticity effect, 23

ephemeris phase correction, 274

epoch, 42

equation of condition, 44, 45, 170, 223, 267

equilibrium

convective, 117, 125

points, 102, 388

points (computation), 389

radiative, 117, 125

equipotential surfaces, 3, 18, 77, 82, 95, 99,

103, 105, 106, 109, 112, 114

errors

estimation of, 369

in the presence of correlations, 205

interpretation of, 204, 205

numerical, 204

probable, 318

sources of, 37, 204

sources of photometric, 181

statistical, 204

systematic, 204

Euclidean norm, 362

extinction, 41, 45

atmospheric, 39, 41, 53

circumstellar, 144, 145

differential, 53

F

faculae, 123

feasible region, 171, 356

Fibonacci line search, 192

fill-out factor, 20, 110, 111, 112, 315

finite differences, 216

flat-fielding, 43

flocculi, 132

flux

local bolometric, 117

monochromatic, 128, 214

total emitted, 128

force

centrifugal, 77, 383

Coriolis, 99

field, 101

radiation, 104

tidal, 77, 85, 92

time-independent, 87

Fourier transforms, 295

G

GAIA, ix, 64, 65, 221, 248, 346

gas streams, 24, 26, 57, 77, 123, 137–139, 139,

140, 141, 160, 346

Gauß–Legendre quadrature, 279

Gauß quadrature, 274

generalized inverse, 186

Gliese 876b, 248

gradient, 353

graphical user interface, 335
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graphics packages, 331

gravitational radiation, 112

gravitational waves, 26

gravity brightening, 115, 116, 381, 383

gravity darkening, 116

grid approach, 369, 371

H

Hα line, 132, 157

Hα line profiles, 143

Hα-index, 140

Halley’s method, 379

Hankel transforms, 295

Hardie extinction method, 45

Heisenberg Uncertainty Principle, 55

heliocentric correction, 42

Hessian matrix, 187, 189, 198, 353, 355, 357,

358, 364–367

Hipparcos mission, 11, 156

horizon, 107, 129, 131, 279–281, 297

Householder transformation, 362

HST, xxxiii, 248–250, 255, 307, 319

Hubble Space Telescope, see HST, 12

hydrodynamics, 17, 117, 139, 142–144, 155,

326

I

IAU, xxxiii

ideal gas law, 115

image processing, 43

image processing packages

DAOGROW, 44

DAOPHOT, 44

DOPHOT, 44

IRAF, 44

MIDAS, 44

ROMAFOT, 44

inclination, 11, 83

initial parameters, 169, 185, 198, 199, 205,

242, 352, 379, 389–391, 404

initial point, 172

intensity, 104

interferometers, 131

interferometry

aperture synthesis, 12

intensity, 13

long-base, 13

phase, 12

speckle, 13

intermediate orbits, 266

interpolation, 210–213

cubic splines, 213

interstellar

dust, 57

extinction, 159, 344

reddening, 159, 199, 208, 344

intrinsic variability, 234

inverse problem, 76, 169, 170, 171, 174, 183,

211, 372, 385, 391

ionization potential, 153

isoplanpatch, 12

J

Jacobian matrix, 175, 186, 191, 353, 356, 357,

365, 374, 375

Julian date, 42, 155, 156

K

Kepler mission, ix, 221, 241, 346

Kepler’s equation, 88

numerical solution of, 379

Keplerian problem, 87

Kolmogoroff–Smirnov test, 369, 370

Kozai cycles, 236, 347

Kuhn-Tucker

conditions, 357

point, 357

sufficiency theorem, 358

Kwee effect, 135

L

Lagrange multipliers, 172, 186, 356, 359

Lagrangian

function, 356

inner L. point, 19, 102, 109, 110, 140

outer L. point, 110

points, 109, 331, 388

least-squares

constrained, 359

damped, 184

equality constrained, 185

linear, 361

nonlinear, 75, 172, 360, 361, 364, 365, 366

unconstrained, 360

Legendre polynomials, 93

Leibniz’s rule, 215

light curve solution, 171

light curves, 42

asymmetries in, 271

distortions of, 135, 140, 145

EA-type, 17

EB-type, 17

EW-type, 17

far-ultraviolet, 120

Fourier analysis of, 271

Fourier fit, 384

infrared, 17, 61

maxima, 384
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monochromatic, 280

perturbations of, 135, 384

simulated, 370

synthetic, 24, 278, 347

types of, 15

light loss, 290

light-time effect, 132, 235, 236, 278

limb eclipse effect, 153

limb-darkening, 91, 115

bolometric, 123

far-ultraviolet, 123, 321

linear, 120, 121, 275

logarithmic, 123, 284

nonlinear, 122, 321

polynomial, 122

quadratic, 122, 284

solar, 120, 123, 320

square-root, 123, 284

limiting lobes, 287

line blending, 53, 57

line broadening, 55–57, 150, 324

collisional, 55

Doppler, 56

natural, 55

rotational, 53

Stark, 56

line profiles, 49, 56, 75, 142, 144, 150, 152,

324

line-of-sight, 56, 80–82, 85, 120, 129, 136,

145, 276, 324, 393

linear dispersion, 50

LSST, ix, 221, 241, 346

luminosity

bolometric, 87, 208, 275

monochromatic, 208, 286

lunar occultations, 12

M

MACHO, xxxiii, 346

magnetic breaking, 112

magnetic fields, 50, 56

magnetohydrodynamics, 161

magnetometry, 37, 59

magnitude

absolute, 208

apparent, 42

bolometric, 207

magnitude-flux relation, 42

mass function, 14, 209

mass loss, 22, 112

mass motions, 56

mass transfer, 138, 161

large scale, 137

nonconservative, 139

mass-luminosity relation, 209

matching approach, 241, 242

matrix inversion, 265

maximum likelihood, 171, 360

mean-free path, 139

meridional circulation, 117

metallicity, 321

method

alternating variables, 352

autocorrelation, 12

Bessel, 212

classical Newton, 355

conjugate direction, 355

damped, 354

derivative-based, 352

descent, 354

frequency domain, 266, 295, 296

Gauß–Newton, 184, 198, 343, 359, 364,

365–367

Gauß-Legendre, 279

generalized reduced gradient, 358

Levenberg-Marquardt, 184, 187, 190, 198,

203, 407

line-search, 353

of multiple subsets, 177, 178, 190

orthogonalization, 362

Powell Direction Set, 192

quasi-Newton, 355, 355, 365

Simplex, 54, 192, 194–196, 198, 278, 279,

343, 352

Simulated Annealing, 306

steepest descent, 192, 354

undamped, 354

variable metric, 355

microlensing, 120, 132, 136

microturbulent velocities, 150, 307, 324

minimum

global, 172, 173, 352, 358

local, 172, 172, 173, 198, 199, 352, 358

primary, 42, 65, 84, 92, 112, 176, 200

secondary, 211, 276

model

Binnendijk, 278

Budding, 295

Cherepashchuk, 289–293

ellipsoidal, 23, 24, 91, 92, 95

extended Roche, 102

geometrical, 77

Hadrava, 278

Hill, 279

Linnell, 279–282

Mochnacki, 297
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NDE, 89, 273, 274

physical, 77

rectification, 274

Roche, 95

Russell-Merrill, 89

semi-classical, 291

spherical, 23, 90

versus code, 265

Wilson–Devinney, 282–287

Wood, 92, 95, 277, 277

modes, 286

moment equation, 11

MSC, xxxiii

multiple systems, 10

N

natural level functions, 186, 367

neural networks, 244, 346

nonlinear programming, 356

normal distribution, 369

normal equations, 361

normal points, 179, 189, 281, 292

novae, 22, 101

O

O’Connell effect, 6, 135, 271, 314, 315, 318

O–C curve, 132, 235

objective function, 351

oblateness, 17, 94

oblateness effect, 17

observables, 75, 170

systemic, 76, 156

occultation, 92, 112, 176, 199, 200, 315

OGLE, xxxiii, 346

optical depth, 116

optimization, 351

constrained, 351, 356

convex, 358

derivative-free, 191

discrete, 351

inequality constrained, 356

inequality nonlinear, 356, 358

unconstrained, 351, 352

optimum

global, 352

local, 352

orbital elements, 83, 84

orbital period, 209

orbits

absolute, 82

circular, 82

eccentric, 77, 82

edge-on, 14, 83

escape, 141

relative, 82

trajectories, 141

oscillations

nonradial, 87, 95, 101, 102

P

Padé approximants, 379

parallax, 76, 156, 157

parallax measurements, 11

particle trajectories, 139

passband, 37

penumbra function, 401

penumbral effect, 126

periastron, 83, 86, 92

period change, 178, 235, 238, 242, 257

phase

eccentric orbit, 88

geometrical, 83

orbital, 42

photometric, 14, 42

phase shift, 85

photographic plate, 43

photometer

multichannel, 181

polarizing, 39

pulse-counting, 39, 41

RADS, xxxiii, 41, 181

two-channel, 39

Walraven, 39

photometric systems

Cousins, 38

DDO, 38

Geneva, 38

intermediate-band, 48

Johnson, 38

Johnson–Cousins, 38

narrow-band, 48

Strömgen, 38

transformation, 38

Vilnius, 38

Walraven, 38

Washington, 38

photometry

astronomical, 38

background-limited, 38

broadband, 48

CCD, 38, 45, 47

cluster, 47

infrared, 47, 271

photoelectric, 37

photon-limited, 37

synthetic, 281

photomultiplier, 38
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plages, 132

Planck function, 119

Planck law, 280

plane-of-sky, 79

coordinates, 131

projected distance, 81, 91, 130

planets (individual)

Gliese 876b, 248

HAT P-1b, 256

HD 209458b, 247, 256

OGLE-TR-56, 256

TR-113b, 250

TR-132b, 250

TR-56b, 250

WASP-1b, 256

polar gravity acceleration, 391

polarimetry, 57, 57, 58–60, 62, 66

polarization, 75, 76, 144, 152, 152, 153–155

circular, 56

circumstellar, 152

fractional, 57

limb, 152

photospheric, 152

sources of, 57

polytropic

gas spheres, 77

index, 93, 94

position angle, 37, 57

positive definite, 353

potential, 87, 93

at periastron, 115

centrifugal, 95, 97, 100

effective, 87, 99–101

energy, 77, 95

function, 77

gradient, 77

gravitational, 97

modified Roche, 97

Roche, 95, 96

precession, 29, 235

pressure, 99

prominences, 123

proper motion, 11

proximity effects, 146

pulsating variables, 51, 234

pulse arrival times, 76, 311

R

radial velocity, 14, 42, 50, 51

amplitude, 147

curve, 51, 52, 54

radiation hydrodynamics, 139

radiation pressure, 103, 104, 105, 107, 108

inner, 105

outer, 106

radiative envelopes, 103

radiative transfer, 379

rapid alternate detection system, 39, 181

rectification, 76, 95, 270

reflection effect, 5, 17, 115, 123, 125, 128, 315,

387, 394, 396, 404

multiple, 124, 127, 321, 394, 395, 404

regularization, 186

Tikhonov, 289

relativistic effects, 132, 235

resolution

angular, 12

spatial, 11

spectral, 37, 48, 53, 62, 314, 320

telescopic, 11

time, 41

resolving power, 12

restricted three-body problem, 82, 141

rings, 137

robust estimation, 171, 203

robustness, 203

Roche

circular potential, 96

coordinates, 378, 379

geometry, 6, 95

lobes, 5, 19

model, 77, 94, 95, 100

potential, 95

Rossiter effect, 56, 146

rotation, 94

asynchronous, 95, 98, 113

axial, 92

fast, 98

matrices, 80

orbital, 92, 94

stellar, 56

subsynchronous, 98

synchronous, 94

rotation effect, 146

royal road of eclipses, 23, 266

RS CVn-like phenomena, 135

Russian school, 289, 291, 294

S

Saha equation, 153

SB1, 14

SB2, 14

scattering

anisotropic, 57

electron, 58

multiple, 141
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Rayleigh, 144, 152

Thomson, 144, 152

scintillation, 180

SED, xxxiii

self-eclipse function, 129

sensitivity analysis, 369, 370

sequential quadratic programming, 343, 359

shape relation, 270

SHELLSPEC, 327

shot noise, 37, 180

signal-to-noise ratio, 37, 53

Simpson integration, 281, 394

simultaneous fitting, 182, 278, 311, 315

sky background, 43

Skylab mission, 157

small residual assumption, 188

smooth particle hydrodynamics, 143

solar data, 411, 415

solar prominences, 123

solution

light curve, 169, 171

locally optimal, 352

nonunique, 361

optimal, 351, 352

system, 169, 171

unique, 186

sound speed, 140

spectra disentangling, 54

spectral classification, 49

spectral energy distribution, 158

spectral line strength, 146

spectral resolution, 48

spectrophotometry, 39, 48, 54, 59, 60, 62

spectroscopy, 48–50

spectroscopy packages

KOREL, 54

REDUCE, 52

SPSYN, 54

VCROSS, 52

spectrum synthesis, 280

spots, 132, 136, 279, 281, 282, 295

accuracy problems, 385

bright, 60, 115

dark, 60

elliptic, 134, 279

latitude, 133

longitude, 133

radius, 133

temperature factor, 133

SQP, xxxiii

standard candles, 7, 27

standard deviation, 171

star, 66

age, 22, 47

comparison, 39, 47

composition, 22

irradiated, 125

irradiating, 126

primary, 65, 92

program, 41

reference, 12

standard, 41

star clusters

age of, 47

color-magnitude diagram, 47

globular, 47

stars (individual)

α Canis Majoris B (Sirius B), 11

β Lyrae, 5

β Persei (Algol), 25, 153

β Pictoris, 251

β Lyrae, 6, 113, 137, 146

β Persei, 5

δ Librae, 146

ǫ Aurigae, 15

ζ Aurigae, 136

44i Bootis, 131

51 Pegasi, 246

AB Andromedae, 147

AI Phoenicis, 52, 311, 320, 321, 337

Algol, 5

AQ Monocerotis, 50

AR Lac, 298

AW Ursae Majoris, 297

AX Monocerotis, 27, 144, 145, 238, 324

BF Aurigae, 124, 176

Centaurus X-3, 347

CX Canis Majoris, 50

DQ Cephei, 137

DQ Velorum, 50

DS Andromedae, 209

DY Herculis, 41

E1114+182, 60

EH Librae, 52

EK Draconis, 60

GP Velorum, 310

GQ Lupi, 249

H235, 311

H235 in NGC 752, 315

HD 152270, 144

HD 209458, 247, 250, 254

HD 209458a, 255

HD 77581, 311

HD27130 in the Hyades, 209

HP Dra, 321, 323

HR 6469, 85
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HR 8799, 249

HZ Herculis, 124

II Peg, 298

KU Cygni, 27

M71 binaries, 317

NH19 in NGC 5466, 314

NH30 in NGC 5466, 314

NH31 in NGC 5466, 314

OGLE-TR-56a, 257

RT Lacertae, 271, 273, 298

RW Comae Berenices, 135

RW Persei, 98

RW Tauri, 137

RZ Cassiopeiae, 324

RZ Scuti, 98, 112, 144

S Cancri, 324

SS Lac, 236, 347

SS433, 293

SX Cassiopeiae, 144

SZ Psc, 298

TU Crucis, 50

TU Muscae, 21, 117, 288

TV Cassiopeiae, 324

TY Bootis, 23, 176

U Cephei, 139, 324

V356 Sagittarii, 27

V444 Cygni, 136, 137, 289, 292, 293

V536 Sagittarii, 113

V566 Ophiuchi, 297

V664 Cassiopeiae, 124

V728 Herculis, 317, 317

V781 Tau, 347

V836 Cygni, 205

V884 Scorpii, 347

Vega, 251

Vela X-1, 311

VV Orionis, 132, 138, 140

Z Chamaeleontis, 140

stars (types of)

δ Scuti variables, 42

Algols, 113

RS CVn, 59, 135

UX UMa, 101

W Serpentis, 138

W UMa, 112

Wolf–Rayet, 22, 144

Stefan–Boltzmann law, 116, 118, 118, 125

stellar

atmospheres, 119, 307, 308–310, 386

evolution, vii, 8, 22, 23, 208, 234

evolutionary models, 246

spectra, 55

surface, 77

surface imaging, 120, 132, 136

tomography, 54

winds, 103, 109, 136, 137, 144

Stokes quantities, 58

stopping criteria, 188, 196, 202

Sun, 120, 132, 157

sunspots, 59

superhumps, 140

surface

brightness, 90, 274–278, 282, 384

critical, 19

element, 79

equipotential, 105

gravity acceleration, 116, 118

grid size, 213

inner Lagrangian, 110, 111

limiting, 109

normal vector, 79

of constant density, 99

of constant pressure, 99

outer Lagrangian, 111

stellar, 102

visible, 128

symbols, xxxv, 411

mathematical, xxxv

symmetry, 211

exploiting, 211

on the surface, 211

orbital, 211

T

telescopes

8-m class, 140

automatic photometric, xxxiii, 61, 62

Hubble Space Telescopes, 12

temperature, 77

local effective, 284

mean effective, 118

modified effective, 125

polar effective, 118, 284

termination criteria, 202, 203

thermal contact, 287

third body, 29, 65, 131, 132, 235, 236, 238,

278, 288, 289, 327

third light, 91, 128, 131, 132, 214, 232, 233,

235, 274, 275

tidal evolution, 85

time scale, 3

dynamic, 3

nuclear, 3, 137

thermal, 3, 139

times cale

hydrostatic, 95
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times of minima, 42, 132

transit, 92, 112, 176, 199, 200, 315

triaxial ellipsoids, 92, 94, 95, 381

true longitude, 83

true phase angle, 83

U

ultraviolet emission, 157

ultraviolet resonance lines, 103

uniqueness, 171, 176, 177, 178, 191, 202

unitary, 363

V

variable stars, 14, 47

cataclysmic, 9, 21, 101, 112

eruptive, 14

in clusters, 47

magnetic, 59

rotating, 14

variables, 351

eclipsing, 5

eruptive, 8

pulsating, 7

vector

angular velocity, 98

line-of-sight, 82

residual, 185

surface normal, 79

transposed, xxxv

volume element, 79, 374

von Zeipel theorem, 105, 106, 117, 117, 118

W

WD, xxxiii

weights, 170, 179, 179, 181, 182, 185, 278,

293, 311, 360

curve-dependent, 179, 181

intrinsic, 179

light-dependent, 179

white dwarfs, 101

X

X-ray

eclipse duration, 179, 183, 311, 388

pulsar, 155, 156, 310, 311

pulse arrival times, 155, 385

Z

Zeeman splitting, 50, 56

longitudinal, 56

transverse, 56

zero phase, 29, 42
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